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OBJECTIVE: Increasing the awareness of how incomplete data affects learning and 

classification accuracy has led to increasing numbers of missing data techniques. This paper 

investigates the robustness and accuracy of seven popular techniques for tolerating incomplete 

training and test data for different patters of missing data; different proportions and 

mechanisms of missing data on resulting tree-based models. 

METHOD: The seven missing data techniques were compared by artificially simulating 

different proportions, patterns, and mechanisms of missing data using twenty one complete 

(i.e. with no missing values) datasets obtained from the UCI repository of machine learning 

databases [Blake and Merz, 1998]. A 4-way repeated measures design was employed to analyze 

the data. 

RESULTS: The simulation results suggest important differences. All methods have their 

strengths and weaknesses. However, listwise deletion is substantially inferior to the other six 

techniques while multiple imputation, which utilizes the Expectation Maximization algorithm, 

represents a superior approach to handling incomplete data. Decision tree single imputation 

and surrogate variables splitting are more severely impacted by missing values distributed 

among all attributes compared to when they are only on a single attribute. Otherwise, the 

imputation--versus model-based imputation procedures gave reasonably good results although 

some discrepancies remained. 

CONCLUSIONS: Different techniques for addressing missing values when using decision 

trees can give substantially diverse results, and must be carefully considered to protect against 

biases and spurious findings. Multiple imputation should always be used, especially if the data 

contain many missing values. If few values are missing, any of the missing data techniques 

might be considered. The choice of technique should be guided by the proportion, pattern and 

mechanisms of missing data, especially the latter two. However, the use of older techniques like 

listwise deletion and mean or mode single imputation is no longer justifiable given the 

accessibility and ease of use of more advanced techniques such as multiple imputation and 

supervised learning imputation. 

Keywords: incomplete data, machine learning, decision trees, classification accuracy 
___________________________________________________________________________________ 

1. INTRODUCTION 

Machine learning (ML) algorithms have proven to be of great practical value in a variety of 

application domains. Unfortunately, such algorithms generally operate in environments that 

are fraught with imperfections. One form of imperfection is incompleteness of data. This is 
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currently an issue faced by machine learning and statistical pattern recognition researchers 

who use real-world databases. One primary concern of classifier learning is prediction 

accuracy. Handling incomplete data (data unavailable or unobserved for any number of 

reasons) is an important issue for classifier learning since incomplete data in either the training 

data or test (unknown) data may not only impact interpretations of the data or the models 

created from the data but may also affect the prediction accuracy of learned classifiers. Rates of 

less than 1% missing data are generally considered trivial, 1-5% manageable. However, 5-15% 

requires sophisticated methods to handle, and more than 15% may severely impact any kind of 

interpretation [Pyle, 1999]. 

Handling incomplete data is an important issue for classifier learning since incomplete data in 

either the training set or test set or in both sets affect the prediction accuracy of learned 

classifiers. The presence of missing values can also pose serious problems for researchers. In 

fact, inappropriate handling of missing data in the analysis may introduce bias and can result in 

misleading conclusions drawn from a research study, and can also limit generalizability of the 

research findings. For example, if you embark on formal statistical analysis, you may miss the 

important feature of your data. Also, formal statistical analysis assumes some characteristics 

about your data such as the number of instances, number of attributes, number of classes and 

so on. If these assumptions are wrong, the results of statistical analysis may be quite misleading 

and invalid. The seriousness of this problem depends in part on the proportion of missing data. 

Therefore, it is important to consider how much data is missing when assessing the impact of 

missing data. 

The two most common tasks when dealing with missing values, thus, choosing a missing data 

technique, are to investigate the pattern and mechanism of missingness to get an idea of the 

process that could have generated the missing data, and to produce sound estimates of the 

parameters of interest, despite the fact that the data are incomplete. In other words, the 

potential impact missing data can have is dependent on the pattern and mechanism leading to 

the nonresponse. In addition, the choice of how to deal with missing data should also be 

based on the percentage of data that are missing and the size of the sample. 

Robustness has twofold meaning in terms of dealing with missing values when using decision 

trees (DTs). The toleration of missing values in training data is one, and the toleration of 

missing data in test data is the other. Although the problem of incomplete data has been 

treated adequately in various real world datasets, there are rather few published works or 

empirical studies concerning the task of assessing learning and classification accuracy of 

missing data techniques (MDTs) using supervised ML algorithms such as DTs [Breiman et al., 

1984; Quinlan, 1993]. 
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There are two common solutions to the problem of incomplete data that are currently applied 

by researchers. The first includes omitting the instances having missing values (i.e. listwise 

deletion), which does not only seriously reduce the sample sizes available for analysis but also 

ignores the mechanism causing the missingness. The problem with a smaller sample size is 

that it gives greater possibility of a non-significant result, i.e., the larger the sample the 

greater the statistical power of the test. The second solution imputes (or estimate) missing 

values from the existing data. The major weakness of single imputation methods is that they 

underestimate uncertainty and so yield invalid tests and confidence intervals, since the 

estimated values are derived from the ones actually present [Little and Rubin, 1987]. 

To the best of our knowledge, very little work has been published in the ML or data mining 

literature that looks at the effect of MDTs on predictive accuracy, taking into account different 

missing data patterns, missing data proportions and missing data mechanisms. In other 

research areas, missing data has usually been inadequately handled. 

The following section briefly discusses missing data patterns and mechanisms that lead to the 

introduction of missing values in datasets. Section 3 presents details of seven MDTs that are 

used in this paper. Section 4 empirically evaluates the robustness and accuracy of the eight 

MDTs on twenty one machine learning domains. We close with a discussion and conclusions, 

and then directions for future research. 

2. PATTERNS AND MECHANISMS OF MISSING DATA 

The pattern simply defines which values in the data set are observed and which are missing. The 

three most common patterns of nonresponse in data are univariate, monotonic and arbitrary. 

When missing values are confined to a single variable we have a univariate pattern; monotonic 

pattern occurs if a subject, say, 
j

Y
 
is missing then the other variables, say 

p1j
Y,...,Y + , are missing 

as well or when the data matrix can be divided into observed and missing parts with a 

“staircase” line dividing them; arbitrary patterns occur when any set of variables may be missing 

for any unit. 

The law generating the missing values seems to be the most important task since it facilitates 

how the missing values could be estimated more efficiently. If data are missing completely at 

random (MCAR) or missing at random (MAR), we say that missingness is ignorable. For 

example, suppose that you are modelling software defects as a function of development time. If 

missingness is not related to the missing values of defect rate itself and also not related on the 

values of development time, such data is considered to be MCAR. For example, there may be no 

particular reason why some project managers told you their defect rates and others did not. 
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Furthermore, software defects may not be identified or detected due to a given specific 

development time. Such data are considered to be MAR. MAR essentially says that the cause of 

missing data (software defects) may be dependent on the observed data (development time) but 

must be independent of the missing value that would have been observed. It is a less restrictive 

model than MCAR, which says that the missing data cannot be dependent on either the 

observed or the missing data. MAR is also a more realistic assumption for data to meet, but not 

always tenable. The more relevant and related attributes one can include in statistical models, 

the more likely it is that the MAR assumption will be met. For data that is informatively missing 

(IM) or not missing at random (NMAR) then the mechanism is not only non-random and not 

predictable from the other variables in the dataset but cannot be ignored, i.e., we have non 

ignorable missingness [Little and Rubin, 1987; Schafer, 1997]. In contrast to the MAR condition 

outlined above, IM arise when the probability that defect rate is missing depends on the 

unobserved value of defect rate itself. For example, software project managers may be less likely 

to reveal projects with high defect rates. Since the pattern of IM data is not random, it is not 

amenable to common MDTs and there are no statistical means to alleviate the problem. 

MCAR is the most restrictive of the three conditions and in practice it is usually difficult to meet 

this assumption. Generally you can test whether MCAR conditions can be met by comparing the 

distribution of the observed data between the respondents and non-respondents. In other 

words, data can provide evidence against MCAR. However, data cannot generally distinguish 

between MAR and IM without distributional assumptions, unless the mechanisms is well 

understood. For example, right censoring (or suspensions) is IM but is in some sense known. An 

item, or unit, which is removed from a reliability test prior to failure or a unit which is in the 

field and is still operating at the time the reliability of these units is to be determined is called a 

suspended item or right censored instance. 

3. DECISION TREES AND MISSING DATA TECHNIQUES 

DTs are a simple yet successful technique for supervised classification learning. A DT is a model 

of the data that encodes the distribution of the class label in terms of the predictor attributes; it 

is a directed, acyclic graph in a form of a tree. The root of the tree does not have any incoming 

edges. Every other node has exactly one incoming edge and zero or more outgoing edges. If a 

node n has no outgoing edges we call n a leaf node, otherwise we call n an internal node. Each 

leaf node is labelled with one class label; each internal node is labelled with one predictor 

attribute called the splitting attribute. Each edge e originating from an internal node n has a 

predicate q associated with it where q involves only the splitting attribute of n. 
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There are two ways to control the size of the tree. For a bottom-up pruning strategy, a very deep 

tree is constructed, and this tree is cut back to avoid overfitting the training data. For top down 

pruning, a stopping criterion is calculated during tree growth to inhibit further construction of 

parts of the tree when appropriate. In this paper we follow the bottom up strategy. 

A DT can be used to predict the values of the target or class attribute based on the predictor 

attributes. To determine the predicted value of an unknown instance, you begin at the root node 

of the tree. Then decide whether to go into the left or right child node based on the value of the 

splitting attribute. You continue this process using the splitting attribute for successive child 

nodes until you reach a terminal or leaf node. The value of the target attribute shown in the leaf 

node is the predicted value of the target attribute. 

DT induction has several advantages to other methods of classifier construction. One property 

that sets DTs apart from all other methods is their invariance to monotone transformations of 

the predictor variables. For example, replacing any subset of the predictor variables }{x j by 

(possible different) arbitrary strictly monotone functions of them )}(xm{x jjj ← , gives rise to 

the same tree model. Thus, there is no issue of having to experiment with different possible 

transformations )(xm jj  for each individual predictor jx  to try to find the best ones. This 

invariance provides immunity to the presence of extreme values (“outliers”) in the predictor 

variable space. In addition, DTs incorporate a pruning scheme that partially addresses the 

outlier (noise) removal problem. 

Several methods have been proposed in the literature to treat missing data when using DTs. 

Missing values can cause problems at two points when using DTs; 1) when deciding on a 

splitting point (when growing the tree), and 2) when deciding into which daughter node each 

instance goes (when classifying an unknown instance). Methods for taking advantage of 

unlabelled classes can also be developed, although we do not deal with them in this paper, i.e., 

we are assuming that the class labels are not missing. 

Specific DT techniques for handling incomplete data are now going to be discussed. These 

missing data techniques (MDTs), which we shall now call testing methods as they can handle 

incomplete test data, are some of the widely recognized and they are divided into three 

categories: ignoring and discarding data, imputation and machine learning. 

3.1 Ignoring and Discarding Missing Data 

Over the years, the most common approach is to simply omit any instances that have missing 

values, and to perform the statistical analysis on the remaining instances. This approach is 
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called complete-case analysis or listwise deletion (LD). One major drawback of LD is that it can 

drastically reduce the sample size since it can sacrifice a large amount of data leading to a 

severe lack of statistical power (Roth, 1994). In some cases, it can even lead to complete 

instance loss if many variables are involved. However, due to its simplicity and ease of use, LD 

is the default analysis in most statistical packages. LD is also based on the assumption that data 

are MCAR. 

3.2 Imputation 

Imputation methods involve replacing missing values with estimated ones based on 

information available in the dataset. Imputation methods can be divided into single and 

multiple imputation methods. In single imputation the missing value is replaced with only 

one imputed value while in multiple imputation, each missing value is replaced with a set of 

M plausible values. This step results in M complete datasets. An illustration of multiple 

imputation is given in Section 3.2.2. Most imputation procedures for missing data are single 

imputation. In the following section we briefly describe how each of the imputation 

techniques works. 

3.2.1 Single Imputation Techniques 

3.2.1.1 Decision Tree Imputation 

The unordered attribute DTs approach, which can also be considered a supervised learning 

technique as it uses a DT algorithm to impute missing values, is another strategy that has been 

used for handling missing values in tree learning. This technique was suggested by Shapiro 

(1987) and followed up by Quinlan (1987). The method builds DTs to determine the missing 

values of each attribute, and then fills the missing values of each attribute by using its 

corresponding tree. Separate trees are built using a reduced training set for each attribute, i.e., 

restricting your analysis to only those instances that have known values. The original class is 

treated as another attribute, while the value of the attribute becomes the “class” to be 

determined. The attributes used to grow the respective trees are unordered. These trees are 

then used to determine the unknown values of that particular attribute. 

In the classification phase (where the class attribute is not present) the tree uses, instead of the 

class attribute, all the attributes in the test set in alternating fashion. In other words, each of the 

attributes would become a “class” variable at one point in time. For an example, say, you have a 

dataset with four attributes )AAA,(A
4

,
3

 ,
21

in the test set. Considering 
1

A  as a “class” attribute 

would yield )AA(A
4

,
3

 ,
21

A ; considering 
2

A  as a “class” attribute would yield )AA(A
4

,
3

 ,
12

A ; and 
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so on. Suppose that in the first case {i.e., )AA(AA
4

'
3

 ,
21

} some of 
2

A  is missing. The DT is 

constructed using )AA(A
4

,
3

 ,
12

A  and with cases that are non-missing on 
2

A . Notice that 
2

A  now 

becomes the class attribute, replacing 
1

A . The tree is then to estimate values of 
2

A using 

)AA(
4

,
3

 ,
1

A and on cases which are missing on 
2

A . The same procedure is followed for the other 

attributes. Classification and regression trees for continuous dependent variables (regression) 

and categorical predictor variables (classification) are built. 

[Lobo and Numao, 1999; 2000] follows-up Quinlan’s unordered DT single imputation (DTSI) 

approach but by first ordering the attributes using mutual information before growing the tree. 

As with Quinlan’s method, only those attributes with known values and low mutual information 

with respect to class are included in the reduced training set. After constructing a DT for filling 

the missing values of an attribute, it makes sense to use the data with filled values in order to 

construct a DT for filling the missing values of other attributes. Ordering on the attribute’s trees 

construction was empirically found to improve the accuracy of the DT learning algorithm while 

keeping the computational cost to a sustainable level [Lobo and Numao, 2000].  

Note that, DTSI can also be considered a supervised learning technique as it defines the effect 

one set of instances (called inputs) has on another set of observations (called outputs). Two 

other supervised learning techniques are described in Section 3.3. Also, it is not clear what the 

probability generating the missingness is for both strategies. Thus, we shall assume that the 

data is MCAR. 

3.2.1.2 Expectation Maximization 

In brief, expectation maximization (EM) is an iterative procedure where a complete dataset is 

created by filling-in (imputing) one or more plausible values for the missing data by repeating 

the following steps: 1.) In the E-step, one reads in the data, one instance at a time. As each case 

is read in, one adds to the calculation of the sufficient statistics (sums, sums of squares, sums of 

cross products). If missing values are available for the instance, they contribute to these sums 

directly. If a variable is missing for the instance, then the best guess is used in place of the 

missing value. 2.) In the M-step, once all the sums have been collected, the covariance matrix 

can simply be calculated. This two step process continues until the change in covariance matrix 

from one iteration to the next becomes trivially small. Details of the EM algorithm for 

covariance matrices are given in [Dempster et al., 1977; Little and Rubin, 1987]. EM requires 

that data are MAR. As mentioned earlier, the EM algorithm (and its simulation cased variants) 

could be utilised to impute only a single value for each missing value, which from now on we 

shall call EM single imputation (EMSI). The single imputations are drawn from the predictive 
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distribution of the missing data given the observed data and the EM estimates for the model 

parameters. A DT is then grown using the complete dataset. The tree obtained depends on the 

values imputed. 

3.2.1.3 Mean or Mode Imputation 

Mean or more single imputation (MMSI) is one of the most common and extremely simple 

method of imputation of missing values. In MMSI, whenever a value is missing for one instance 

on a particular attribute, the mean (for a continuous or numerical attribute) or modal value (for 

a nominal or categorical attribute), based on all non-missing instances, and is used in place of 

the missing value. Although this approach permits the inclusion of all instances in the final 

analysis, it leads to invalid results. Use of MMSI will lead to valid estimates of mean or modal 

values from the data only if the missing value are MCAR, but the estimates of the variance and 

covariance parameters (and hence correlations, regression coefficients, and other similar 

parameters) are invalid because this method underestimates the variability among missing 

values by replacing them with the corresponding mean or modal value. In fact, the failure to 

account for the uncertainty behind imputed data seems to be the general drawback for single 

imputation methods  

3.2.2 Multiple Imputation 

Multiple imputation (MI) is one of the most attractive methods for general purpose handling of 

missing data in multivariate analysis. Rubin (1987; 1996) described MI as a three-step process. 

First, the missing entries of the incomplete datasets are imputed (or filled in), not once, but M 

times (M=5 in Figure1). The imputed values are drawn for a distribution (that can be different 

for each missing entry. This step results in M complete datasets as shown in Table 1 whereby 

two pairs of attributes are modelled with A1 having missing values and A2 values complete or 

observed. Second, each of these M datasets can be analyzed using complete-data methods 

(analysis). This step results in M analyses. Finally, the results from the M complete datasets are 

combined, which also allows that the uncertainty regarding the imputation is taken into 

account (pooling or combining). 

For example, replacing missing value with a set of five plausible values or imputations (as it was 

the case in our illustration in Figure 1 and Table 1 would result to building five DTs, and the 

predictions of the five trees would be averaged into a single tree, i.e., the average tree is 

obtained by MI. For example, using the artificial dataset in Table 1, the first DT will be grown 

using imputation 1 (IMP 1) data, the second DT grown using IMP 2 data, the third DT grown 

using IMP3 data, and so on. The results for each DT are then integrated (combined) into a final 

result. This approach is similar to the ensemble learning approach which is used to improve 
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predictive accuracy in machine learning. MI retains most of the advantages of single imputation 

and rectifies its major disadvantages as already discussed. There are various ways to generate 

imputations. 

?

IMP 5

IMP 4

IMP 3

IMP 2

IMP 1

IMPUTATION POOLING/
COMBINING

ANALYSIS

imputed dataincomplete data analysis results final results
 

Figure 1: The three steps of multiple imputation 

Table 1 Artificial dataset with missing values on attribute A1 

 Data IMP 1 IMP 2 IMP 3 IMP 4 IMP 5 

Unit A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 

1 1.1 3.4 1.1 3.4 1.1 3.4 1.1 3.4 1.1 3.4 1.1 3.4 

2 1.5 3.9 1.5 3.9 1.5 3.9 1.5 3.9 1.5 3.9 1.5 3.9 

3 0.8 2.6 0.8 2.6 0.8 2.6 0.8 2.6 0.8 2.6 0.8 2.6 

4 ? 0.8 0.2 0.8 0.8 0.8 0.3 0.8 2.3 0.8 1.0 0.8 

5 ? 2.0 1.7 2.0 2.4 2.0 1.8 2.0 3.5 2.0 1.7 2.0 

Schafer (1997) has written a set of general purpose programs for MI of continuous multivariate 

data (NORM), multivariate categorical data (CAT), mixed categorical and continuous (MIX), 

and multivariate panel or clustered data (PNA). These programs were initially created as 

functions operating within the statistical languages S and SPLUS [SPLUS, 2003]. NORM 

includes an EM algorithm for maximum likelihood estimation of means, variance and 

covariances. NORM also adds regression-prediction variability by using a Bayesian procedure 

known as data augmentation [Tanner and Wong, 1987] to iterate between random imputations 
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under a specified set of parameter values and random draws from the posterior distribution of 

the parameters (given the observed and imputed data). These two steps are iterated long 

enough for the results to be reliable for multiple imputed datasets (Schafer, 1997). The goal is to 

have the iterates converge to their stationary distribution and then to simulate an 

approximately independent draw of the missing values. The algorithm is based on the 

assumptions that the data come from a multivariate normal distribution and are MAR. 

Although not absolutely necessary, it is almost always a good idea to run the expectation 

maximization (EM) algorithm [Dempster et al., 1977] before attempting to generate MIs. The 

parameter estimates from EM provide convenient starting values for data augmentation (DA). 

Moreover, the convergence behaviour of EM provides useful information on the likely 

convergence behaviour of DA. Therefore, EM estimates of the parameters are computed and 

then recorded the number of iterations required, say t. Then, a single run of DA algorithm of 

length tM using the EM estimates as starting values is performed, where M is the number of 

imputations required. The convergence of the EM algorithm is linear and is determined by the 

fraction of missing information. Thus, when the fraction of missing information is large, 

convergence will be very slow due to the number of iterations required. However, for small 

missing value proportions convergence is obtained much more rapidly with less strenuous 

convergence criteria. This is the approach we follow in this paper, which we shall now call 

EMMI. 

3.3 Supervised Learning Techniques 

Supervised learning (SL) is a machine learning technique for learning a function from training 

data. The training data consist of pairs of input objects (typically vectors), and desired outputs. 

The output of the function can be a continuous value (called regression), or can predict a class 

label of the input object (called classification). Supervised learning techniques have been 

successfully used to handling incomplete data. The SL techniques investigated in this paper 

involve the use of DTs [Breiman et al., 1984; Quinlan, 1993]. These non-parametric techniques 

deal with missing values during the training (learning) or testing (classification) process. A well-

known benefit of nonparametric methods is their ability to achieve estimation optimality for any 

input distribution as more data are observed, a property that no model with a parametric 

assumption can have. In addition, tree-based models do not make any assumptions on the 

distributional form of data and do not require a structured specification of the model, and thus 

not influenced by data transformation, nor are they influenced by outliers [Breiman et al., 

1984]. 
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3.3.1 Fractional Cases 

Quinlan (1993) borrows the probabilistic approach by Cestnik et al., (1987) by “fractioning” 

cases or instances based on a priori probability of each value determined from the cases at that 

node that have specified values. Quinlan starts by penalising the information gain measure by 

the proportion of unknown cases and then splits these cases to both subnodes of the tree. 

The learning phase requires that the relative frequencies from the training set be observed. Each 

case of, say, class C with an unknown attribute value A is substituted. The next step is to 

distribute the unknown examples according to the proportion of occurrences in the known 

instances, treating an incomplete observation as if it falls down all subsequent nodes. For 

example, if an internal node t has ten known examples (six examples with Lt  and four with Rt ), 

then we would say the probability of Lt = 0.6, and the probability of Rt  is 0.4. Hence, a fraction 

of 0.6 of instance x is distributed down the branch for Lt  and a fraction 0.4 of instance x to Rt . 

This is carried out throughout the tree construction process. The evaluation measure is weighted 

with the fraction of known values to take into account that the information gained from that 

attribute will not always be available (but only in those cases where the attribute value is 

known). During training, instance counts used to calculate the evaluation heuristic include the 

fractional counts of instances with missing values. Instances with multiple missing values can be 

fractioned multiple times into numerous smaller and smaller “portions”. 

For classification, Quinlan (1993)’s technique is to explore all branches below the node in 

question and then take into account that some branches are more probable than others. Quinlan 

further borrows Cestnik et al.’s strategy of summing the weights of the instance fragments 

classified in different ways at the leaf nodes of the tree and then choosing the class with the 

highest probability or the most probable classification. Basically, when a test attribute has been 

selected, the cases with known values are divided on the branches corresponding to these 

values. The cases with missing values are, in a way, passed down all branches, but with a weight 

that corresponds to the relative frequency of the value assigned to a branch. Both strategies for 

handling missing attribute values are used for the C4.5 system. 

Despite its strengths, the fractional cases technique can be quite a slow, computationally 

intensive process because the probability calculation for the several DT branches must be done 

simultaneously. For example, if, say, k branches of the tree are all taken into account in the 

calculation, then the central processing unit (CPU) time spent is k times the individual branch 

calculation. 
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3.3.2 Surrogate Variable Splitting 

Surrogate variable splitting (SVS) has been used for the classification and regression tress 

(CART) system and further pursued by Therneau and Atkinson (1997) in recursive partitioning 

and regression tress (RPART). CART handles missing values in the database by substituting 

"surrogate splitters". Surrogate splitters are predictor variables that are not as good at splitting a 

group as the primary splitter but which yield similar splitting results; they mimic the splits 

produced by the primary splitter; the second does second best, and so on. The surrogate splitter 

contains information that is typically similar to that which would be found in the primary 

splitter. The surrogates are used for tree nodes when there are values missing. The surrogate 

splitter contains information that is typically similar to what would be found in the primary 

splitter. Both values for the dependent variable (response) and at least one of the independent 

attributes take part in the modelling. The surrogate variable used is the one that has the highest 

correlation with the original attribute (observed variable most similar to the missing variable or 

a variable other than the optimal one that best predicts the optimal split). The surrogates are 

ranked. Any observation missing on the split variable is then classified using the first surrogate 

variable, or if missing that, the second is used, and so on. The CART system only handles 

missing values in the testing case but RPART handles them on both the training and testing 

cases. 

The idea of surrogate splits solves the problem of missing values by identifying the nodes where 

masking or disguise (when one attribute hides the importance of another attribute) of specific 

attributes occurs. This is as a result of its ability to making use of all the available data by 

involving all the attributes when there is any observation missing the split attribute [Loh and 

Vanichsetakul, 1988]. By using surrogates, CART handles each instance individually, providing 

a far more accurate analysis. Also, other incomplete data techniques treat all instances with 

missing values as if the instances all had the same unknown value; with that technique all such 

"missings" are assigned to the same bin. For SVS, each instance is processed using data specific 

to that instance; and this allows instances with different data patterns to be handled differently, 

which results in a better characterisation of the data (Breiman et al., 1984). However, practical 

difficulties can affect the way surrogate splitting is implemented. For example, SVS ignores the 

quantity of missing values. Like, a variable taking a unique value for exactly one case in each 

class and missing on all other cases yields the largest decrease in impurity (Wei-Yin, 2001). In 

addition, the idea of surrogate splitting is reasonable if high correlations among the predictor 

variables exist. Since the “problem” attribute (the attribute with missing values) is crucially 

dependent on the surrogate attribute in terms of a high correlation, when the correlation 

between the “problem” attribute and the surrogate is low, surrogate splitting becomes very 
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clumsy and unsatisfactory. In other words, the method is highly dependent on the magnitude of 

the correlation between the original attribute and its surrogate. 

4. RELATED WORK 

Significant advances have been made in the past few decades regarding methodologies which 

handle responses to problems and biases which can be caused by incomplete data. 

Unfortunately, these methodologies are often not available to many researchers for a variety of 

reasons (for example, lack of familiarity, computational challenges) and researchers often resort 

to ad-hoc approaches to handling incomplete data, ones which may ultimately do more harm 

than good [Little and Rubin, 1987; Schafer and Graham, 2002]. 

Several researchers have examined various techniques to solve the problem of incomplete data. 

One popular approach already discussed in Section 3.1 is LD. 

Another common way uses imputation (estimation) approaches that fill in a missing value with 

an efficient single replacement value, such as the mean, mode, hot deck (using data from other 

observations in the sample at hand), and approaches that take advantage of multivariate 

regression and k-nearest neighbour models. Another technique for treating incomplete data is to 

model the distribution of incomplete data and estimate the missing values based on certain 

parameters. Specific results are discussed below. 

Lakshminarayan et al. (1999) performed a simulation study comparing two ML methods for 

missing data imputation. Their results show that for the single imputation task, the supervised 

learning algorithm C4.5 [Quinlan, 1993], which utilizes the fractional cases (FC) strategy, 

performed better than Autoclass [Cheeseman et al., 1988], a strategy based on unsupervised 

Bayesian probability. For the MI task, both methods perform comparably. 

Lobo and Numao (1999; 2000) evaluated the accuracy performance of decision tree learning 

from data whose missing values were filled using the DTSI method (with ordered attributes), 

the majority method and the probabilistic method. For incomplete training and test data, the 

DTSI method outperformed both the probabilistic and the majority methods with the majority 

method giving the worst performance. For incomplete test data, no method performed better 

than the other. 

Kalousis and Hilario (2000) evaluated seven classification algorithms with respect to missing 

values: two rule inducers (C5.0-rules and Ripper), one nearest neighbour method, one 

orthogonal (C5.0-tree), one oblique decision tree algorithm, a naïve Bayes algorithm and a 

linear discriminant. Various patterns and mechanisms of missingness (MCAR and MAR) in 
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current complete datasets were simulated. Their results indicate that naïve Bayes (NB) is most 

resilient to missing values while the k-nearest neighbour single imputation (kNNSI) and FC are 

more sensitive to missing values. Their results further show that for a given proportion of 

missing values, the distribution of missing values among attributes is at least as important as 

the mechanism of missingness. 

Another comparative study of LD, MMSI, similar response pattern imputation (SRPI) and full 

information maximum likelihood (FIML) in the context of software cost estimation was carried 

out by Myvreit et al. (2001). The simulation study was carried out using 176 projects. Their 

results show FIML performing well for missing completely at random (MCAR) data. Also, LD, 

MMSI and SRPI are shown to yield biased results for other missing data mechanisms other than 

MCAR. 

Fujikawa and Ho (2002) evaluated theoretically several methods of dealing with missing values. 

The methods evaluated were MMSI, linear regression, standard deviation method, kNNSI, 

DTSI, auto-associative neural network, LD, lazy decision tree, FC and SVS. kNNSI and DTSI 

showed good results. In terms of computation cost, MMSI and FC were found to be reasonably 

good. 

Batista and Monard (2003) investigated the effects of four methods of handling missing data at 

different proportions of missing values. There methods investigated were kNNSI, MMSI, and 

internal algorithms used by FC and CN2 to treat missing data. Missing values were artificially 

simulated in different rates and attributes into the datasets. kNNSI imputation showed a 

superior performance compared with MMSI when missing values were in one attribute. 

However, both methods compared favourably when missing values were in more than one 

attribute. Otherwise, FC achieved a performance as good as kNNSI. 

Song and Shepperd (2004) evaluated kNNSI and class mean imputation (CMI) for different 

patterns and mechanisms of missing data. Their results show kNNSI slightly outperforming 

CMI with the missing data mechanisms having no impact on either of the two imputation 

methods. 

The use of multinomial logistic regression imputation (MLRI) for handling missing categorical 

values on a datataset on 166 projects of the ISBSG multi-organizational software database was 

proposed by Sentas et al. [2004]. Their proposed procedure was compared with LD, MMSI, 

expectation-maximization single imputation (EMSI) and regression-based single imputation 

(RBSI). Their results showed LD and MMSI as efficient when the percentage of missing values is 

small while RBSI and MLRI were shown to outperform LD and MMSI as the amount of missing 
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values increased. Overall, MLRI gave the best results, especially for MCAR and IM data. For 

MAR data, MLRI compared favourably with RBSI. 

Twala et al. (2005) evaluates the impact of seven MDTs (LD, EMSI, kNNSI, MMSI, EMMI, FC 

and SVS) on 8 industrial datasets by artificially simulating three different proportions, two 

patterns and three mechanisms of missing data. Their results show EMMI achieving the highest 

accuracy rates with other notably good performances by methods such as FC and EMSI. The 

worst performance was by LD. Their results further show MCAR data as easier to deal with 

compared with IM data. Twala (2005) further found missing values as more damaging when 

they are in the test sample than in the training sample. An ensemble of missing incorporated in 

attributes (MIA) and EMMI approach was shown to improve prediction accuracy when dealing 

with incomplete data using DTs [Twala et al., 2008]. 

According to the above studies, among the single imputation techniques, the results are not so 

clear, especially for small amounts of missing data. However, the performance of each technique 

differs with increases in the amount of missing data. Also, despite the fact that the LD procedure 

involves an efficiency cost due to the elimination of a large amount of valuable data, most 

researchers have continued to use it due to its simplicity and ease of use. There are other 

problems caused by using the LD technique. For example, elimination of instances with missing 

information decreases the error degrees of freedom in statistical tests such as the student t 

distribution. This decrease leads to reduced statistical power (i.e. the ability of a statistical test 

to discover a relationship in a dataset) and larger standard errors. Other researchers have shown 

that randomly deleting 10% of the data from each attribute in a matrix of five attributes can 

easily result in eliminating 59% of instances from analysis [Kim and Curry, 1977]. 

Furthermore, MI, which overcomes limitations of single imputation seem not to have been 

widely adopted by researchers even though it has been shown to be flexible and software for 

creating multiple imputations is available and some downloadable free of charge from the 

Methodology Centre website at the Penn State University http://methodology.psu.edu/. A great 

deal of past research on the effectiveness of MDTs to overcome missing data problems has 

utilized data that is missing randomly. Finally, results from previous studies suggest that results 

achieved using simulated data are very sensitive to the MAR assumption. Hence, if there is a 

reason to believe that if the MAR assumption does not hold, alternative methods should be used. 
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5. EXPERIMENTS 

5.1. Experimental Set-Up 

The objective of this paper is to investigate the robustness and accuracy of methods for 

tolerating incomplete data using tree-based models. This section describes experiments that 

were carried out in order to compare the performance of the different approaches previously 

proposed for handling missing values in both the training set and test (unseen) set. The effects 

of different proportions of missing values when building or learning the tree (training) and 

when classifying new instances (testing) are further examined, experimentally. Finally, the 

impact of the nature of different missing data mechanisms on the classification accuracy of 

resulting trees is examined. A combination of small and large datasets, with a mixture of both 

nominal and numerical attribute variables, was used for these tasks. All datasets have no 

missing values. The main reason for using datasets with no missing values is to have total 

control over the missing data in each dataset. 

To perform the experiment each dataset was split randomly into 5 parts (Part I, Part II, Part III, 

Part IV, Part V) of equal (or approximately equal) size. 5-fold cross validation was used for the 

experiment. For each fold, four of the parts of the instances in each category were placed in the 

training set, and the remaining one was placed in the corresponding test as shown in Table 2. 

The same splits of the data were used for all the methods for handling incomplete data. 

Table 2 Partitioning of dataset to training and test sets 

 Training Set Test Set 

Fold 1 Part II + Part III + Part IV + Part V Part I 

Fold 2 Part I + Part III + Part IV + Part V Part II 

Fold 3 Part I + Part II + Part IV + Part V Part III 

Fold 4 Part I + Part II + Part III + Part V Part IV 

Fold 5 Part I + Part II + Part III + Part IV Part V 

Since the distribution of missing values among attributes and the missing data mechanism were 

two of the most important dimensions of this study, three suites of data were created 

corresponding to MCAR, MAR and IM. In order to simulate missing values on attributes, the 

original datasets are run using a random generator (for MCAR) and a quintile attribute-pair 

approach (for both MAR and IM, respectively). Both of these procedures have the same 

percentage of missing values as their parameters. These two approaches were also run to get 
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datasets with four levels of proportion of missingness p, i.e., 0%, 15%, 30% and 50% missing 

values. The experiment consists of having p% of data missing from both the training and test 

sets. This was carried out for each dataset and 5-fold cross validation was used. 

The missing data mechanisms were constructed by generating a missing value template (1 = 

present, 0 = missing) for each attribute and multiplying that attribute by a missing value 

template vector. Our assumption is that the instances are independent selections. 

For each dataset, two suites were created. First, missing values were simulated on only one 

attribute. Second, missing values were introduced on all the attribute variables. For the second 

suite, the missingness was evenly distributed across all the attributes. This was the case for the 

three missing data mechanisms, which from now on shall be called MCARuniva, MARuniva, 

IMuniva (for the first suite) and MCARunifo, MARunifo, IMunifo (for the second suite). These 

procedures are described below. 

For MCAR, each vector in the template (values of 1’s for non-missing and 0’s for missing) was 

generated using a random number generator utilising the Bernoulli distribution. The missing 

value template is then multiplied by the attribute of interest, thereby causing missing values to 

appear as zeros in the modified data. 

Simulating MAR values was more challenging. The idea is to condition the generation of missing 

values based upon the distribution of the observed values. Attributes of a dataset are separated 

into pairs, say, )A,(A
YX

, where 
Y

A  is the attribute into which missing values are introduced 

and 
X

A  is the attribute on the distribution of which the missing values of 
Y

A  is conditioned, 

i.e., observed)A|missP(A
XY

== . Pair selection of attributes was based on high correlations 

among the attributes. Since we want to keep the percentage of missing values at the same level 

overall, we had to alter the percentage of missing values of the individual attributes. More 

precisely, given that in each pair of attributes, one of the two attributes has no missing values, 

the other must have 2k% missing values in order to get an average of k% missing values over the 

whole dataset. For example, having 10% of missing values on two attributes is equivalent to 

having 5% of missing values on each attribute. Thus, for each of the 
X

A  attributes its 2k quintile 

was estimated. Then all the instances were examined and whenever the 
X

A  attribute has a value 

lower than the 2k quintile a missing value on 
Y

A  is imputed with probability 0, and 1 otherwise. 

More formally, 0k)2A|missP(A
XY

=<=  or 1k)2A|missP(A
XY

=>= . This technique generates a 

missing value template which is then multiplied with 
Y

A . Once again, the attribute chosen to 

have missing values was the one highly correlated with the class variable. Here, the same levels 
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of missing values are kept. For multi-attributes, different pairs of attributes were used to 

generate the missingness. Each attribute is paired with the one it is highly correlated to. For 

example, to generate missingness in half of the attributes for a dataset with, say, 12 attributes 

)A   ,...A (i.e.,
121

, the pairs )A,(A
21

, )A,(A
43

 and )A,(A
65

could be utilised. We assume that 
1

A  is 

highly correlated with 
2

A ; 
3

A  highly correlated with 
4

A , and so on. For the )A,(A
21

 pairing, 
1

A  

is used to generate a missing value template of zeros and ones utilizing the quintile approach. 

The template is then used to “knock off” values (i.e., generating missingness) in 
2

A , and vice 

versa. 

In contrast to the MAR situation outlined above where data missingness is explainable by other 

measured variables in a study, IM data arise due to the data missingness mechanism being 

explainable, and only explainable by the very variable(s) on which the data are missing. For 

conditions with data IM, a procedure identical to MAR was implemented. However, for the 

former, the missing values template was created using the same attribute variable for which 

values are deleted in different proportions. 

For consistency, missing values were generated on the same attributes for each of the three 

missing data mechanisms. This was done for each dataset. For split selection, the impurity 

approach was used. For pruning, a combination of 10-fold cross validation cost complexity 

pruning and 1 Standard Error (1-SE) rule (Breiman et al. 1984) to determine the optimal value 

for the complexity parameter was used. The same splitting and pruning rules when growing the 

tree were carried out for each of the twenty one datasets. 

It was reasoned that the condition with no missing data should be used as a baseline and what 

should be analysed is not the error rate itself but the increase or excess error induced by the 

combination of conditions under consideration. Therefore, for each combination of method for 

handling incomplete data, the number of attributes with missing values (or missing data 

patterns), the proportion of missing values, the error rate at the control level (i.e., when there 

were no missing values in the data) was subtracted from the error when there were missing 

values. This would be the justification for the use of differences in error rates analysed in some 

of the experimental results.  

Note that the modelling of the missingness was carried out after the training-testing split for 

each of the 5 iterations of cross validation. In other words, missingness was injected after the 

splitting of the data into training and test sets for each fold. 

All statistical tests were conducted using the MINITAB statistical software program (MINITAB, 

2002). Analyses of variance, using the general linear model (GLM) procedure [Kirk, 1982] were 



 19 

used to examine the main effects and their respective interactions. This was done using a 4-way 

repeated measures designs (where each effect was tested against its interaction with datasets). 

The fixed effect factors were the: missing data techniques; number of attributes with missing 

values (missing data patterns); missing data proportions; and missing data mechanisms. 

A 1% level of significance was used because of the many number of effects. The twenty one 

datasets used were used to estimate the smoothed error. Results were averaged across five folds 

of the cross-validation process before carrying out the statistical analysis. The averaging was 

done as a reduction in error variance benefit. 

5.2. Datasets 

This section describes the twenty one datasets that were used in the experiments to explore the 

impact of missing values on the classification accuracy of resulting DTs. All twenty one datasets 

were obtained from the Machine Learning Repository maintained by the Department of 

Information and Computer Science at the University of California at Irvine. They are 

summarized in Table 3. 

The selected twenty one datasets cover a comprehensive range for each of the following 

characteristics: 

• the size of datasets, expressed in terms of the number of instances ranges between 57 

and 20000 

• the number of attributes ranges between 4 and 6 

• the number of classes ranges between 2 and 26 

• the number of the type of attributes (numerical or nominal or both) 

The first eight involve datasets with only two classes and the last thirteen involve datasets with 

more than two classes.  

In general, the datasets were selected in order to assure reasonable comprehensiveness of the 

results. 
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Table 3 Datasets used for the experiments 

Attributes 
Dataset Instances 

Ordered Nominal 
Classes 

Two classes:     

 german 1000 7 13 2 

 glass (g2) 163 9 0 2 

 heart-statlog 270 13 0 2 

 ionosphere 351 31 1 2 

 kr-vs-kp 3196 0 36 2 

 labor 57 8 8 2 

 pima-indians 768 8 0 2 

 sonar 208 60 0 2 

     
More than two     

 balance scale 625 4 0 3 

 iris 150 4 0 3 

 waveform 5000 40 0 3 

 lymphography 148 3 15 4 

 vehicle 846 18 0 4 

 anneal 898 6 32 5 

 glass 214 9 0 6 

 satimage 6435 36 0 6 

 image 2310 19 0 7 

 zoo 101 1 15 7 

 LED 24 1500 0 24 10 

 vowel 990 10 3 11 

 letter 20000 16 0 26 

5.3 Missing Data Programs and Codes 

Programs and codes that were used for the methods are briefly described below: 

No software or code was used for LD. Instead, all instances with missing values on that 

particular attribute were manually excluded or dropped, and the analysis was applied only to the 

complete instances. 

The DTSI method uses a decision tree for estimating the missing values of an attribute and then 

uses the data with filled values to construct a decision tree for estimating or filling in the missing 

values of other attributes. This method makes sense when building a decision tree with 

incomplete data, the class variable (which plays a major role in the estimation process) is always 

present. For classification purposes (where the class variable is not present), first, imputation 
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for one attribute (the attribute highly correlated with class) was done using the mean (for 

numerical attributes) or mode (for categorical attributes), and then the attribute was used to 

impute missing values of the other attributes using the decision tree single imputation 

technique. In other words, two single imputation techniques were used to handle incomplete 

test data. An S-PLUS code that was used to estimate missing attribute values using a decision 

tree for both incomplete training and test data was developed. 

S-PLUS code was also developed for the MMSI approach. The code was developed in such a way 

that it replaced the missing data for a given attribute by the mean (for numerical or quantitative 

attribute) or mode (for nominal or qualitative attribute) of all known values of that attribute.  

There are many implementations of MI. Schafer’s (1997) set of algorithms (headed by the 

NORM program) that use iterative Bayesian simulation to generate imputations was an 

excellent option. NORM was used for datasets with only continuous attributes. A program called 

MIX written was used for mixed categorical and continuous data. MIX is an extension of the 

well-known general location model. It combines a log-linear model for the categorical variables 

with a multivariate normal regression for the continuous ones. For strictly categorical data, CAT 

was used by following these steps: 1) You apply a model to the instances with observed Y, 2) You 

draw a vector from model parameter distribution, 3) You compute the predicted probabilities 

for each instance with missing Y under the new model, and 4) You create imputations by 

drawing a category using the predicted probabilities.  All three programs are available as S-

PLUS routines. Schafer (1997), and Schafer and Olsen (1998) gives details of the general 

location model and other models that could be used for imputation tasks. We use the completed 

datasets from iterations 2t, 4t, …, 2Mt. In our experiments we used MI with M=5, and averaged 

the predictions of the 5 resulting trees. Note that since MI bears a close resemblance to the EM 

algorithm, M=1 leads to single imputation, hence, EMSI. 

Due to the limit of the dynamic memory in S-PLUS for Windows [S-PLUS, 2003] when using 

the EM approach, all the big datasets (i.e., datasets with more than 5000 instances) were 

partitioned into subsets, and S-PLUS run on one subset at a time. Our partitioning strategy 

was to put variables with high correlations with close scales (for continuous attributes) into 

the same subset. This strategy made the convergence criteria in the iterative methods easier to 

set up and very likely to produce more accurate results. The number of attributes in each 

subset depended on the number of instances and the number of free parameters to be 

estimated in the model, which included cell probabilities, cell means and variance-

covariances. The number of attributes in each subset was determined in such a way that the 

size of the data matrix and the dynamic memory requirement was under the S-PLUS 

limitation and the number of instances was large relative to the number of free parameters. 
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Separate results from each subset were then averaged to produce an approximate EM-based 

method which are substituted for (and continue to call) EM in our investigation. 

The DT learner C4.5 was used as a representative of the FC or probabilistic technique for 

handling missing attribute values in both the training and test samples. This technique is 

probabilistic in the sense that it constructs a model of the missing values, which depends only on 

the prior distribution of the attribute values for each attribute tested in a node of the tree. The 

main idea behind the technique is to assign probability distributions at each node of the tree. 

These probabilities are estimated based on the observed frequencies of the attribute values 

among the training instances at that particular node. 

For the SVS method, a recursive partitioning (RPART) routine, which implements within S-

PLUS many of the ideas found in the CART book and programs of Breiman et al. (1984) was 

used for both training and testing DTs. This programme, which handles both incomplete 

training and test data, is by Therneau and Atkinson (1997). 

To measure the performance of methods, the training set/test set methodology is employed. For 

each run, each dataset is split randomly into 80% training and 20% testing, with different 

percentages of missing data (0%, 15%, 30%, and 50%) in the covariates for both the training and 

testing sets. A classifier was built on the training data and the predicted accuracy is measured by 

the smoothed error rate of the tree. 

Trees on complete training data were grown using the Tree function in S-PLUS [Becker et al., 

1988, Venables and Ripley, 1994]. The function uses the GINI index of impurity [Breiman et al., 

1984] as a splitting rule and cross validation cost-complexity pruning as pruning rule. As 

indicated earlier, the accuracy of the tree, in the form of a smoothed error rate, was predicted 

using the test data. 

5.4. Experimental Results 

Experimental results on the effects of current methods for handling both incomplete training 

and test data on predictive accuracy on resulting DTs for different proportions, patterns are and 

mechanisms of missing data are summarised in Figure 2. 

The error rates of each method of the introduced missing values are averaged over the 21 

datasets. Also, all the error rates increased over the complete data case formed by taking 

differences. From these experiments the following results are observed. 



 23 

M CARuniva
 (averaged over 2 1 domains)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

0 15 30 50

% of missing values in training and test sets

e
xc

es
s 

er
ro

r 
(%

)

LD DTSI
EMSI MMSI
EMMI FC
SVS

M CARunif o 
( averaged over 2 1 domains)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

0 15 30 50
% of missing values in training and test sets

ex
ce

s
s 

e
rr

or
 (

%
)

LD DTSI
EMSI MMSI
EMMI FC
SVS

M ARunifo
 ( averaged over 2 1 domains)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

0 15 30 50
% of missing values in training and test sets

ex
ce

ss
 e

rr
or

 (
%

)

LD DTSI
EMSI MMSI
EMMI FC
SVS

IM unif o 
( averaged over 2 1 domains)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0 15 30 50
% of missing values in training and test sets

ex
ce

ss
 e

rr
or

 (
%

)

LD DTSI
EMSI MMSI
EMMI FC
SVS

IM univa 
( averaged over 21 domains)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0 15 30 50
% of missing values in training and test sets

e
xc

e
ss

 e
rr

or
 (

%
)

LD DTSI
EMSI MMSI
EMMI FC
SVS

M ARuniva 
( averaged over 21 domains)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

0 15 30 50

% of missing values in training and test sets

ex
ce

ss
 e

rr
or

 (
%

)

LD DTSI
EMSI MMSI
EMMI FC
SVS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 2. Effects of missing values in training and test data on the 
excess error for methods over the 21 domains. A) MCARuniva, B) 
MCARunifo, C) MARuniva, D) MARunifo, E) IMuniva, F) IMunifo 

For MCARuniva data, EMMI has on average the best accuracy while LD exhibits one of the 

biggest increases in error (Figure 2A). From Figure 2B, most of the methods achieve slightly 

bigger error rate increases for MCARunifo data compared with MCARuniva data. In the 

MARuniva suite, the behaviour of methods is not very different from the one observed in the 

MCARuniva case (Figure 2C). From Figure 2D, the performance of methods for MARunifo data 

is very similar to the one observed for MCARunifo data. Figure 2E shows bigger increases in 

error rates for all the methods for IMuniva data compared with MCARuniva and MARuniva 

data, individually. The performance of all the methods, on average, worsens for IMunifo data. 

Once again, EMMI proves to be the best method at all levels of missing with LD exhibiting the 

worst performance with an excess error rate of 23.9% at the 50% level (Figure 2F). 



 24 

Main Effects 

All the main effects (training and testing methods, number of attributes with missing values, 

missing data proportions and missing data mechanisms) were found to be significant at the 1% 

level. 

From Figure 3, EMMI represents a superior approach to missing data while LD is substantially 

inferior to the other techniques. The second best method is FC, closely followed by EMSI, DTSI, 

MMS and SVS, respectively. However, there appears no clear ‘winner’ among the single 

imputation techniques (DTSI, EMSI, MMSI) and the supervised learning approach (SVS) in 

terms of classification accuracy. 

--+---------+---------+---------+--------+------ 
                              (--*---) LD 
                (--*---)   DTSI 
             (---*--)   EMSI 
                   (---*--)  MMSI 
  (--*---)    EMMI 
         (---*--)   FC 
                    (---*--) SVS 
--+---------+---------+---------+--------+------ 
0.055    0.096    0.112    0.128   0.144 

(pooled standard deviation) 

Fig. 3. Comparison for missing data methods: 
confidence intervals of mean error rates (*) 

From Figure 4, it appears that missing values have a greater effect when they are distributed 

among all the attributes (arbitrary pattern) compared with when missing values are on a single 

attribute variable (univariate pattern). 
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The results for proportion of missing values in both the training and test sets show increases in 

missing data proportions being associated with increases in error rates (Fig. 5). In fact, the error 

rate increase when 50% of values are missing in both the training and test sets is about one and 

a half times as big as the error rate increase when 15% of values are missing on both sets. 

From the results presented in Figure 6, IM values entail more serious deterioration in predictive 

accuracy compared with randomly missing data (i.e. MCAR or MAR data). Overall, MCAR data 

have a lesser impact on classification accuracy with an error rate increase difference of about 4% 

(when compared with MAR data) and a much bigger difference of about 10% (when compared 

with IM data). 

 

Interaction effects 

The interaction effect between methods for handling incomplete training and test data and the 

number of attributes with missing values is displayed in Figure 7. From the figure, it follows that 

all methods perform differently from each other with bigger error rate increases observed when 

missing values are in all the attributes compared with when they are on a single attribute 

variable. A severe impact of having missing values in only one attribute and having missing 

values in all the attributes is observed for DTSI, LD and SVS, while for the remaining methods 

the impact is not clear. 

From Figure 8, the performance by methods do not differ much at lower levels of missing values 

but vary noticeably as the amount of missing values increases. 
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As observed earlier, all the methods are more severely impacted by IM data compared with 

MCAR or MAR data (Figure 9). In addition, all the methods are more effective for dealing with 

MCAR data. 

The results of the interaction between the number of attributes with missing values and missing 

data proportions show increases in missing data proportions being associated with slightly 

greater increases in excess error rate (Figure 10). Once again, missing values appear to have 

more impact for an arbitrary missing data pattern compared with a univariate pattern. 

 

5. DISCUSSION AND CONCLUSIONS 

The research questions asked which MDTs yielded the least amount of average error when using 

tree-based models. To date, there have been very few studies examining the effects of MDTs for 

different patterns, proportions and mechanisms of missing data. Each of the techniques 
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reviewed in this paper has strengths and limitations. However, the use of imputations has 

become common in many fields in the last few years. It is due to the increase in incomplete data 

in research, and to the advanced methodology for imputations. 

The selection of a particular MDT can have important consequences on the data analysis and 

subsequent interpretation of findings in models of supervised learning, especially if the amount 

of missing data is large. The impact of missing data can not only lead to bias in results 

(especially parameter estimates derived from the model) but to loss of information and thus to a 

decrease in statistical power of hypothesis tests. This may also result in misleading conclusions 

drawn from a research study and limit generalizability of the research findings. 

The results of the simulation study show that the proportion of missing data, the missing data 

mechanism, the pattern of missing values, and the design of database characteristics (especially 

the type of attributes) all have effects on the performance of any MDT. 

The effects of missing data have been found to adversely affect DT learning and classification 

performance, and this effect is positively correlated with the increasing fractions of missing 

data. 

Another point of discussion is the significance of having missing values in only one attribute, on 

the one hand, and allowing missing values in all the attributes, on the other hand. The idea was 

to see the impact of pattern over mechanism, or vice versa, at both lower levels and higher levels 

of missing values. Our results show the impact on the performance of methods being caused by 

the pattern and mechanism of missing values, especially at lower levels of missingness. 

However, as the proportion of missing values increases the major determining factor on the 

performance of methods is how the missing values are distributed among attributes. All 

methods yield lower accuracy rates when missing values are distributed among all the attributes 

(MCARunifo, MARunifo and IMunifo) compared with when missing values are on a single 

attribute (MCARuniva, MARuniva and IMuniva).  

The worse performance achieved by methods are for IM data, followed by MAR and MCAR data, 

respectively. This is in accordance with statistical theory which considers MCAR easier to deal 

with and IM data as very complex to deal with since it requires assumptions that cannot be 

validated from the data at hand [Little and Rubin, 1987]. In addition, in many settings the MAR 

assumption is more reasonable than the MCAR. In fact, an MAR method is valid if data are 

MCAR or MAR, but MCAR methods are valid only if data are MCAR. This could have attributed 

to the superior performance of EMMI (an MAR method) and the substantially inferior 

performance of LD (an MCAR method). 
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The results also show that the performance of methods depends on whether missing values are 

in the test or training set or in both the training and test sets. Training methods appear to 

achieve superior performances compared with testing methods. An explanation for such 

behaviour will be given later in the section. 

With this experimental set-up, it is easy to say with conviction that from the eight current 

techniques investigated that EMMI is the overall best method for handling both incomplete 

training and test data. However, there are competitors like FC and DTSI which performed 

reasonably well. One important advantage of FC over DTSI is that it can handle missing values 

in both the training and test sets while DTSI struggles as a technique for handling incomplete 

test data and when all attributes have missing values. The heavily dependence of DTSI on strong 

correlations among attributes might have attributed to its poor performance as correlations 

among attributes for some of the datasets were not strong. However, DTSI performs better when 

missing values are on a single attribute – a very serious restriction. The results also indicate that 

LD is the worst method for handling incomplete data. In general, it can be seen that model-

based methods have better performance than ad hoc methods. Furthermore, probabilistic 

methods seem to outperform non-probabilistic methods. 

There are several dimensions on which learning methods of handling incomplete data using 

tree-based models can be compared. Also, combinations of methods for handling incomplete 

data while varying the number of attributes with missing values were not tried. However, 

prediction accuracy rates of estimation methods like the EMMI were very impressive. The 

improvement in accuracy of EMMI over single imputation methods (CCSI, DTSI, EMSI and 

MMSI) and other methods (LD, SVS and FC) could be as a result of a reduction in variance 

resulting from averaging the number of trees like is done in bagging (Breiman, 1996). Even 

though EMMI emerges as the overall best of the eight techniques, it has come under fire by 

critics claiming that proper imputations, necessary for valid inferences, are difficult to produce, 

especially in data where multiple factors are deficient (Schafer, 1997), and even then EMMI is 

biased in some cases [Robins and Wang, 2000]. Another argument against EMMI is that it is 

much more difficult to implement than some of the techniques mentioned. One potential 

problem that was encountered in this research is convergence of the EM algorithm [Wu, 1983], 

especially for big datasets and datasets with more than 30 attribute variables. 

The results also show that the performance of methods depends on whether missing values are 

in the test or training set or in both the training and test sets. When looking at the overall 

performance of methods, training methods appear to achieve superior performances compared 

with testing methods. However, in terms of relative performance, they seem to be about the 

same.  
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Each dataset might have more or less its own favourite techniques for processing incomplete 

data. However, most of our dataset results are similar to one another. Several factors contribute 

here: the methods used; the different types of datasets; the distribution of missing values among 

attributes, the magnitude of noise, distortion and source of missingness in each dataset. 

There was evidence from our results that how well a method performs depends on the dataset 

one is analysing. In fact, all methods were able to handle datasets with numerical attributes 

better compared with datasets with only nominal or a mixture of both nominal and numerical 

attributes. 

For small datasets all the techniques seemed to work well with the estimation methods, 

especially EMMI which performed better than both the other estimation methods and machine 

learning methods. One the other hand, LD gave the worst performance for small datasets. This 

seems to be logical since when using LD you tend to lose a lot of information, especially at 

higher levels of missing values. However, for bigger datasets, LD was equally effective compared 

with methods like CCSI and MMSI and outperformed them in other situations. The effectiveness 

of LD probably stems from the fact that deletion techniques result in data matrices that mirror 

the true data structure. When data are systematically missing from a study, the imputation 

techniques create a “reproduced” data matrix with a structure somewhat different from that of 

the true data matrix. 

Following EMMI as the second best overall method for handling both incomplete training and 

test data is FC. In general it can be seen that probabilistic methods have better performance 

than non probabilistic methods. However, one important disadvantage of FC, just like EMMI, is 

that it takes a long time processing (especially big trees) due to the way it handles missing 

values. Due to its reliance on the number of branches to do the calculation simultaneously, if K 

branches do the calculation, then the CPU time spent is K times the individual branch 

calculation. 

Of all the single imputation methods, EMSI seems to perform the best for datasets with 

numerical attributes. However, despite its strengths, EMSI suffers (like all the single imputation 

methods) from biased and sometimes inefficient estimates. DTSI and MMSI achieved good 

results when missing values were on categorical attributes. For DTSI, this was the case when the 

missing values were in only one attribute while MMSI gave good results generally and in some 

cases was a good method for datasets with mixed attributes. Overall, the differences in results 

between single imputation methods are relatively small. The similarity of results begs an 

important question: when and why should we choose one single imputation method over the 

other? 
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Like DTSI, for all the datasets where the correlations among attributes were found to be quite 

high, SVS (which relies heavily on strong concordance between a primary splitter and its 

surrogate(s)), achieved good results. However, SVS also struggles when missing values are 

distributed among all the attributes. In fact, for a few datasets SVS collapsed completely when 

an instance was missing all the surrogates. However, some strategies when simulating the 

missingness among the attributes were used when the technique collapsed. 

Despite good performances by some of the single imputation strategies, we will still strongly 

recommend avoiding ad hoc approaches such as LD, CCSI and MMSI when dealing with 

missing data. Such approaches not only do they give unpredictable results they are also not 

underpinned by statistical theory. 

Another point of discussion is why missing values are more damaging when they are in the test 

sample than training sample. If you have a lot of training data then missing values do not make 

much impact on the parameter estimates but missing data in the test set refers to only 

individual cases. That is, the training data yield statistical summaries, but the test data are 

concerned with individuals. In other words, missing data will tend to cancel each other out when 

training the model. On a new test case, the investigator must still suffer accuracy affects though, 

inevitably. What is really happening here is that the increased error in test cases is to be 

expected and the significantly reduced error when training is a pleasant surprise and this is due 

to the averaging (ensemble) of individual results. 

Furthermore, it is worthwhile mentioning that the performance of some methods could have 

been slightly affected by other factors like errors in some datasets. For example, the Pima 

Indians diabetes database had quite a number of observations with "zero" values, which are 

most likely to indicate missing values although the data was described as being complete. 

Nonetheless, the prediction that the impact of certain types of missing data mechanisms on both 

the testing and training cases should differ by dataset, by mechanism and by the proportion of 

missing values is confirmed. 

Some experimental results from Section 4.3 support previous findings in the literature and other 

results extend the literature. The relative superiority of model-based methods over ad hoc 

methods is consistent with past results [Kim and Curry, 1977; Little and Rubin, 1987; Rubin, 

1987]. 

Overall, the performance of each MDT under more complex forms of systematic missingness is 

unknown and likely to be problematic [Little and Rubin, 1987]. Systematic missingness in this 

simulation was always based on the variables that were in the model rather than unmeasured 

variables or combinations of variables. In addition, it is impossible, in practice, to demonstrate 
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whether data are MAR versus IM, because the values of the missing data are not available for 

comparison. IM is still a problem for the methods reviewed here. 

While this study confirms statistical insight on the importance of the pattern of missingness, it 

also reveals that the distribution of unknown values among the predictors plays an equally (if 

not more) decisive role, depending on the percentage of missing data. In a subsequent study we 

plan to distribute missing values over as many attributes as possible (other than being restricted 

to one). 

So far, we have restricted our experiments to only tree-based models. It would be interesting to 

carry out a comparative study of tree based models with other (non-tree) methods which can 

handle missing values. Furthermore, it would be possible to explore the different patterns and 

levels of missing values. 

This paper also addresses the problem of tolerating missing values in both the training and test 

sets. Breiman et al., (1984) argue that missing values have more impact when they occur in the 

test set. An interesting topic would be to assess the impact of missing values when they only 

occur in either the training or test set. 

We leave the above issues to be investigated in the future. 

In sum, this paper provides the beginnings of a better understanding of the relative strengths 

and weaknesses of MDTs and using DTs as their component classifier. It is hoped that it will 

motivate future theoretical and empirical investigations into incomplete data and DTs, and 

perhaps reassure those who are uneasy regarding the use of imputed data in prediction. 
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