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1. Abstract 12 

Inter-annual variability in primary production and ecosystem respiration was explored using 13 

eddy-covariance data at a semi-arid savanna site in the Kruger Park, South Africa. New 14 

methods of extrapolating night-time respiration to the entire day and filling gaps in eddy-15 

covariance data in semi-arid systems were developed.  Net ecosystem exchange (NEE) in 16 

these systems occurs as pulses associated with rainfall events, a pattern not well-represented 17 

in current standard gap-filling procedures developed primarily for temperate flux sites. They 18 

furthermore do not take into account the decrease in respiration at high soil temperatures. An 19 

artificial neural network (ANN) model incorporating these features predicted measured fluxes 20 

accurately (MAE 0.42 gC/m2/day), and was able to represent the seasonal patterns of 21 

photosynthesis and respiration at the site. The amount of green leaf area (indexed using 22 

satellite-derived estimates of fractional interception of photosynthetically active radiation 23 

fAPAR), and the timing and magnitude of rainfall events, were the two most important 24 

predictors used in the ANN model. These drivers were also identified by multiple linear 25 

models (MLR), with strong interactive effects. The annual integral of the filled NEE data was 26 

found to range from -138 to +155 g C/m2/y over the 5 year eddy covariance measurement 27 

period. When applied to a 25 year time series of meteorological data, the ANN model 28 

predicts an annual mean NEE of 75 (±105) g C/m2/y. The main correlates of this inter-annual 29 

variability were found to be variation in the amount of absorbed photosynthetically active 30 

radiation (APAR), length of the growing season, and number of days in the year when 31 

moisture was available in the soil.  32 

 33 
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2. Introduction 35 

Carbon dioxide flux measurements using the eddy covariance technique generate a raw 36 

dataset with a very high temporal resolution (generally 10-20 Hz). The first step in the 37 

analysis of these data is to screen them for spurious values, perform various corrections, and 38 

then integrate the fluxes over periods of about 30 minutes. The half-hour data provides 39 

important insights into many short-term physiological processes, but most ecological and 40 

management-relevant questions are framed over even longer timeframes – from days to 41 

years. A matter of particular interest to both ecologists and ecosystem managers is the inter-42 

annual variability of primary production and carbon storage (Lauenroth et al., 2006). Semi-43 

arid savannas are characterised by high inter-annual variability, in response to highly variable 44 

rainfall. This underlies many features of their ecology, including the likelihood and intensity 45 

of fires, the growth and migration of animal populations, and the stability of the tree-grass 46 

mixture (Higgins et al., 2000;Tyson, 1986;Reed et al., 1994;Ma et al., 2007;Serneels et al., 47 

2007), and makes savanna systems particularly hard to manage. 48 

 49 

Accumulating 30 minute flux measurements to longer time periods is not a simple matter of 50 

adding them up, for two main reasons. The first is that even the best-run eddy covariance 51 

datasets have gaps, due to instrument failure or weather conditions that cause the eddy 52 

covariance flux assumptions to be violated. The second is that the eddy covariance 53 

measurement, net ecosystem exchange (NEE), is often not what is needed by ecologists who 54 

are often more interested in its components, gross primary production (GPP) and ecosystem 55 

respiration (Reco): 56 

NEE = GPP+Reco  (observing the convention that fluxes from the atmosphere to the ground 57 

are given a negative sign) 58 

 59 
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A model is used to bridge the data gaps in what is intended to be an unbiased fashion. The 60 

same or different models can be used to deconvolve the NEE signal into its components.  A 61 

wide range of standard procedures have been developed for this process, largely for 62 

application in temperate ecosystems (Falge et al., 2001;Papale et al., 2006;Moffat et al., 63 

2007). These are not always appropriate for tropical wet-dry systems. They use 64 

phenomenological models, neural networks or process-based models to achieve their 65 

objectives. The readily-available ones do not work well for data from semi-arid sites in 66 

southern Africa. This is because they assume the major controls on flux processes to be solar 67 

radiation and temperature, whereas temperatures in the semi-arid tropics are almost always 68 

warm enough to permit physiological activity, and insolation is sufficient, at least during non-69 

cloudy days, for light saturation of part or all of the typically-sparse canopy. In arid and semi-70 

arid systems, the main control on the rate and duration of many ecosystem processes is soil 71 

moisture.  72 

 73 

As a further complication, in low-rain, high-evaporation ecosystems, where the soils dry out 74 

between successive rainfall events (so-called pulse-driven systems),  the various terms in the 75 

carbon budget are highly dependent on the recent history of the system (Huxman et al., 76 

2004). For example, following a rainfall event, respiration increases rapidly whereas it takes 77 

several days for the ecosystem to reach maximum photosynthesis (Williams et al., 2008). 78 

Similarly, the magnitude of the system response depends not only on the size of the current 79 

rainfall event, but on the amount and timing of preceding events: after a long drought the 80 

response to a rain event is larger than to a similar-sized event during the middle of the rainy 81 

season, but the time taken to reach the peak response is longer (Veenendaal et al., 2004). 82 

Therefore, it is not possible to use instantaneous measures such as the soil moisture content as 83 
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a sole proxy for the state of the system. Gap-filling therefore requires consideration of indices 84 

that have ‘memory’: for instance, accumulators of water deficit. 85 

 86 

Moreover, ‘phenomenological’ models will only be appropriate when they truly represent the 87 

underlying responses (Falge et al., 2001). Most current respiration models define the 88 

relationship between respiration and temperature using an exponential- or logistic-shaped 89 

function; i.e. functions that either continually increase, or level off at a maximum value 90 

(Moffat et al., 2007). These models were developed in systems where temperature ranges are 91 

generally below 30 ºC (Fang and Moncreiff, 2001;Lloyd and Taylor, 1994). Physiologically, 92 

respiration is expected to decrease once temperature exceeds the optimum for microbial 93 

activity (Yamano and Takahashi, 1983). In tropical dry systems, the soil temperature in the 94 

top centimetres often exceeds 40 ºC. Thus more appropriate functional forms need to be 95 

developed before current gap-filling methodologies can be applied globally.  96 

 97 

Improving functional relationships to include extreme conditions would also be valuable in 98 

the context of climate change. In coming decades, many ecosystems around the world are 99 

likely to be exposed to higher temperatures and reduced moisture availability. Information on 100 

ecosystem responses to high temperatures and intermittent droughts will be valuable in 101 

predicting responses to these changes.  102 

 103 

We present a statistical approach to estimating annual NEE for a semi-arid savanna system in 104 

southern Africa. We tested the importance of six environmental drivers of daily 105 

photosynthesis (GPP) and respiration (Reco) at the Skukuza flux tower in the Kruger Park 106 

(25.02º S, 31.50 º E). Predictors commonly used in temperate systems were included, 107 

together with a range of environmental predictors chosen to reflect the effect of pulsed 108 
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rainfall events. Predictive models were then used to interpolate annual fluxes over a 25 year 109 

time period, and to investigate the degree and possible causes of inter-annual variation in CO2 110 

exchange. 111 

 112 

Our approach was motivated by the fact that there was a limited amount and duration of flux 113 

data (spanning 6 years with many gaps, which is too short for a reliable estimate of variance), 114 

but that a full time series of daily meteorological and phenological data was available for a 25 115 

year period. Working at a daily time-step allowed us to bridge the gap between the half-116 

hourly flux data and the crucial annual timescale, and to use the long-term meteorological 117 

data to estimate inter-annual variability.  Process-based modelling would be ideal for these 118 

systems where previous conditions affect the response of the system to perturbation, but we 119 

chose to limit ourselves to a statistical analysis, given our imperfect understanding of the 120 

processes driving NEE in these systems. Results from this research will be used to develop 121 

more process-based models. 122 

 123 

This paper aims to: 124 

• Document new procedures for eddy covariance gap-filling that are appropriate for 125 

dry, hot ecosystems;  126 

• Explore the factors associated with short-term (daily) variation in NPP, GPP and Reco;  127 

• Calculate annual estimates of NEE and explore the main factors driving inter-annual 128 

variation in savanna carbon exchange at the Skukuza flux site in South Africa. 129 

 130 
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3. Methods 131 

3.1. Study Site 132 

A flux tower situated in a semi-arid savanna near Skukuza, in the Kruger National Park has 133 

been collecting data since February 2000. The site is 370 meters above sea level with strongly 134 

seasonal rainfall occurring between November and April. Mean annual rainfall is 550 ±160 135 

mm. The landscape is gently undulating, consisting of broad-leaved Combretum apiculatum-136 

dominated savanna on the coarse sand crests and fine-leaved Acacia nigrescens savanna on 137 

sandy clay loam in the valleys (Scholes et al., 2001). The soils are about 0.6m deep. The eddy 138 

covariance flux tower is situated at the ecotone between the two vegetation types. 139 

 140 

The woody vegetation reaches 8-10 m in height and the flux sensors are at 17 m, giving the 141 

tower a footprint of about 500 m.  The vertically projected tree canopy cover in this area is 142 

about 30% and woody basal area is 7m2ha-1. The grass layer is dominated by Panicum 143 

maximum, Digitaria eriantha, Eragrostis rigidor, and Pogonarthria squarrosa.   144 

 145 

The tower is instrumented with a Gill sonic anemometer measuring wind velocity in three 146 

dimensions and a LICOR 6262 closed-path infrared gas analyzer measuring water vapour, 147 

CO2 concentration, and pressure. The raw high frequency (10 Hz) data was processed 148 

following (Lee et al., 2004) to produce half-hourly measures of above-canopy turbulent 149 

fluxes of sensible heat, water vapour, and carbon dioxide. Heat and mass fluxes were 150 

calculated based on conventional equations and corrections (see e.g. Moncrieff et al., 151 

1997;Aubinet et al., 2000) and all fluxes are reported as positive upward from the land to the 152 

atmosphere. Canopy storage flux was estimated from the half-hourly time derivative of a 16 153 

m column integral based on CO2 concentrations measured at 0.75, 2.0, 3.5, 5.25, and 16 m, 154 
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and added to the above-canopy turbulent flux for data analysis. Incoming and outgoing long- 155 

and shortwave radiation was measured with Kipp and Zonen shortwave and thermal 156 

radiometers mounted at 22 m.  157 

 158 

Average half-hourly volumetric soil water content was estimated with 15 cm long Campbell 159 

Scientific frequency domain reflectometry probes installed horizontally at soil depths of 3, 7, 160 

16, 30, and 50 cm in the clayey Acacia –dominated soils downhill of the tower, and 5, 13, 29, 161 

and 61 cm in the sandier Combretum –dominated soils uphill. Half-hourly averaged soil heat 162 

flux was obtained with HFT3 plates (Campbell Scientific) installed 5 cm below the ground both 163 

under and between tree canopies. Rainfall per half hour was measured with a tipping bucket 164 

rain gauge located on the tower top, along with other standard meteorological variables such 165 

as air temperature and humidity, wind speed and direction. 166 

 167 

3.2. The effect of the ecotone 168 

 169 
The differences in soil properties and species composition above and below the seepline were 170 

expected to be apparent in the flux data from the tower. To test this we separated the half-171 

hourly fluxes into predominantly broad-leafed and predominantly fine-leafed (based on the 172 

wind direction) we summarised these monthly over the 6 years (Figure 1). Although night 173 

time carbon flux seemed to be slightly higher in the broad-leaved savanna over the dry season 174 

(months 4-8) the results were not significant enough to justify running these analyses 175 

separately for the two different systems. Kutsch et al (2008 this edition) similarly notes that 176 

the data “show no significant differences between the savanna types in terms of fluxes”.  177 

Whether this was due to a lack of ability to differentiate between fluxes from the two sites, or 178 

because at the landscape level the differences are not significant, we chose to complete the 179 
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rest of the analysis using all flux data as one unit. We used a model to create an integrated 180 

site-level soil moisture record (see Appendix A). 181 

 182 
 183 

3.3. Data processing and gap filling 184 

Flux data were available from February 2000 to December 2005 (the site continues to 185 

operate, but with an open-path IRGA). Of the half-hourly data, 41%  was missing, which is 186 

slightly more than the average among flux sites of 35%  (Falge et al., 2001).  As rainfall 187 

occurs during summer months of November to April the flux data were summarised by 188 

rainfall years (July to June) which provided five full years of flux data – with data coverage 189 

ranging from 30  to 74 % annually. Most of the data gaps were for a single half hour interval, 190 

but instrument failure due to lightning strikes resulted in six gaps of over two months 191 

duration, usually occurring during summer periods. These large, non-random gaps limit the 192 

types of gap filling approaches that can be used.  193 

 194 

When a u* filter of 0.1 m/s (Reichstein et al., 2005) was applied to eliminate periods of low 195 

turbulence during which eddy covariance measurements are unreliable, the missing flux data 196 

increased to 49 %.  Linear interpolation was used to fill gaps < 2 hours in duration, which 197 

reduced the missing data to 44%.  These half-hourly data were then summed to calculate 198 

daily NEE values for all days with unbroken 30-minute time series. The result was 698 days 199 

of NEE data. These days were not randomly distributed through the year, with the rainy 200 

months (particularly December and January) represented by much less data than the dry 201 

months of June through September (Figure 2). Dry, winter conditions are therefore over-202 

represented in the sample. In addition, one of the periods of most continuous and cleanest 203 

observations spans an intense drought, 2002-2003 growing season, further biasing results. 204 

 205 
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Simple gap-filling techniques using mean daily averages are inadequate for filling gaps in the 206 

Skukuza data because the stochastic and variable NEE response over the course of a wetting 207 

event would not be well represented by a summary value, and because gaps in the data often 208 

span several weeks. Non-linear regression methods work well when there is just one main 209 

driver of carbon uptake or release (in temperate systems, temperature is normally used to 210 

drive respiration, and APAR to drive photosynthesis; (Moffat et al., 2007). However, the 211 

presence of multiple drivers at the Skukuza site means that single-parameter non-linear 212 

methods are unlikely to be sufficient. 213 

 214 

Similarly, Marginal Distribution Sampling (MDS: Reichstein et al., 2005) fills gaps by taking 215 

the average value for data collected under similar meterological conditions within a certain 216 

window of the missing data. In this way it accounts for temporal auto-correlation as well as 217 

co-variation with meterological drivers. However, when there are long gaps this method 218 

breaks down, and the choice of “similar” meterological conditions requires that the 219 

appropriate hydrological are considered in the model – current implementations use only Rn, 220 

temperature, and VPD.  221 

 222 

We used Artificial Neural networks (ANN) as our gap-filling approach, as this method 223 

accommodates non-linear relationships between variables but requires few a priori  224 

assumptions on the relative importance of different variables or their functional relationships. 225 

The usefulness of ANNs depends entirely on the appropriate selection of input variables – 226 

and we hoped to improve on standard methods available by choosing variables which would 227 

reflect the pulsed response to soil moisture in arid systems. We also ran standard multiple 228 

linear regression models on the data to explore interactive effects between the variables. This 229 
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approach allowed us to investigate the important drivers of NEE, as well as develop models 230 

which could be used for prediction using long-term meteorological data.  231 

3.4. NEE, Photosynthesis, Respiration 232 

Half-hourly night-time fluxes were used to estimate the day-time respiration. A stricter u* 233 

threshold of 0.25 ms-1 (Kutsch et al., 2008) was used for this analysis, as it was more 234 

important to have reliable data than large sample sizes. Respiration is controlled by 235 

temperature, which generally varies quite predictably over the course of a day, as well as 236 

variables such as soil water content and the amount of actively photosynthesising leaf 237 

material, which are relatively constant over a single day, but vary over longer time scales. We 238 

therefore took a two-scale approach to determining day-time ecosystem respiration: we 239 

derived a temperature response curve by fitting it to ‘optimum’ respiration conditions – i.e. 240 

the maximum values measured at a range of temperatures (all valid half-hourly night-time 241 

fluxes were used for this). This curve was used to estimate the maximum potential respiration 242 

rate for each daylight interval, using the daytime temperature trend as input (see appendix B 243 

for more details on this method). The actual respiration during any particular day was then 244 

estimated as the temperature-driven ‘potential’ scaled by the ratio of observed night-time 245 

respiration to the potential night-time respiration for that day. This scaling factor was 246 

assumed to account for the effects of soil moisture and physiological activity.  Unlike the 247 

flux-partitioning method of Reichstein et al (2005) this method does not require a separate 248 

temperature response function to be derived for each day. 249 

 250 

Conventional Arrhenius or Lloyd-Taylor temperature functions were not considered 251 

appropriate representations of the response functions, as day-time temperatures at the site 252 

often exceed that which is optimum for microbial activity (Yamano and Takahashi, 1983). 253 

An analysis of independently-collected respiration data from the site, collected using soil 254 
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chambers, indicated that a generalised Poisson temperature relationship produced the best fit 255 

to measurements of soil respiration (Kirton et al in prep).  256 

 257 

We therefore used the following equation to describe the optimal temperature response: 258 

 259 
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Parameters were estimated using a non-linear least squares by means of the Levenberg-262 

Marquardt algorithm: 263 
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where values in brackets represent the standard error of the estimate. Only days when there 265 

were more than three valid night time flux values with which to estimate the scaling 266 

parameter were used to interpolate day-time fluxes. See Appendix B for details on this 267 

method and a comparison with other methods. 268 

 269 

Negative night time fluxes were excluded from the model fitting, as there was no theoretical 270 

justification for negative respiration. Interpolated respiration values that dropped below zero 271 

(which can occur at very high or low temperatures, using the parabolic curve) were given a 272 

value of zero. This method produces predicted respiration values with similar distributions to 273 

those recorded for all conditions of soil moisture and  fAPAR (Figure 3).  274 

 275 

Daily respiration (Reco) values were obtained by calculating a half-hourly value (multiplying 276 

the per second value by 60*30) and summing this over the 48 half-hours. All other daily 277 
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values were calculated in the same way. Daily Gross Primary Production (GPP) was 278 

calculated by subtracting the interpolated day-time respiration values from the recorded 279 

daytime NEE values, and summing over the daylight hours. This resulted in a dataset with 280 

372 valid records for Reco and 529 for GPP.  281 

3.5. Drivers of NEE 282 

In temperate systems incoming solar radiation (PAR) and temperature are the main drivers 283 

used to predict photosynthesis and respiration. In some models these are modified by 284 

measures of LAI and soil moisture (Moffat et al., 2007). We chose to test six input variables 285 

as predictors of GPP and Reco (see Table 1).  286 

 287 

Only data that could be derived from standard daily South African Weather Services (SAWS) 288 

climate records or long-term low-resolution satellite vegetation indices were used as input 289 

predictors, in order that the models could be used in conjunction with the long-term records 290 

to estimate NEE over periods much longer than the eddy covariance data would permit. The 291 

daily time-course of temperature variables was estimated from daily maximum and minimum 292 

air temperature. Soil water content was modelled using a simple bucket model and Penman-293 

Monteith evapo-transpiration functions (Archibald and Scholes, 2007). The half-hourly 294 

meteorological data available at the flux tower was used to validate these models (see 295 

Appendix A)  296 

 297 

Three different measures were used to indicate the hydrological state and history of the 298 

ecosystem: Relative Plant Available Water (RPAW); water deficit (a function which 299 

accumulates the deficit for all days of water stress θ  < θcrit until rewetting occurs); and time 300 

since wetting (the time since the last big wetting event – i.e. time since θ increased above  301 

θcrit). Equations for these indices can be found in Table 1. Mean air temperature – which 302 



 14 

correlates well with soil temperature (Appendix A) - was used as the predictor of Reco, 303 

whereas mean daytime temperature was used at the predictor for GPP. The European Joint 304 

Research Centre 10-day  fAPAR product (Pinty et al., 2002) was linearly interpolated to create 305 

a daily fAPAR parameter. A relationship between AVHRR-derived NDVI (the ‘GIMMS data’, 306 

(Tucker et al., 2005)) and fAPAR was used to define the daily fAPAR input for the period before 307 

the beginning of the Joint Research Centre (JRC) dataset (See Appendix A).  308 

3.6. Modelling approach.  309 

Two different artificial neural network (ANN) methods were tested: Generalised Regression 310 

Neural Network (GRNN) and Multi-Layer Feed Forward Neural Network (MLF). The 311 

GRNN is based on a kernel smoothing approach and has the advantage of using non-312 

parametric regression procedures (which makes no assumptions about the underlying data) 313 

and can be trained quickly as only the smoothing parameter needs to be estimated and 314 

optimised. As has been found in other studies (Cigizoglu, 2005;Currit, 2002;Kisi, 2006) this 315 

method is efficient for modelling non-linear systems and worked as well as the more 316 

traditional MLF, which required excessive fine-tuning to optimise the system architecture. 317 

Three separate models were developed for predicting Reco, GPP, as well as daily NEE. 318 

Models were developed using 80% of the data for training and 20% for testing (proportions 319 

of 70-30% were also tried, without substantially changing the results). 320 

 321 

Multiple linear regression equations with up to three-way interactions were examined for 322 

both photosynthesis and respiration. A combination of backward selection and stepwise 323 

selection was used to obtain significant predictors in the model. The ability of the MLR to 324 

explore the importance of different variables separately and in combination added value to 325 

the results of the ANN. However, there are strong theoretical reasons against using ordinary 326 

least squares (OLS) regression for data-filling (Richardson and Hollinger, 2005), which is 327 
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why we restricted their use to exploring the relationships between variables. Many of the 328 

meteorological variables, at least over a certain range, are expected to have a near-linear 329 

relationship with respiration and photosynthesis. Temperature is an exception: therefore 330 

quadratic terms of temperature were also included during the model selection process. 331 

 332 

3.7. Error estimation 333 

 334 

The random error component of the total error in the daily carbon fluxes was considered in an 335 

attempt to obtain a confidence interval for the annual estimates of NEE. The systematic 336 

component of the error was not assessed for this paper, but this analysis will be carried out at 337 

a later stage. To estimate the random error, the method described by Richardson et al (2008) 338 

was used, where the model error was used as a surrogate for the random error. The error of 339 

the daily ANN model prediction (difference between the observed and modelled daily fluxes) 340 

was calculated for all cases where the observed daily fluxes were available. The distribution 341 

of these errors fitted a Laplace distribution better than a normal distribution (Chi-squared 342 

tests for goodness of fit were χ2 = 37.37 compared with χ2 = 111.01 for the normal 343 

distribution). Richardson et al. (2008) also found the errors in half-hourly flux data to be 344 

distributed according to the Laplace distribution.  345 

 346 

We assumed the daily errors were independent and identically distributed. This allowed us to 347 

use the Central Limit Theorem to assume normality for the annual sum of the errors in the 348 

fluxes. The expected value of the errors was assumed to be zero and the variance of the errors 349 

was estimated by the sample variance. The approximate standard error for the annual 350 

estimates was then calculated to be 12.9 g C m-2 year-1, and therefore the error in the annual 351 

NEE estimates is 25.3 g C m-2 year-1 with 95% confidence. This agrees with the estimate of 352 
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random error obtained by Richardson and Hollinger (2005), where they used the Monte Carlo 353 

simulation to estimate the error in the model parameters and model estimates.  354 

4. Results and Discussion 355 

4.1. Carbon Balance 356 

The diurnal time-course of NEE is highly responsive to soil moisture and the presence of 357 

green leaves (Figure 4). Interestingly, maximum CO2 uptake occurs during periods of low 358 

soil moisture when green leaves are still present (Williams et al, 2008), because under these 359 

circumstances the contribution of soil respiration is low, but a substantial amount of 360 

photosynthesis is still occurring using water stored in the plant, or accessed from deeper soil 361 

layers that do not contribute much to ecosystem respiration.  362 

 363 

4.2. Gap-filling: Modelling Reco and GPP 364 

Despite the relative paucity of daily data both the ANN and multiple regression methods 365 

produced models which reasonably represented the input data (Table 2). Mean absolute error 366 

(MAE) ranged from 0.37  to 0.56 g C/m2/day, which compares favourably to the 1-1.5 g 367 

C/m2/day range of values reported by Moffat et al (2007) for a range of gap-filling methods 368 

and vegetation types. Respiration was generally harder to predict than photosynthesis, and the 369 

linear models performed badly in predicting Reco (r
2 of 0.41, MAE of 0.68 g/m2/day).  370 

 371 

The ANN identified available green leaf material (indexed by fAPAR) to be the most important 372 

predictor of both Reco and GPP, but fAPAR was relatively more important for predicting GPP 373 

than for predicting Reco, as would be expected (Table 3). We interpret the role of fAPAR in 374 

driving  Reco  as reflecting the availability of readily-respired substrate. For GPP the time 375 



 17 

since wetting event was the next most important predictor, which corroborates findings of 376 

Williams et al (2008) that there is a delay in the pulse of photosynthetic activity after a 377 

rainfall event. In terms of water relations, soil moisture content was the best predictor for 378 

Reco, but water deficit and time since wetting were also identified as important. Interestingly, 379 

temperature did not prove to be important in predicting either respiration or photosynthesis. 380 

This could reflect the daily time-step at which we did the analysis – in this sub-tropical 381 

system temperature variation between days and over the growth season is much less 382 

important than variation in leaf dynamics and soil moisture in driving NEE. 383 

 384 

For respiration models using Multiple Linear Regression, fAPAR  and time since wetting were 385 

the most significant single predictors. Interactions between various soil moisture parameters 386 

and fAPAR  also significantly improved the fit of the respiration model. As can be seen in 387 

Figure 4, the effect of a parameter like soil moisture greatly depends on the amount of 388 

photosynthesising green leaf material, so it is unsurprising that these interaction terms are 389 

important.  390 

 391 

In the photosynthesis model soil moisture was very significant, and three-way interactions 392 

between fAPAR, soil moisture, PAR, and time since wetting were important in improving 393 

model fit. The importance of the interactive terms perhaps goes some way to representing the 394 

delayed photosynthetic response to wetting events identified by Williams et al (2008). It 395 

usually takes 5-7 days in this system before photosynthesis reaches its maximum after a 396 

wetting event, and this response depends on how much leaf material is present. Temperature 397 

was included in both the GPP and Reco  models as it produced significant interactions with 398 

other variables, but as a main effect it was not significant.  The ANN net ecosystem exchange 399 

model had the lowest error (Table 2), so this model was used to gap-fill the 6 year dataset .  400 
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4.3. Inter-annual variability 401 

Annually-integrated net ecosystem exchange varied from -138 to +155 gC/m2/y over the 5 402 

year period for which there was flux data (Table 5). In drought years limited carbon uptake 403 

occurs even during the height of summer, but in years with above average rainfall the site can 404 

be a sink of carbon for several months of the year (Figure 5). Only two of the five years had 405 

negative NEE (in other words, were net carbon sinks at the annual timescale). It is possible 406 

that our gap filling methods over-estimate the amount of respiration occurring at this site: 407 

there was very little data available during the summer months (Figure 2), so the model was 408 

probably not well trained to identify days of maximum GPP in this system. To test this we 409 

will need to acquire a more extensive summer dataset for this site. Estimates of random error  410 

suggest that years where predicted annual NEE was within +-20 gC/m2/y might actually have 411 

been close to carbon-neutral.  412 

 413 

When the 25 year NEE sequence is predicted the pattern becomes more obvious (Figure 6). 414 

The site was predicted to be a net sink for carbon in only 6 of the 25 years, but three other 415 

years (1989, 1996, and 2000) may have been near-sinks. The data give a long-term mean 416 

annual NEE of 75 (±105) g C/m2/y. Loss of a cohort of aging Acacia nilotica trees at the site, 417 

and increased stem damage with increasing elephant populations over the last 20 years might 418 

both contribute to making this site appear as a net sink in this analysis. Recent field data at 419 

the site record high rates of tree turnover - 8 % (+- 3%)  per annum  – with damage by 420 

elephants and senescence of old Acacia nilotica trees being the main cause (Archibald – 421 

unpublished data). These turnover rates are high, but not exceptional for southern African 422 

savannas (Shackleton, 1997), and it is perfectly feasible that tree growth could match these 423 

losses. Therefore, it would be precipitous to speculate further on the implications of the long-424 
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term predictions until there is better information on tree productivity, and more peak-growing 425 

season flux data to calibrate the models with.  426 

 427 

The most useful information provided by the long-term prediction is estimates of the inter-428 

annual variation for this site. Figure 7a indicates that there is a strong relationship between 429 

predicted annual NEE and available photosynthetically active radiation (APAR, which is 430 

PAR* fAPAR). This analysis suggests that once annually accumulated APAR exceeds about 431 

675 MJ/m2, the system becomes a sink for carbon (Figure 7a).  432 

 433 

It might seem surprising that soil moisture, which was so important at a daily time scale, does 434 

not show a stronger relationship with annual NEE. Even when photosynthesis and respiration 435 

are considered separately (Figure 7 b,c), by far the best relationship is found with APAR. 436 

This result makes sense when one considers that both the ANN and the MLR analyses 437 

showed strong interactive effects of soil moisture with fapar – i.e. the effect of available soil 438 

moisture in driving Pn and Re depends heavily on the amount of photosynthetically active 439 

green leaf material. Similarly, soil moisture has been shown to be an important driver of 440 

seasonal patterns of leaf display at the site (Archibald and Scholes 2007).  Fapar can therefore 441 

be seen as an integrated measure of hydrological conditions at the site, which is better at 442 

predicting annual-scale carbon exchange than any measure derived from short-term 443 

measurements of daily soil moisture. For example in the 2003-2004 rainfall year the total 444 

annual rainfall was above average (618mm) but it was heavily skewed towards the last part of 445 

the growing season. In this instance integrated values of APAR would represent the growing 446 

conditions for a season better than total rainfall, or even number of growing season days.  447 

 448 
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4.4. Other pathways of carbon loss from the system 449 

A savanna carbon budget would be incomplete without a consideration of fire and herbivory. 450 

The fluxes of CO2 to the atmosphere via these two pathways have not been directly measured 451 

at the Skukuza site, but can be inferred and constrained from other data. The abundant large 452 

mammalian herbivore (>5 kg body mass) community in this landscape consists of 14 species, 453 

mostly Bovidae. The combined herbivore biomass is 3155 kg km-2  (Scholes et al., 2004). 454 

Taking into account the effect of body mass on metabolic requirements and digestability, this 455 

translates to a herbivore respiratory flux of 4.5 g Cm-2y-1 and a flux from the decomposition 456 

of dung of 5.0 g Cm-2y-1. The uncertainty range associated with these estimates is unknown, 457 

but thought to be around 20%, related mostly to errors in game census. The inter-annual 458 

variability is thought to be relatively low. The herbivore respiration and dung decomposition 459 

fluxes are subsumed in the ecosystem respiration measured by the eddy covariance system 460 

(Table 6). 461 

 462 

 The mean fire return time in this landscape in the KNP is 4.2 years (Van Wilgen et al., 463 

2000). The most comprehensive set of fuel measurements for this landscape was taken in 464 

August 1992 at 10 locations within 30 km of the Skukuza site (Shea et al., 1996). The 465 

combusted material was predominantly dry grass (1442 + 975 SD kg ha-1), tree litter (1452 + 466 

636 kg ha-1) and a contribution from dead wood (226 + 194 kg ha-1) giving a total of 3120+ 467 

1795 kg ha-1. A multi-site, multi-year mean grass fuel load for the KNP is 3359 kg ha-1, with 468 

a range  of 1152-6728 (Trollope and Potgieter, 1985). The emission factor for CO2, measured 469 

for the same fires as the above fuel loads (Ward et al., 1996) is  1699 + 33 gCO2 kgDM-1
. 470 

Therefore, the long-term annualised emission of CO2 through fire is around  136 + 58 gCO2 471 

m-2y-1. An additional 6.4 + 3.9 gCO m-2y-1 and  0.2 + 0.2 g CH4 m
-2y-1  are also emitted from 472 

fires, so the total pyrogenic carbon loses are around 40.0 + 17.5 gCm-2y-1 (Table 6).  473 
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 474 

The flux site has burned five times since 20001, which suggests that the pyrogenic emissions 475 

during this period are probably about twice the long-term, landscape-scale averages 476 

calculated above. The pyrogenic fluxes are in principle part of ecosystem respiration, but in 477 

practice are not measured by the eddy covariance system because they occur briefly, and 478 

during that period exceed the measurement range of the infra-red gas analyser. The inter-479 

annual variability is high because a given site does not burn at all in most years, and the fuel 480 

load varies greatly in the years when it does burn, in response to the variability of rainfall in 481 

the preceding season.   482 

5. Conclusions 483 

Inter-annual variability in carbon exchange at the Skukuza flux site is on the same scale as an 484 

oak savanna in California (Ma et al., 2007). The variability seems to be largely controlled by 485 

variations in the length of time that green leaf is displayed by the trees and grasses, and by 486 

changes in seasonal patterns of water availability (Figure 7) – both ultimately driven by 487 

variations in rainfall between years.  488 

 489 

The flux-partitioning and gap-filling procedures developed in this paper are a distinct 490 

improvement on standard methodologies largely because they use more appropriate 491 

temperature-response functions and explicitly include a soil moisture control, including 492 

indices of the wetting history. Estimates of annual CO2 flux obtained through gap-filling 493 

using an ANN may be slight over-estimates (i.e., slightly biased toward the sink side), 494 

because of the paucity of peak growing season flux data. However, it is also possible that this 495 

particular savanna site has been a carbon source in recent years due to high tree turnover. 496 

                                                 
1 Aug 2000, Aug 2001, Apr 2005, Nov 2006, May 2007 
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Results of the ANN gap-filling procedures and MLR models indicate a large degree of 497 

interaction between driver variables and lend support for the development of a process-driven 498 

model for this system. Such a model would need to include explicit measures of leaf mass, 499 

soil moisture and temperature.  500 

 501 

The generalised Poisson function used here to fit an optimum temperature response curve is 502 

an effective method for extrapolating day-time respiration in systems where temperatures 503 

often exceed 30ºC – provided a scaling factor is used to control for the co-limiting factors of 504 

LAI and soil moisture. At a daily to seasonal level, however, temperature was shown to be 505 

less important than other factors in influencing NEE.  506 
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8. Figure legends 630 

 631 

Figure 1: Showing monthly carbon (Fc) and water (LE) flux at the site for the two main 632 

vegetation types (calculated from the wind directions). Carbon fluxes are separated into 633 

daytime and nighttime fluxes. 634 

 635 

Figure 2: Seasonal distribution of valid NEE data points from a six-year long dataset at the Skukuza 636 

flux tower.  637 

 638 

Figure 3: Distribution of observed (black) and interpolated (red) half-hourly respiration 639 

values over temperature. Data are presented for all conditions, for periods of low soil 640 

moisture, for periods with little leaf material (low fAPAR), and for conditions of low soil 641 

moisture and fAPAR. Interpolated values lie well within the distribution of observed values for 642 

all conditions. It is also clear that respiration drops off at high temperatures, and that 643 

temperature-response functions need to include this reduction at high temperatures if they are 644 

to be appropriate for this site.  645 

 646 

Figure 4: Daily time-course of NEE averaged over 5 years of measurements and for six 647 

combinations of environmental conditions at the Skukuza flux site. Maximum CO2 648 

sequestration occurs when soil moisture is low but green leaves are still present. Wet 649 

conditions were defined as periods when the soil moisture was greater than 9 % volumetric 650 

water content, dry conditions, less than 6 %. Periods with green leaves were defined as 651 

periods when the fAPAR value was greater than 0.2.  The average number of days each year for 652 

each combination of physiological and soil moisture conditions are shown, together with the 653 

average daily sum of NEE (gC/m2/day) for these conditions. 654 
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 655 

Figure 5: Annual time course of NEE for two consecutive years (a dry year and a near 656 

average year) at the Skukuza flux tower.  Red line represents measured daily NEE, blue is 657 

modelled using an artificial neural network and inputs of fAPAR, soil moisture, temperature, 658 

time since wetting, and water deficit.  659 

 660 

Figure 6: Annual NEE estimated over a 25 year time-series at the Skukuza Flux site. Bars 661 

represent estimated annual sum, lines show 95% confidence based on random error 662 

estimation. 663 

 664 

Figure 7: Relationship between annual NEE (a) Reco (b) and GPP (c) and four potential 665 

drivers of inter-annual variability in carbon uptake: annual rainfall, available 666 

photosynthetically active radiation, length of the growing season, and number of growth 667 

days. Annual rainfall seems to be the least significant, compared with parameters that include 668 

seasonal variation in leaf display (APAR and length of growing season), and the seasonal 669 

distribution of rainfall. Solid circles represent years 2000-2005 for which flux data were 670 

available to constrain the model.   671 

 672 

Figures for Appendix B:  673 

Figure B1: Showing the six temperature response functions fitted to the half-hourly night 674 

time fluxes (respiration). Plot A shows the parabolic functions fitted over the manually 675 

selected maximum points (top function), the automatically selected maximum points (middle 676 

function) and the manually selected top of the data mass (bottom function). Plot B shows the 677 

Generalised Poisson function fitted over the same three selections of points. 678 

 679 
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Figure B2: Showing the distribution of the respiration data interpolated using six different 680 

methods (solid points: median values, box: +- 25 % quantiles, bar: data range). The median 681 

and +- 25 % quantiles are very similar for each method, but the method that calculates the 682 

fitted values had slightly lower maxima than the other two methods. All data are well within 683 

the range of measured Re values (u*-corrected half-hourly night-time fluxes). 684 

 685 

Figure B3: The distribution of measured half-hourly night-time fluxes (black circles) and 686 

interpolated half-hourly respiration (red crosses) along a temperature axis. Interpolated fluxes 687 

represent all half-hour values which had soil temperature data and at least three night-time 688 

fluxes to estimate the scaling parameter.  689 

 690 

 691 
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9. Figures 692 

 693 

 694 
 695 
Figure 1 696 



 30 

 697 

 698 

Figure 2 699 
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Figure 3 701 
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Figure 4 707 
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Figure 5 711 
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Figure 6 716 
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a)  720 

 721 

b)  722 

 723 
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c)  724 

 725 

Figure 7 726 

 727 
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TABLES: 728 

Table 1: Defining the six input variables used in the models to predict GPP and Reco. All input 729 
variables were derived from data available at a daily level from the SA Weather Services, so 730 
they could be used to produce long-term predictions 731 

 732 

Parameter  Derivation GPP 

predictor 

Reco 

predictor 

Photosynthetically 

Active Radiation 

PAR Modelled (energy balance) X X 

Mean temperature 

during the day  

Tpn Tmin + 0.75*(Tmax-Tmin) X  

Soil temperature Tre (Tmax + Tmin)/2  X 

Fraction of absorbed 

PAR 

fAPAR Modelled from satellite-derived 

reflectances (JRC: http:// 

fapar.jrc.it/Home.php)  

X X 

Relative Available 

Water Content 

(RAWC) 

θrel (θ-WP)/(FC-WP)*100  X X 

Accumulated water 

deficit 

water deficit If(θ < θcrit)  Σ (θi- θcrit) 

If(θ > θcrit)  0  

X X 

Period of wet soils time since 

wetting 

(While wdef = 0) Σ days since 

wdef = 0 

 

X X 

 733 
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Table 2:  Comparison of model performance. Artificial Neural Networks (ANN) generally performed 734 

better than multiple linear regressions (MLR), but MLR’s still managed to explain a large proportion 735 

of the variance in photosynthesis.  736 

 737 

 ANN MLR 

 Reco GPP NEE Reco GPP 

MAE (g C/m2/day) 0.56 0.37 0.42 0.85 0.62 

r2 - - - 0.41 0.68 

n 372 529 698 372 529 

 738 

 739 



 39 

 740 

Table 3: Relative importance (percentage) of the different variables used to predict ecosystem 741 

respiration, gross primary productivity, and net ecosystem exchange using an ANN.  742 

  743 

Reco GPP NEE 

fAPAR 36% fAPAR 46% fAPAR 27% 

RAWC 19% time since wetting 19% RAWC 26% 

PAR 18% PAR 14% time since wetting 14% 

time since wetting 14% RAWC 12% water deficit 14% 

water deficit 13% water deficit 5% Tpn 10% 

Tre 0% Tpn 4% Tre 6% 

    PAR 3% 

 744 
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Table 4. Results of a multiple linear regression to predict ecosystem respiration (a), and GPP (b). The 745 

best respiration model included fAPAR, time since wetting, soil temperature, and relative available 746 

water content, and two-way interactions between these variables. This corroborates the findings of the 747 

ANN model, but does not produce a good prediction (r2 = 0.41, MAE = 0.85 (g C/m2/day)). The best 748 

GPP model included fAPAR, time since wetting, relative available water content, mean daytime 749 

temperature, and three-way interaction between several variables. This also corroborates ANN results, 750 

and produces a reasonable prediction (r2 = 0.68, MAE = 0.62 (g C/m2/day)) 751 

a) 752 

 Estimate 

Std. 

Error t-value P  

fAPAR:time since wetting 1.21 0.33 3.70 0.000 *** 

fAPAR 45.91 14.71 3.12 0.002 ** 

RAWC:Tre 0.02 0.01 2.92 0.004 ** 

time since wetting -0.27 0.10 -2.80 0.005 ** 

fAPAR:PAR:time since wetting -0.13 0.05 -2.56 0.011 * 

fAPAR:time since wetting:RAWC -0.03 0.01 -2.54 0.012 * 

fAPAR: Tre -1.48 0.62 -2.38 0.018 * 

time since wetting:RAWC 0.01 0.00 2.33 0.020 * 

fAPAR:RAWC -0.36 0.18 -1.97 0.049 * 

(Intercept) -4.24 2.42 -1.75 0.081 . 

RAWC -0.19 0.13 -1.52 0.131  

Tre 0.16 0.11 1.49 0.139  

PAR:time since wetting 0.02 0.02 1.45 0.149  

PAR 0.22 0.28 0.78 0.437  

fAPAR:PAR 1.01 1.39 0.73 0.469  

 753 
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b) 754 

 Estimate Std. Error t-value P  

RAWC 0.99 0.15 6.72 0.000 *** 

fAPAR:PAR:RAWC 0.40 0.08 5.35 0.000 *** 

fAPAR:RAWC -1.89 0.42 -4.50 0.000 *** 

RAWC:Tpn -0.02 0.01 -4.33 0.000 *** 

PAR:time since wetting:RAWC 0.00 0.00 -4.27 0.000 *** 

fAPAR:time since wetting:RAWC 0.03 0.01 4.25 0.000 *** 

PAR 2.00 0.52 3.88 0.000 *** 

fAPAR: water deficit 0.93 0.25 3.69 0.000 *** 

fAPAR:PAR -6.33 1.75 -3.63 0.000 *** 

water deficit -0.12 0.03 -3.50 0.001 *** 

PAR:time since wetting: Tpn 0.00 0.00 3.39 0.001 *** 

PAR:RAWC -0.08 0.02 -3.29 0.001 ** 

fAPAR:PAR:time since wetting 0.17 0.06 3.08 0.002 ** 

PAR: Tpn -0.05 0.02 -2.77 0.006 ** 

fAPAR:time since wetting: Tpn -0.07 0.03 -2.73 0.007 ** 

PAR:time since wetting -0.09 0.03 -2.68 0.008 ** 

time since wetting:RAWC -0.02 0.01 -2.48 0.013 * 

time since wetting:RAWC: Tpn 0.00 0.00 2.41 0.016 * 

fAPAR -31.56 13.95 -2.26 0.024 * 

fAPAR:Tpn 1.06 0.61 1.74 0.083 . 

(Intercept) -5.34 3.27 -1.63 0.103  

Tpn 0.21 0.14 1.53 0.126  

fAPAR:time since wetting 0.77 0.63 1.22 0.223  

time since wetting 0.20 0.19 1.06 0.291  

time since wetting: Tpn 0.00 0.01 -0.26 0.792  
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Table 5:  Summary of NEE over the 5 year period for which there was flux data. Negative values 755 

represent an overall sink of carbon. Data gaps were filled using an ANN and predictors fAPAR, water 756 

deficit, relative soil moisture content, mean day time temperature, time since wetting, and mean soil 757 

temperature, in that order of importance.  758 

Also reported are annual summaries of rainfall, available photosynthetically active radiation, length of 759 

the growing season, and number of growth days (days when soil moisture content is greater than θcrit 760 

(7% by volume).  761 

 762 

Rainfall 
year (July 
to June) 

Annual 
NEE 
(gC/m2) 
 

95% confidence 
interval  

Annual 
rainfall 
(mm) 

Annual 
PAR  
(MJ/m2) 

Growing 
season 
length 
(days) 

Number 
of 
growth 
days 

00_01 42 (17; 67) 659 662 244 245 
01_02 155 (130; 180) 572 523 191 169 
02_03 150 (125; 175) 303 406 156 166 
03_04 -138 (-163; -113) 618 555 188 81 
04_05 -83 (-108; -58) 760 665 197 186 

 763 

 764 

 765 

 766 
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Table 6: Annualised summary of the different contributions to the carbon balance at the Skukuza flux 767 

site.  768 

 769 

 Mean annual flux 

Herbivory 9.5 g Cm-2y-1 (unknown error ? 20%) 

Fire 33.6 + 14.7 g Cm-2y-1 

Flux measurement (incl. herbivory) 75 + 105 g Cm-2y-1 

Total 108.6 + 119.7 g Cm-2y-1 

 770 
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10. Appendix A: Comparison of meteorological data 771 

Correlation between the flux tower variables and corresponding variables from other sources 772 

appears in table A1.1. Strong linear relationships exist between the flux tower daily 773 

measurements for the mean soil temperature and the mean daytime temperature and the 774 

corresponding temperature variables derived from the minimum and maximum daily 775 

temperatures of the South African Weather Services (SAWS) data. There is also a strong 776 

linear relationship between the measured mean soil moisture and the modelled soil moisture 777 

using the SAWS data, as well as a fairly strong linear relationship between PAR derived from 778 

the shortwave radiation from the flux tower and the modelled PAR. 779 

 780 

The correlation between the flux tower rainfall and the SAWS rainfall is significant, but not 781 

as strong as that of the previous comparisons to SAWS derived variables. The peaks of the 782 

environmental data are usually slightly higher than recorded from the flux tower, although 783 

there are few days when the flux tower recorded higher values (fig A1.2). This could be due 784 

to localised rainfall events. Peaks in the data do not always correspond and this could be due 785 

to the measurements from the SAWS data being taken daily from a rain gauge, whereas the 786 

flux tower took instantaneous measurements of rainfall. Therefore daily rainfall events may 787 

not always correspond exactly. The pattern of rainfall during time appears to match for the 788 

two data sets. The annual sum of rainfall for the environmental data is always more than that 789 

for the flux tower data (Table A1.1). This is due to missing data from the flux tower. 790 

 791 

There is a strong linear relationship between Gimms NDVI and fAPAR (Table A1.2). 792 

Therefore a linear regression equation was derived to describe this relationship. The linear 793 



 45 

regression obtained a R2-value of 0.7072 and an MAE of 0.0520. The estimated equation 794 

was:      fAPAR = -0.079 + 0.736×Gimms 795 

The standard error for the intercept is 0.004 and the standard error for the slope is 0.009. 796 

 797 

Table A1 Summary of comparisons between flux tower derived variables and corresponding 798 

variables derived from other sources 799 

Variables compared Pearson 

correlation 

95% confidence 

interval 

Mean flux tower soil temperature and derived soil 

temperature from SAWS data (Tre). 

0.9242 (0.9154; 0.9322) 

Mean flux tower daytime temperature and derived 

daytime temperature from SAWS data (Tpm). 

0.9558 (0.9507; 0.9603) 

Scaled flux tower soil moisture and derived scaled 

soil moisture from SAWS data (θrel) 

0.7752 (0.7500; 0.7981) 

Daily flux tower rainfall and SAWS rainfall data. 0.6109 (0.5824; 0.6378) 

fAPAR and GIMMS NDVI. 0.8409 (0.8294; 0.8517) 

PAR calculated from the flux tower data and the 

modelled PAR data 

0.6237 (0.5841; 0.6604) 

 800 

Table A2: Annual rainfall over time 801 

Annual Rainfall Sum from SAWS Environmental Data 

99/00      00/01    01/02    02/03    03/04    04/05    05/06  
363           659        572       302       618       760      249  
Annual Rainfall Sum from Flux Tower Data 

99/00     00/01      01/02     02/03     03/04     04/05     05/06  
415          671          427       310        276         582       209  
 802 
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11. Appendix B: Interpolating day-time respiration 803 

Fitting an optimal temperature function to the mass of night-time flux measurements involved 804 

making several assumptions about a) the shape of the temperature-respiration curve, and b) 805 

the values to use to fit the curve.  806 

 807 

11.1. Shape of the temperature-response curve 808 

Field data indicate that a generalised Poisson function is the best descriptor of the effect of 809 

temperature on respiration, as it describes both the exponential increase of respiration with 810 

temperature and the sudden decrease once the temperature optimum has been reached (Kirton 811 

et al in prep). However, for this analysis we also tried a simple parabolic function.  812 

11.2. Values used to fit the curve 813 

This interpolation method relies on deriving a curve that represents the temperature response 814 

under a certain set of environmental conditions. Any deviation from this line by an observed 815 

point is then assumed to be due to different environmental conditions. The curve can be 816 

pulled up and down to match this point, and thereby adjust for these varying environmental 817 

conditions, by the use of a scaling parameter. Missing respiration values (day time points) can 818 

then be interpolated on this day (because the environmental conditions other than temperature 819 

are going to remain stable at a daily time step) by using the temperature at each point and the 820 

adjusted temp/resp equation. 821 

 822 

With this in mind, extracting the points to be used could be done in a number of different 823 

ways. The easiest way to identify points where all factors other than temperature are constant 824 

would be to identify the maximum points for each temperature value (which would represent 825 
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respiration under completely optimal conditions of soil moisture and LAI).  We tried three 826 

different methods for extracting these values: manually picking the maximum respiration 827 

values, calculating the maximum respiration value for each degree temperature change, and 828 

calculating the 95th quantile for each degree temperature change (Figure B1). We also tried 829 

manually picking values at the top of the thickest part of the cloud of respiration points. This 830 

approach would exclude any extreme outliers but could also be assumed to represent the 831 

same set of other environmental conditions. Because the curve is adjusted up and down based 832 

on the respiration values on the day in question, the position of the curve on the y axis is 833 

unimportant. It is the shape of the curve that will affect the interpolation.  834 

 835 

Using the 95th quantile was not satisfactory as some temperature categories had orders of 836 

magnitude more respiration measurements than others. We therefore abandoned that method 837 

and tested six different respiration interpolation methods (Table B1): manually selected 838 

maximum points (fitting a parabolic and generalised Poisson), manually selected points at 839 

edge of data cloud (parabolic and GDP), and calculated maximum points (parabolic and 840 

GDP).  841 

11.3. Results 842 

Results indicate that the interpolated values are very resilient to the method used to fit the 843 

temperature response curve. The distribution of interpolated points was similar for all six 844 

methods (Figure 2), and linear regression models show similar fits to the observed respiration 845 

data (Table 1). A visual assessment of the interpolated points (Figure 3) indicates that the 846 

generalised Poisson interpolations fell more clearly within the main data cloud. We therefore 847 

chose to use the calculated maximum value method fitted to the generalised Poisson 848 

distribution.  849 

 850 
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 851 

Table B1: The six different methods used to fit a temperature response curve to the measured 852 

night-time (respiration) fluxes. Two different fitting functions were used, and three different 853 

methods for identifying points to fit the curve to. The distributions of the data interpolated 854 

with each method were very similar to each other (Figure 2), and fell well within the bounds 855 

of the observed respiration data (Figure 3).  856 

  Parabolic Generalised Poisson 

  Observed 

max 

Calculated 

max 

Observed fit 

to datacloud 

Observed 

max 

Calculated 

max 

Observed fit 

to datacloud 

Name parObsMax parCalcMax parObsMain poisObsMax poisCalcMax poisObsMain 

r2 0.57 0.58 0.56 0.56 0.58 0.56 

slope of linear 

model 

 

0.61 

 

0.61 

 

0.6 

 

0.56 

 

0.58 

 

0.56 

Median 

predicted value 

mgCO2/m
2/s 

 

 

0.070 

 

 

0.070 

 

 

0.069 

 

 

0.071 

 

 

0.070 

 

 

0.069 

Minimum 

predicted value 

mgCO2/m
2/s 

 

 

0.002 

 

 

0.002 

 

 

0.000 

 

 

0.002 

 

 

0.002 

 

 

0.000 

Maximum 

predicted value 

mgCO2/m
2/s 

 

 

0.98 

 

 

0.68 

 

 

0.81 

 

 

0.81 

 

 

0.71 

 

 

0.81 

 857 

 858 

 859 
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 860 

 861 

 862 

Figure B1: Showing the six temperature response functions fitted to the half-hourly night 863 

time fluxes (respiration). Plot A shows the parabolic functions fitted over the manually 864 

selected maximum points (top function), the automatically selected maximum points (middle 865 

function) and the manually selected top of the data mass (bottom function). Plot B shows the 866 

Generalised Poisson function fitted over the same three selections of points. 867 

 868 

 869 
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 870 

 871 

Figure B2: Showing the distribution of the respiration data interpolated using six different 872 

methods (solid points: median values, box: +- 25 % quantiles, bar: data range). The median 873 

and +- 25 % quantiles are very similar for each method, but the method that calculates the 874 

fitted values had slightly lower maxima than the other two methods. All data are well within 875 

the range of measured Re values (u*-corrected half-hourly night-time fluxes). 876 

 877 

 878 

 879 

 880 

 881 

 882 
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 883 

 884 

 885 

 886 

 887 

Figure B3: The distribution of measured half-hourly night-time fluxes (black circles) and 888 

interpolated half-hourly respiration (red crosses) along a temperature axis. Interpolated fluxes 889 

represent all half-hour values which had soil temperature data and at least three night-time 890 

fluxes to estimate the scaling parameter.  891 
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12. Figures referred to in the response to reviewers 892 

 893 
 894 
 895 

 896 
 897 
Figure 1: Showing dominant wind directions at the flux site, and the approximate fetch of the 898 
broad-leaved Combretum savanna and fine leaved Acacia savanna 899 
 900 

 901 
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Figure 2: Showing mean monthly carbon (Fc) and water (LE) flux at the site for the two main 902 
vegetation types (calculated from the wind directions). Carbon fluxes are separated into 903 
daytime and nighttime fluxes. 904 
 905 

 906 
 907 
Figure 3: Soil moisture time series from the four sets of soil moisture probes at the site. Data 908 
presented as volumetric water content over the entire profile.  909 
 910 
 911 
 912 
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 913 
Figure 4: Probability distribution of the range in soil moisture values over one day (midnight 914 
to midnight) at the flux tower. The soil moisture difference was less than 0.2% in about 75% 915 
of the days.   916 
 917 


