Preparation and characterization of anode catalysts for the direct alcohol fuel cells (DAFC): methanol and ethanol

<u>Mmalewane Modibedi,</u> T.Masombuka, M. Mohlala, M. Mathe mmodibedi@csir.co.za

our future through science

CATSA CONFERENCE 2007

Outline

- Introduction
- WHY DAFC?
- Preparation and Characterization of electro-catalysts
- Results and Discussion
- Future work
- Acknowledgements

Introduction

- To reduce pollution produced by burning fossil fuels, energy production must become cleaner and the use of energy more effective.
- Alternatives to fossil fuel: Wind power, Solar PV, Fuel cell (FC)...
- FC offer an attractive combination of highly efficient fuel utilisation and environmentally-friendly operation
- Device that uses a chemical fuel such as hydrogen and an oxidant, e.g., oxygen to generate electricity directly from electrochemical processes
- The by-products from an operating fuel cell are heat and water

Types of fuel cells (FC)

- Alkaline Fuel Cell (AFC): Electrolyte-alkaline potassium hydroxide, 80°C
- Molten Carbonate Fuel Cell (MCFC): Electrolyte-carbonate-saltimpregnated ceramic matrix, 650°C
- Solid Oxide Fuel Cell (SOFC): Electrolyte- hard, non-porous ceramic compound, 700-1000°C
- Phosphoric Acid Fuel Cell (PAFC): Electrolyte-liquid phosphoric acid, 180-200°C
- Polymer Electrolyte Membrane Fuel Cell (PEMFC): Electrolyte- solid polymer membrane (typically Nafion), around 70°C

Besides H₂ as fuel, chemical energy in alcohols can be directly converted into electricity. Examples: methanol and ethanol

WHY DAFC?

- Easy transportation and storage of the fuel
- Does not require a reformer
- Liquid fuel is compatible to existing infrastructure
- High energy density (ethanol 8kWh/kg, methanol 6.1kWh/kg)

Challenges of DAFC

Alcohol crossover from anode to cathode catalyst.

ORR catalyst tolerant to alcohol,

membrane reduce alcohol crossover

- CO poisoning on anode catalyst
- Catalyst able to break C-C bond

DEFC vs DMFC

 Ethanol: low toxicity and widely available but its reactivity is slightly lower than methanol' reactivity.

Electro-catalysts

- Best binary catalysts for methanol and ethanol electrooxidation: Pt-Ru and Pt-Sn respectively.
- The enhanced performance is not good enough in the presence of CO.
- More active electro-catalysts are critically needed
- Ternary catalysts: Iridium may promote the oxidation of the adsorbed CO on Pt.
- Non-metallic elements (N, P and S), reduces the size of a PtRu/C catalyst

Preparation of Electro-catalysts

M. Method Method

Molar ratios

Pt:Sn:Ir (3:1:1)

Pt:Ru:Ir (3:3:1)

Total catalyst loading: 20wt%

Experimental set-up : Electrochemical Characterization

RESULTS AND DISCUSSION

$0.5M H_2SO_4 + 0.5M C_2H_5OH$

$0.5M H_2SO_4 + 0.5M CH_3OH$

$0.5M H_2SO_4 + 0.5M CH_3OH$

Pt-Sn-Ir/C

Pt-Ru-Ir/C

Conclusions

- Electro-oxidation of methanol and ethanol takes place on electro-catalysts prepared.
- Kinetics of electro-oxidation reactions are different for various catalyst compositions
- Effect of P: high current density improved performance
- Electro-catalyst performance depends on the preparation procedure

Future work

- Catalyst preparation

 Optimize catalyst composition
 (Add Ir, P to Pt-Sn and Pt-Ru)
- Characterization:
 - -Electrochemistry

(Cyclic voltammetry, Impedance spectroscopy)

-Structural and elemental analysis (TEM, EDX, XPS, ICP)

- MEA fabrication and performance tests in a unit fuel cell
 - -Methanol and ethanol

Acknowledgements

- Retha Rossouw (NIMSA)
- Dr. S. Hietkamp (MSM, CSIR)

Thank you

our future through science