BIO-REMEDIATION OF MINE WATER

Harma Greben

Division of Natural Resources and the Environment

CSIR

South Africa

our future through science

Introduction

Mining History in South Africa

- Gold Mining started in the late 1880's on the farm Langlaagte, west of Johannesburg
- Soon thereafter coal mining started in the Witbank Area as well as in Northern Natal
- Diamond mining in Kimberley

Chinese coal miners in an illustration of the *Tiangong Kaiwu* <u>Ming Dynasty</u> <u>encyclopedia</u>, published in 1637 by <u>Song Yingxing</u>.

Coal fields in South Africa

our future through science

Wealth versus environment

- SA is 5th largest coal producer in the world
- SA is third largest coal exporter
- South Africa gains economic prosperity from the act of mining
- The mining industry contributes negatively to the pollution of the water environment by producing Acid Mine Drainage.

© CSIR 2006

Impact of mining

By act of mining: AMD is formed

Arises from oxidation of pyrite, due to exposure to air and water. 2FeS₂ + 7O₂ + 2H₂O ⇒2FeSO₄ + 2H₂SO₄

Characteristics of AMD:

High SO4: Salinity

High acidity: low pH

High metal content

Environmental impact: Water pollution

CSIR our future through science

© CSIR 2006

Water Pollution trough mining in South Africa

Statistics

- Mpumalanga coal field produces 40-50ML/d, may increase to 120ML AMD/d
- Gauteng mining area produces 300-400 ML AMD/d

Anno 2006

© CSIR 2006

Mine water remediation

- Biological treatment
- Chemical treatment
- Physical treatment

Possible ground water contamination

Chemical treatment

CSIR Limestone/Lime Neutralisation The integrated limestone/lime process is used for treating acid, iron and sulphate-rich water with powder calcium carbonate.

- Acidic mine effluents are neutralised
- Sulphate is removed from 20 g/ ℓ to less than 2 g/ ℓ
- Metal removal (Ca, Mg), using lime

Full scale implementation of CSIR neutralisation technology

South Africa:

- Ticor, Limestone/lime
- Navigation and Kromdraai mines, Anglo coal (both Limestone)
- Namaqua Sands Limestone/lime
- Zincor (limestone)
- Optimum (limestone)
 Botswana
- BCL (limestone)
 Australia
- Iluka resources (limestone/lime)

Biological Sulphate (SO_4) removal

- Requires Sulphate Reducing Bacteria (SRB)
- Requires a carbon and energy source
- Requires SO₄
- Requires anaerobic conditions

Microorganisms

CSIR developed biological treatment

- Biological AMD treatment using alternative carbon and energy sources
- Degradation products of cellulose occurring in grass
- Volatile Fatty Acids (VFA) and hydrogen (H₂) production
- VFA and H₂ can function as C+E source for SRB

Grass: potential source of sustainable energy

Biological degradation of cellulose

© CSIR 2006

Microorganisms produce VFA and H_2

Use of natural occurring microorganisms

- Rumen fluid from ruminant
- SRB participate in the degradation of the polymers and monomers to produce VFA

Benefits of biological SO4 removal

- Sulphate removal to <200 mg/L
- Alkalinity production to increase pH
- Sulphide is the reduction product of sulphate
- Metal removal due to Metal-sulphide precipitation

Biological SO $_4$ reduction using grass-cellulose as the carbon and energy source

Aim of study

To remove biologically:

- Sulphate from AMD
- Sulphide after sulphate reduction

CSIR developed biological treatment plant

Materials and Methods

Feed water

- Pre-treated AMD
- Mix 1 part AMD with 1 part of reactor effluent

Purpose

- Metal removal
- pH increase of AMD

© CSIR 2006

Reactor: Hybrid Reactor System

Schematic overview of HFS reactor system.

Laboratory study: continuous operation of hybrid reactor

Reactor contains

- 1. Grass cuttings as cellulose source
- 2. Cellulose degrading microorganisms
- 3. SRB

Feed water:

Pre-treated AMD for pH increase and metal precipitation

Principle

VFA and H₂ production and utilisation in reactor for biological sulphate removal

Reactions using VFA and H_2 for SO₄ removal

Propionate⁻ + $\frac{3}{4}$ SO₄²⁻ \rightarrow Acetate⁻ + HCO₃⁻ + $\frac{3}{4}$ HS⁻ + $\frac{1}{4}$ H⁺

Butyrate⁻ + $\frac{1}{2}$ SO₄²⁻ \rightarrow 2 Acetate⁻ + $\frac{1}{2}$ HS⁻ + $\frac{1}{2}$ H⁺

 $8H_2 + 2SO_4^{2-} + 2H^+ \rightarrow 2HS^- + 8H_2O$

Results

Sulphate removal (mg/L)

Sulphate removal as function of COD

Percentage Sulphate removal efficiency

Average sulphate removal was 85%

© CSIR 2006

Results scanning electron microscope

© CSIR 2006

Metal removal

Metal	AMD	Pre-treated AMD	Effluent HFS
Aluminium	24	14	<0.09
Chromium	<0.05	<0.05	<0.05
Iron	851	102	0.21
Lead	0.15	<0.03	<0.03
Manganese	48	27	5.9
Nickel	11	4.3	0.04
Zinc	1.4	0.94	<0.06

All units in mg/L

© CSIR 2006

Sulphide oxidation after sulphate reduction

Biological sulphide oxidation using air

- By *Thiobaccilus* Species
 - Thiobacillus thioparus,
 - Thiobacillus denitrificans and
 - Thiobacillus ferroxidans (Chung et al., 1996).
- Producing sulphur or sulphate
 - $HS^- + \frac{1}{2}O_2 \rightarrow S + OH^-$
 - $HS^- + 2 O_2^- \rightarrow SO_4^{2-} + H^+$

Experimental conditions of a continuous laboratory study

Period (days)	Air supply to reactor (L/min)
29-43	0.2
44-59	0.4
62-81	0.6
83-97	0.8

© CSIR 2006

Results of biological sulphide oxidation after continuous laboratory studies

Air supply (L/min)	S ²⁻ removed (g/d)	Sulphur produced (g/d)	%SO ₄ increase in reactor
0.2	5.13	1.98	8
0.4	4.45	1.96	28
0.6	4.62	2.06	47
0.8	5.77	1.28	57

Conclusions continuous operation $SO_4/grass/rumen$ reactor and biological sulphide oxidation

- Efficient sulphate removal (Average 85%)
- Metal removal, especially iron
- Biological sulphide oxidation achieved, at low air concentration, otherwise SO_4 is end product rather than Sulphur
- Based on obtained results, pilot scale reactor will be constructed

For more information www.csir.co.za

Thank You

our future through science