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OVERVIEW OF HYPERSPECTRAL REMOTE

SENSING

Hyperspectral sensors

record the reflectance in many narrow contiguous

bands

various parts of the electromagnetic spectrum (visible -

near infrared - short wave infrared)

at each part of the electromagnetic spectrum results in

an image

Figure: Spectral Range
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OVERVIEW OF HYPERSPECTRAL REMOTE

SENSING (cont. . . )
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Figure: Hyperspectral cube
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OVERVIEW OF HYPERSPECTRAL REMOTE

SENSING (cont. . . )

Figure 3.  The concept of hyperspectral imagery.  Image measurements are made at

Figure: Pixels in hyperspectral image
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OVERVIEW OF HYPERSPECTRAL REMOTE

SENSING (cont. . . )
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Figure: Example of 3 different spectral signatures
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OBJECTIVE OF STUDY

Using a hyperspectral image, to guide field sampling

collection to those pixels with the highest likelihood for

occurrence of a particular mineral, for example alunite, while

representing the overall distribution of alunite.

Usefulness: To create a mineral alteration map



Using Remote
Sensing

Images to
Design

Optimal Field
Sampling
Schemes

Debba

Introduction to
hyperspectral
remote
sensing

Objective

Study Area

Data used

Methodology

Results

STUDY SITE

Figure: A generalized geological map of the Rodalquilar study

area showing the flight line and the hyperspectral data
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DATA USED

HyMap: 126 bands – 0.4–2.5 µm

Geology: 30 bands – 1.95–2.48 µm

Distinctive absorption features at wavelengths near

2.2 µm

We collected field spectra during the over-flight using

the Analytical Spectral Device (ASD) fieldspec-pro

spectrometer – 0.35–2.50 µm
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ENDMEMBER SPECTRA

Figure: Plot of 7 endmembers from USGS spectral library for the

30 selected bands, enhanced by continuum removal.
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CONTINUUM REMOVAL

Spectra are normalized to a common reference using a

continuum formed by defining high points of the spectrum

(local maxima) and fitting straight line segments between

these points. The continuum is removed by dividing it into

the original spectrum.

Transformed SpectrumHull
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Figure: Concept of the convex hull transform; (A) a hull fitted over

the original spectrum; (B) the transformed spectrum.
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CONTINUUM REMOVAL (cont. . . )
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METHODS: Spectral Angle Mapper (SAM)

Classifier

SAM – pixel based supervised classification technique

Measures the similarity of an image pixel reflectance

spectrum to a reference spectrum

Spectral angle (in radians) between the two spectra

θ(
−→
x ) = cos−1

(

f (λ) · e(λ)

||f (λ)|| · ||e(λ)||

)

, (1)

f (λ) – image reflectance spectrum and e(λ) –

reference spectrum.

Results in a gray-scale rule image – values are the

angles
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METHODS (cont. . . ): Spectral Angle Mapper

(SAM) Classifier

Figure: Spectral angle.
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METHODS (cont. . . ): SAM Rule Image for

Alunite

Figure: SAM classification rule image for alunite. Dark areas

indicate smaller angles, hence, greater similarity to alunite.
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METHODS (cont. . . ): Spectral Feature Fitting

(SFF)

SFF – pixel based classification technique.

Remove the continuum from both the reference and

unknown spectra.

SFF produces a scale image for each endmember

selected for analysis by first subtracting the

continuum-removed spectra from one (inverting it), and

making the continuum zero.

SFF determines a single multiplicative scaling factor

that makes the reference spectrum match the unknown

spectrum.
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METHODS (cont. . . ): Spectral Feature Fitting

(SFF)

SFF – pixel based classification technique.
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METHODS (cont. . . ): Spectral Feature Fitting

(SFF)

SFF then calculates a least-squares-fit, band-by-band,

between each reference endmember and the unknown

spectrum.

The total root-mean-square (RMS) error is used to form

an RMS error image for each endmember.

Scale/RMS provides a fit image that is a measure of

how well the unknown spectrum matches the reference

spectrum on a pixel-by-pixel basis.
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METHODS (cont. . . ): Spectral Feature Fitting

(SFF)
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METHODS (cont. . . ): SFF Rule Image for

Alunite

Figure: SFF fit image for alunite. Lighter areas indicate better fit

values between pixel reflectance spectra and the alunite

reference spectrum.
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METHODS (cont. . . ): Fitness Function

SAM values scaled to [0, 1]

w1(θ(
−→
x )) =







0 , if θ(
−→
x ) > θt

θt − θ(
−→
x )

θt − θmin
, if θ(

−→
x ) ≤ θt

(2)

SFF values scaled to [0, 1]

w2(τF (
−→
x )) =







0 , if τF (
−→
x ) < τ t

F

τF (
−→
x ) − τ t

F

τF ,max − τ t
F

, if τF (
−→
x ) ≥ τ t

F

(3)
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METHODS (cont. . . ): Fitness Function

Combination of SAM and SFF scaled to [0, 1] is defined as

w(θ(
−→
x ), τF (

−→
x )) =







κ1w1(θ(
−→
x )) + κ2w2(τF (

−→
x )) ,

if θ(
−→
x ) ≤ θt

and τF (
−→
x ) ≥ τ t

F

0 , if otherwise

(4)

φWMSD(Sn) =
1

N

∑

−→
x ∈I

w(
−→
x )

∣

∣

∣

∣

−→
x − WSn(

−→
x )

∣

∣

∣

∣ , (5)
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METHODS (cont. . . ): Fitness Function

Figure: Fitness function with different weights for N = 15.
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RESULTS OF THE OPTIMIZED SAMPLING

SCHEME

Figure: Optimized sampling scheme.
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RESULTS (cont. . . ): Distribution of 40

optimized sampling scheme

Figure: Distribution of 40 optimized sampling scheme
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RESULTS (cont. . . ): Distribution of 40 highest

values

Figure: Sampling scheme: 40 highest values
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RESULTS (cont. . . ): SUMMARY

COMPARISON

(a) SAM Classification (b) 40 Optimized points

(c) Distribution sampling pts (d) Distribution highest points

Figure: Summary comparison of the optimized sampling scheme.


