Rapid Die Manufacturing

High Pressure Casting of Low Volume Non Ferrous

Metals Components

Date: 2 November 2006

Introduction to RPT

- Rapid Prototyping Techniques (RPT) generally used for non functional prototypes
- RPT used for indirect manufacture of functional prototypes by some manufacturers
 - Masters used in sand and centrifugal casting of metallic components
- Explore RPT on direct manufacture of functional prototypes or produce short series of components

Goal?

To use RPT for the Direct manufacture of die components which can produce low volumes parts

Slide 3 © CSIR 2006

Strategy?

Evaluate the performance of two geometrically similar die components manufactured with

- Direct Metal growing method
- Conventional manufacturing

How?

- 1. Evaluate various RPT platforms and select one that is able to produce die components
- 2. Design die components
- 3. Manufacture die component using the selected RPT and conventional manufacturing method
- 4. Test the component under die casting conditions
- 5. Capture and analyze data
- 6. Compare findings

1. Evaluation and Selection of RPT platforms

Evaluation Selection criteria

- Fully dense metallic components
- Able to withstand casting process parameters, pressure, melt temperature, heat and cooling.
- Dimensionally accurate, short turn around time and competitively priced
- Single process (no green part)

Literature Survey

- The literature survey indicated that the following platforms could produce Die components able to withstand aluminium high pressure casting conditions.
 - Electron Beam Melting
 - Direct Metal Deposition
 - Direct Metal Laser Sintering

Slide 6 © CSIR 2006

www.csir.co.za

our future through science

1. Evaluation and Selection of RPT platforms

Selected: Direct Metal Laser Sintering (DMLS)

Deciding factors

- Conforms to selection criteria
- Technology locally available in South Africa at CUT (most deciding factor)
- Further Research to be conducted in collaboration with CUT on the process

Slide 7 © CSIR 2006

2. Design

Specifications

- Design core insert with sharp corners.
- Incorporate detail e.g. thin rib
- Use standard draft angle (1 degree)
- Design die to incorporate 4 similar core inserts using different manufacturing methods and surface treatment

Objectives

- Sharp corner will accelerate wear
- To pose some manufacturing difficulty
- Detect ease of ejection during surface defects
- To establish most feasible core condition e.g wear resistance, ease of ejection etc.

Models of core, inserts and component

Core

Core holding insert

Component

Cavity insert

Slide 9 © CSIR 2006

3. Die manufacture, assembly and data capturing

Manufacture 4 core inserts on the following methods:

- Core 0 manufactured on the conventional method from 1.2344 material and through hardened
- Core 1 using the DMLS process grown in Direct steel20 material with surface treatment or coating
- Core 2 using the DMLS process grown in Direct steel20 material
- Core 3 using the DMLS process grown in Direct steel20 material and through hardened

Slide 10 © CSIR 2006 www.csir.co.za

Models of assembled Die

Slide 11 © CSIR 2006

3. Die manufacture, assembly and data capturing

Core 1				Core 2			Core 3			Core 4		
Process	Cost	Hrs	Process	Cost	Hrs	Process	Cost	Hrs	Process	Cost	Hrs	
Milling		2.5	DMLS		13.5	DMLS		13.5	DMLS		13.5	
Grinding		2	Grinding			Grinding			Grinding			
Jig bore			Jig bore			Jig bore			Jig bore			
Heat tr		1	Heat tr			Heat tr			Heat tr			
F grind		4	F grind		3	F grind		3	F grind		3	
SER		7										
Polish		2	Polish		2	Polish		2	Polish		2	
Fitting		3	Fitting		3	Fitting		3	Fitting		3	
electrode		4										
total		25.5			21.5			21.5			21.5	

NB. Times based on a QTY of 3 cores and the DMLS growing time is the worst case scenario

CSIR
our future through science

Slide 12 © CSIR 2006 www.csir.co.za

3. DMLS growing options versus time

1 off = 1hrs 48 min

3 off = 2 hrs 8 min

3. DMLS growing options versus time

1 off = 3 hrs 32 min

3 off = 4 hrs 12 min

3. DMLS growing options versus time

1 off = 10hrs 48 min 3 off = 13hrs 49min

Coventional manufactured through hardened (Mat 1.2344)

Slide 16 © CSIR 2006 www.csir.co.za our future through science

Surface treatment

TD coating bottom right picture

Plasma nitriding

(NB.TD coating was not successful)

Direct steel 20 untreated

Direct steel 20 through hardened

First test series (100 shots)

- Melt aluminium alloy A356
- Melt temperature 650-680°C
- Plunger speed 1m/s
- Cycle time ~30 seconds
- Shot weight average 300gs

First test series (After 10 shots)

First test series (After 100 shots)

Slide 22

Results

Thermal properties:

 Direct steel cores dissipate heat faster 7-10° when compared with conventional one.

Wash out properties:

- Aluminium melt sticks more to the direct steel cores
- Direct steel core 1 (surface treatment plasma nitriding) shows crack initiation in corner where aluminium melt welded to the surface

Slide 23 © CSIR 2006

Results

Dimensional check

Slide 24

Results

Dimensional check after 100 shots

Core 0			Core 1			Core 2			Core 3		
Dim	Pre	Post									
Α	12.005	12.005	Α	12.01	12.01	Α	12.005	12.005	Α	12.008	12.008
В	12.00	12.00	В	12.005	12.005	В	12.00	12.00	В	12.00	12.005
С	10.075	10.075	С	9.90	9.895	С	9.9	9.81	С	9.95	9.825
D	10.07	10.075	D	9.90	9.875	D	9.90	9.80	D	9.96	9.80

Slide 25 © CSIR 2006 www.csir.co.za

Conclusion

Encouraging results Advantages

- Conformal cooling
- Good heat dissipation
- Shorter turn around time
- Minimal manufacturing operation hence less equipment required

Disadvantages

- Limited resources
- Restriction on size
- Raw material development

Good Possibilities for further development of rapid die design and manufacturing selection tool and methodology

Slide 26 © CSIR 2006 www.csir.co.za our future through science

Thank You

Any questions?

Slide 27 © CSIR 2006