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Abstract:  Coupled electro-mechanical  non-
axisymmetric vibrations are considered in a transversely
isotropic piezoelectric cylinder with axial polarization.
Solutions of the system of equations are found by exact
integration using a seven functional method. The
dispersion curves are plotted for propagating waves for
non-axisymmetric vibrations of the cylinder. It is shown
that the dispersion curves are sensitive to the form of
electric boundary conditions.
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A. Geometry of system

The coordinates I', & and Z are used to define the
displacement vector components U, V and W which are
depicted in the figure below.
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Fig. 1. Geometry and polarization direction of the piezoelectric
cylinder

B. Basic equations

In this section we present the field equations satisfied
in the material based on the following assumptions and
approximations: linear elasticity, linear electromechanical
coupling, quasi static approximation of the electric field,
no free charges in the material and neglecting thermal
effects and body forces. The relevant piezoelectric field
equations are:

(i) The momentum equation and Gauss’ law
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(ii) The coupled constitutive equations
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(iii) The strain-mechanical displacement relations
and electric field-electric potential relations
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C. Solutions of the equations w=p®e® ;=T (r,0)e" (5)
We seek harmonic wave solutions of the form where @, and Ware mechanical displacement
ob 10V ko). 100 V] iaon. potentials; 77 is an arbitrary constant to be determined in
ar -V~ T r 90 p V= r o0 or ; the analysis. Substituting (5) into (1) leads to the
following equations in terms of @, T and W

1;9{C11ACD+[,0(0 kzci+i77k(clE3+cf4)]q)+ik(e15+e3l)T}—§{c6EGA‘P (po® —Kici, )W }=0

{[ik(cf3 +cf4)+ncf4]ACD+(pa) —k’cy)n }+{e15AT —e KT} =0
{[ik (€3 +655) + 77815 | AD —KPey7 cp} ~{ESAT —£k°T} =0 (6)

2
where A =~ 9 +li 1 6 - Laplace operator in the polar coordinates.
o’ ror r2ao°

Let us assume that @ and T satisfy the Helmholtz equations AD +&E*D =0, AT +&E°T =0, where £%is an
unknown parameter which will be found later. We then observe that the following equations are satisfied:
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where, & satisfies the bi-cubic equation (52)3 i a(gz)z +b(£2)+c =0, where
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After solving the bi-cubic equation for &, we obtain the solution of the Helmholtz’s equations:

®,(r,0)=AJ, (£r)cos(mé) (i=123), ‘I‘(r,0)=A4Jm[ /@.r}in(me)
66 (9)

And finally the displacements and electric potential are:
_ (aq)l " 0@2 " acD3 +16_\Pjei(kzwt)’ V= |:1[6(D1 4 a(DZ " 5(D3j_8_‘11:| ei(kz,wt)l
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w= (771CD1 +17,®, +1,D,4 ) ei(kkm)v ¢ = (/11@1 + 1, @, + 11D, )ei(kkm) (10)
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D. Characteristic equation

The characteristic equation is obtained by imposing
the following physically allowed boundary conditions at
the surface of the cylinder :

0,=0,,=0,=0and D=0 or ¢=0 at

r=a (11)

This completes the analytical formulation of the
problem.

E. Numerical results and discussions

In this section sample results for a PZT-4 composite
are illustrated in the figures below for four cases; where
the vertical and horizontal axes stand for the angular
frequency @ and wave number-thickness product ka
respectively and both in SI units. The ranges of ka and
w are: 0to 6and 0to 277-3000 s respectively.

Figure 2 represents the classical results, for waves
with m=1 in a transversely isotropic rod without
electro-mechanical coupling, except for the straight line
which goes through the origin, which is an artefact. In
simulations we used a pure transversely isotropic material
with the same elastic stiffness constants as for PZT-4.
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Fig. 2. Transversely isotropic cylinder (M =1)

In Figures 3 and 4 the coupling constants have been
reduced by a factor of five, the wave modes approach the
classical results of Figure 2; however, there are three
extra lines which are also artefacts. These artefacts
depend on the method of solution and do not reveal the
nature of dispersion curves.

April 9-13, 2007, Paper ID 1162, Session R30: Ultrasound in
doi:10.3728/ICUltrasonics.2007.Vienna.1162_shatalov

300—

200—

100—

01—

0 100 200 30

Fig.3.(D,=0, m=1)
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Fig. 4. (p=0,m=1)

Finally in Figures 5 and 6, where the standard
coupling coefficients of PZT-4 are used, the wave modes
are sensitive to the electrical boundary conditions. This
sensitivity is especially pronounced for the higher modes
and reveals the intersection of some dispersion curves for
the case ([|I::)']' —o (Fig. 5). This intersection is absent for
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Fig. 6. (¢ =0,m=1)

F. Conclusions

The nature of electric boundary conditions plays an

important role, in the study of propagating wave modes
in a piezoelectric rod. This influence is revealed in the
higher non-axisymmetric modes.
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