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Abstract 
 
A non-destructive examination procedure based on a guided wave inspection approach is used 
for the acoustic examination of glass fibre reinforced composite rods. This paper contains an 
investigation into the characteristics of guided wave propagation in the rods. We attempt to 
model the excitation and transmission of waves along undamaged as well as damaged rods in 
order to predict the received signals, and we compare the model results with experimental 
data. Specially developed waveguide finite elements are used to determine the wave 
propagation characteristics of the rod. This yields an understanding of its wave dispersion 
characteristics and allows for the selection of appropriate excitation modes. Conventional 
transient finite element modelling is performed in order to determine what effects cracks have 
on the passage of the induced waves, and therefore also on the eventual output signals. 
Additionally, the determination of crack reflection coefficients is discussed. 
 
Key words:  Waveguide analysis, dispersion, finite element analysis. 
 
 
1. Introduction 
 
This paper outlines a study into the use of ultrasonic guided waves for the inspection of the 
glass fibre reinforced polymer rods used as high voltage insulator cores. GFRP rods are 
increasingly used as an alternative to ceramics in the construction of insulators for high 
voltage power lines, and also as an alternative to steel reinforcing rods in concrete. The 
composite rods that are used as electrical insulator cores support large tensile loads. Screening 
these rods for defects such as cracks or pores has become important both from a safety and 
cost perspective. Ultrasonic NDE techniques offer a means of detecting internal and/or 
surface damage in composites which is safe, quick and relatively cost effective. Various 
ultrasonic techniques have been applied in the past to detect defects in composite media, the 
most well known being perhaps the passive acoustic emission technique and the active 
ultrasonic A, B and C scans. Steiner et al. [1] for instance, compared acoustic emission, 
ultrasonic C-scans and polar backscattering scans on the basis of their relevance and accuracy 
for the determination of the progression of matrix cracks in composite laminates and in 
Prevorovsky et al. [2] a study is discussed in which acoustic emission and ultrasonic C-
scanning are used to determine the damage state of composite tubes. In the current study, an 
active approach was necessitated since a requirement is to detect defects already present in the 
material, so acoustic emission is inappropriate. The application of the active scanning 
techniques to the detection of damage in the GFRP cores is complicated by the fact that the 
cores are surrounded by an awkwardly shaped protective rubber sheath. Only the ends of the 
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cores are left free for the application and/or sensing of a signal. An alternative method of 
ultrasonic inspection that was found to be applicable to the current study is guided wave 
inspection. Conventional ultrasonic NDT makes use of bulk waves that travel in unbounded 
media while guided wave inspection requires the presence of a boundary or interface. Various 
types of waves exist in bounded structures and can be used for guided wave inspection, 
including Rayleigh waves (on a surface), Lamb waves (in plates) and Stoneley waves (at the 
interface between two materials). A review of research and development in this area is 
discussed in Rose [3], which lists numerous practical applications of guided wave inspection. 
An advantage of guided wave inspection is that it can be performed over long distances, either 
from a single probe (pulse-echo mode) or between two probes (transmission mode).  It is 
possible to test coated, insulated or buried structures by removing only a small portion of the 
coating to gain access to the structure. Parts of a structure which are inaccessible may then be 
interrogated with guided waves. The interaction of guided waves with damage in metal 
structures has been studied extensively, primarily by a research group based at Imperial 
College, London [4, 5] and inspection systems utilizing guided waves have been implemented 
successfully [6, 7]. A system for the detection of complete breaks in railway lines has been 
developed in South Africa [8]. Guided waves have also been applied to damage detection in 
composite plates [9]. Many researchers apply finite element analysis for the investigation of 
wave propagation in waveguides. Conventional finite element codes are applied to perform 
time-domain simulations. These transient analyses are computationally demanding as a fairly 
long section of waveguide has to be modelled to allow far-field behaviour to be realized and 
to avoid the effects of reflections from the ends of the model. Gavri� [10] applied a more 
elegant finite element procedure to compute the propagative waves in rails. In his method, a 
complex exponential function was used to represent the displacement variation along the 
waveguide and finite element discretisation was applied over the cross-section. This results in 
a two-dimensional mesh, which is capable of modelling the wave propagation along the 
waveguide.  This approach is very efficient from a computational point-of-view. Another 
formulation of the element is suggested in Hayashi et al. [11]. The remainder of this paper is 
structured as follows: In Section 2 the nature of guided wave propagation in undamaged rods 
is addresses, the experimental setup is described and a comparison is drawn between 
measured data and numerical results. In Section 3 the calculation of reflection coefficients is 
discussed and results of the analyses of rods containing damage are presented. Concluding 
remarks appear in Section 4.        
 
 
2. Modelling and measurement of wave propagation in composite rods 
 
 

2.1. Modelling 
 
The waveguide finite elements developed by Gavri� [10] have been implemented at the CSIR 
and were used to determine the types of waves that would exist in a GFRP rod. Understanding 
what waves exist and how they can change as a function of frequency is the first requirement 
in developing a guided wave inspection system. Figure 1 shows the wavenumber vs. 
frequency and group velocity vs. frequency curves which characterize the wave propagation 
behaviour within the insulator core rods. Each curve represents a travelling wave mode. 
Below 70 kHz only four modes exist in the rod. Two are bending modes (one for each non-
axial dimension) whose curves coincide, the third is a torsional mode and the fourth, which 
has the highest wave speed in this region, is an axial mode. Points on the curves can also be 
calculated as eigenvalue solutions to conventional axisymmetric or three dimensional finite 
element models with appropriate boundary conditions. Figure 2, for instance, shows a 
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bending mode at 1 kHz. From the length of the model, the wavenumber can be calculated and 
used for comparison with the waveguide results. Table 1 shows such a comparison. As can be 
seen, the waveguide solutions agree more closely with the theoretically expected results than 
the conventional FEM results. The waveguide finite element solution also yields the mode 
shapes associated with a mode. By mode shapes we mean the maximum displacement and 
phase of points on the wave-guide cross-section and these shapes too, change as a function of 
frequency. Figure 3 shows the in plane and axial displacements associated with two points on 
the curves in Figure 1. The first belongs to an axisymmetric mode, whereas the second 
exhibits a more complicated, non-axisymmetric displacement field.   
 
2.2. Measurement 
 
Since it is impossible to excite a wave packet containing only one discrete frequency, any 
physically excited signal in the rod will inevitably be composed of a band of frequencies. If 
there is a significant variation in the velocities associated with the frequency components in 
the band, the wave will tend to elongate as it travels down the waveguide. This elongation is 
known as dispersion. In Figure 1, one notices that the group velocities of the waves are not 
constant with frequency for any of the modes, save the torsional mode. However, there are 
regions wherein certain of the modes have a nearly constant group velocity. For practical 
testing, it is desirable to work in these regions if one wants to avoid the complications caused 
by dispersion. A further practical complication is that at any particular frequency the rod will 
support more than one travelling mode. Hence it is desirable to excite only the selected non-
dispersive mode while suppressing the others. This may in general place constraints on the 
design of the excitation transducer. For the present study it was decided to work in the region 
below 80 kHz, where the first axial mode is relatively non-dispersive. A simple piezoelectric 
disc was used as a transducer, which was attached to the end of the rod and excites 
axisymmetrically, the motion being primarily axial. Since the other two modes in this region 
are not axisymmetric, they could not be present in the excited pulse, and the axial mode could 
be successfully isolated. 

Figure 1.  Dispersion curves, (a) wavenumber vs. frequency, (b) group velocity vs. frequency. 
 

Mode Waveguide FE (Hz) 3-D FE (Hz) Axisymmetric FE (Hz) 1-D Theory  (Hz) 

Bending 114 114 - 114 

Torsion 2054 2009 - 2054 

Axial 4547 4857 4551 4547 

 
Table 1.  Comparison of modal frequencies at specific wavenumbers. 

 

(a) (b) 
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Figure 2. (a) Bending mode (1 kHz), (b) axisymmetric mode (39 kHz),  
(c) axisymmetric mode (61kHz). 

Figure 3.  Mode shapes deduced using waveguide finite elements. 
 

Figure 4.  Experimental setup. 
 

Figure 5. Measured responses to different excitation waveforms, (a) response to sinusoidal excitation, 
(b) response to windowed excitation signal (Hanning window). 
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Experimental setup 
 
The experimental set up used in the experiments uses a National Instruments data acquisition 
card together with LabView software both to generate arbitrary input signals and to capture 
and interpret the received signals. Figure 4 is a schematic of the experimental set up. Signals 
between 30 kHz and 80 kHz were transmitted through the rod. Two types of signals were 
used. The first was a normal sinusoidal signal that started and stopped abruptly and the other 
was a tone-burst signal produced by windowing the sine-wave with a Hanning function. The 
windowed signal produced clearer measured responses (see Figure 5) because the 
discontinuous voltage at the start and end of the sine input tends to produce high frequency 
responses in the rod that complicate the output signals in much the same way that noise does. 
This leads to the conclusion that using windowed driving function is a better option for 
detection purposes. Initially, the core of a long (1.36m) insulator was tested so that the wave 
propagation characteristics of the rod could be recorded and modelled. In the current study, 
modelling and analysing the attenuation of signals due to the rubber covering has been 
avoided, so the rubber insulation was removed.  The end fittings attached to the insulator core 
were also removed and piezoelectric actuator discs were bonded to the ends of the rod. 
Experiments were carried out at a number of frequencies on an undamaged rod to assess the 
effects of dispersion experimentally. Damage was then introduced into the rod in the form of 
an axisymmetric notch, and the tests were repeated. 
 
2.3. Comparison of results from an undamaged rod 
 
The wave propagation behaviour depicted in the curves in Figure 1 is very sensitive to the 
material properties. Without a precise knowledge of both the piezoelectric properties of the 
disc and the five constitutive properties of the transversely isotropic rod, it is difficult to 
accurately model the test data quantitatively. However, by iterating on the rod’s material 
properties and comparing the model results with the test results on the basis of wave arrival 
time and dispersion, it is possible to model the wave propagation characteristics qualitatively, 
at least for the axial mode considered. Figure 6 shows measurement data for the rod excited 
by windowed pulses of various frequencies. The figures depict signals detected at one end of 
the rod; the input signal being applied to the other. Successive wave packets are detected 
corresponding to successive arrivals (reflections) of the excitation wave packet. All the 
signals suffer a decrease in amplitude related in part to the rod’s internal damping and in part 
to the dispersion of the wave. The signals at higher frequencies, though, clearly show 
elongation as a result of dispersion. Additionally there is a significant fall in the amplitude of 
the received signal in Figure 6c (at 102 kHz), which corresponds to the point where the axial 
wave’s velocity reaches its minimum (refer to Figure 1). This region is also clearly visible on 
the measured impedance curve of the rod-transducer combination (Figure 6d). Figure 7 
contains finite element results at 36 kHz and at 78 kHz, produced using a transient finite 
element model of the experiment. ABAQUS, a commercial finite element package was used 
to run the analyses. The graphs have been normalized and the shapes of the graphs can be 
qualitatively compared to the shapes of the corresponding graphs that appear in Figure 6. The 
results suggest that FEM can be used to predict the arrival times and relative amplitudes of 
wave packets in the rod, which is important in characterizing damage in the rod. A 
comparison of the results obtained from damaged rods will be presented in the following 
section.  
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Figure 6.  Measured responses at different frequencies for windowed excitation signals. 
 

Figure 7.  Transient finite element simulation of responses.  
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3. Modelling and measurement of damage in GFRP rods 
 
 
3.1. Estimation of reflection coefficients 
 
Reflections from damage within a waveguide are often quantified by defining reflection 
and/or transmission coefficients. These coefficients relate the amplitude of the wave reflected 
from the damage and the wave transmitted past the damage to the amplitude of a datum wave-
pulse [5, 12]. In so doing, the severity of the damage can be estimated. Although there are 
analytical methods for the prediction of such coefficients (see for example [12]) which depend 
on the mode shape of the wave, these coefficients can practically be quantified by using the 
time-displacement signals at points along the wave guide, or time-voltage signals at the 
transducers, provided that a datum signal can be defined and recorded. Figure 8 diagrams the 
situation. Given that the finite element results qualitatively capture the wave propagation 
behaviour in the insulator core, the FEM can also be used to provide an indication of the type 
of signals to be expected when testing rods with various forms of damage. As a prelude to 
modelling damage, however, the variation in reflection and transmission coefficients with 
crack size was investigated numerically. An axisymmetric mesh was constructed from which 
elements were removed to simulate a crack mid-way down the axial length of the model 
(similar to Figure 8).  Piezoelectric actuator discs were also modelled attached to both ends of 
the rod, and the excitation of a wave packet was simulated by prescribing a varying electrical 
potential on the excite electrode. Since the model contained no damping, the datum pulse was 
taken to be the potential signal at the receive electrode in an undamaged model. Five cycles of 
a 35 kHz signal were used initially, due to the low dispersion at that frequency. The first 
arrival of a signal at the excite electrode defined the reflected pulse and the first arrival of a 
signal at the receive electrode defined the transmitted pulse. Windowed Fourier transforms of 
these signals as well as of the datum signal were taken, and the reflection/transmission 
coefficients were calculated by dividing the maximum amplitude of the corresponding power 
spectrum with the maximum value for the datum wave. This was done for various notch sizes. 
Figure 9a is a plot of the variation in the reflection and transmission coefficients as a function 
of the notch’s axial length at a constant depth. In the graph, the notch’s length is expressed as 
a fraction of the wave length. The upper curve is the reflection coefficient, while the lower 
denotes the transmission coefficient. The shape of the graph is cyclical because the reflected 
wave pulse is a superposition of the waves reflected from the front and back surfaces of the 
crack. As the crack lengthens, the phase between these two waves changes cyclically. For 
Figure 9a, an effort was made to include the entire wave pulse in the windowed Fourier 
transform used to calculate the coefficients. The strange unsmooth character of the graph 

Figure 9. Reflection and transmission coefficients using a wide time window,  
(a) axial notch of varying length, (b) radial notch of varying depth. 
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comes about because the model was insufficiently long to completely separate all the signals 
in time. As the crack lengthens, the dispersion characteristics of the rod change and the 
reflected signal is interfered with by the dispersed reflections off the ends of the rod. Figure 
9b shows the variations in the reflection and transmission coefficients as the depth of an 
infinitely thin radial crack is changed, using the same time window. The concept “infinitely 
thin” was modelled by disconnecting adjacent elements in the finite element mesh. In the case 
of an axial notch, when the Fourier window is shortened to include only the first few cycles of 
the arriving signals, a much smoother curve results (Figure 10). However, the magnitudes of 
the coefficients change – which serves to illustrate the dependence of the coefficients on the 
chosen window used to calculate them. Note also that the transmission and reflection 
coefficients sum to greater than 1 initially. This seems counter to conservation of energy. Bear 
in mind however that these coefficients are not defined here in terms of energy. That would 
involve integrating the stress and displacement fields over the area of the rod for the 
respective pulses as well as taking into account the spread of energy temporally and spatially 
due to dispersion and defining the appropriate windows. Here we only wish to define 
coefficients that can be used to quantifiably compare different cracks. Lastly, both graphs 
exhibit a decaying oscillation. The effect occurs due to the reflection off the two crack 
surfaces arriving further apart in time at the transducer as the crack lengthens. If a constant 
temporal window is used, which for the data in Figure 10 is equivalent to the first three cycles 
of the reflection resulting from the nearest crack surface, progressively less of the energy 
coming from the farther crack surface is included in the window. Hence the coefficients tend 
towards those that would occur due to a step down change in geometry. Once again this effect 
depends intimately on the definition of the window size, but for realistically thin cracks the 
effect would not be marked.  
 
3.2. Rod containing damage 
 
Damage was introduced into the test sample rod in the form of a groove. The groove was 
machined into the rod at 0.56m down its 1.36m length. It was machined fully 
circumferentially and its dimensions were 3mm in axial length and 1mm in radial depth. The 
crack face therefore constitutes 23% of the rod’s cross-sectional area. The rod was then tested 
using the same excitation signals as in the undamaged case. The transducer used in this case 
consisted of two piezoelectric discs, separated by a short length of GFRP rod. The transducer 
assembly was bonded to one end of the test sample. One disc in the transducer assembly was 
used for transmission of the signals, while the other allowed for the simultaneous reception of 
the excitation and reflection signals. At higher frequencies, the signal was distorted by 
reflections within the transducer assembly itself, the effect of which can be seen in Figure 

Figure 10. Reflection and transmission coefficients of an axial notch 
using a narrow time window. 
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11c. Figure 11 shows the measured reflected signal at 40 kHz and 70 kHz and these are 
compared to the finite element predictions of the received signals. The time signals have been 
cropped to remove the initial excitation signal.  In the FEM models, only a single transducer 
disc was included. Although the FEM models predict the arrival times of the reflected signals 
adequately, their magnitudes are somewhat over predicted.  For the experiments depicted in 
Figure 11, the groove was machined into the rod in a position where reflections from the 
groove would be separated in time from the excitation signal and from the natural reflections 
of the main wave from the end of the rod. Naturally, reflections resulting from arbitrary 
damage could just as easily arrive overlapped by signals that do not indicate damage. In order 
to separate the two, the signals have to be processed in a way that the temporal information in 
the signal is retained. Wavelet transforms are often used for this purpose, and have been 
applied to guided wave applications [13]. There remains also a question as to how extensive 
the damage has to be before it can be detected through “low frequency” ultrasonic means. The 
answer to this depends not only on the geometry of the crack, but also on the stress 
distribution within the mode, as the two interact to produce reflections.  Figure 12 illustrates 
the problem. It contains a comparison of the reflected signals received from a damaged and an 
undamaged rod. Both rods are 240 mm long and are excited using the same transducer at 80 
kHz, which excites only the axial mode. The damaged rod contains a thin axial crack 
purposefully introduced during manufacture. Since the crack runs along the entire length of 
the rod, any reflected waves would overlap with both the excitation signal and the reflection 
from the end of the rod. Each plot is averaged from 12 successive measurements. Although 
small differences are visible between the two curves in Figure 12, nothing as yet can be 
concluded about the detectability of the crack or the accuracy of the experiment. A suitable 
signal processing algorithm and more accurate transient modelling are required to advance the 

Figure 11. Measured and finite element signals for a rod containing damage. 
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study further.  
 

 
 
4. Conclusion 
 
 

Guided wave propagation through transversely isotropic glass fibre reinforced polymer rods 
has been analysed by the application of the finite element method utilizing waveguide finite 
elements. This has furnished the frequency dependence of the wave propagation in the rods, 
which has enabled the selection of an appropriate mode of excitation for practical testing. 
Additionally, the guided wave analysis allows for a better interpretation of measured signals, 
since modal velocities and dispersion characteristics are predicted. Numerical and practical 
experiments have been carried out to verify inspection of a damaged rod. Such experiments 
show that damage in the rod can be detected from its interaction with guided wave modes. 
Additionally, said interaction can be modelled qualitatively, even if the material properties of 
the rod are not initially known, since they can be approximated by iteratively comparing 
measured wave arrival times and dispersion characteristics with waveguide finite element 
predictions. However, it is difficult to produce quantitatively correct transient finite element 
results even with these approximated material parameters, since material damping 
characteristics and the way in which the transducer is modelled can also introduce errors. The 
presence of damage results in reflected signals and changes in the transmitted signals, both of 
which are quantifiable in terms of reflection and transmission coefficients. It has been shown 
that these coefficients can be defined and recorded in different ways, but they can be used to 
quantify the extent of damage present in a sample, relative to undamaged samples. The exact 
values of the coefficients depend on the type of propagating mode, the geometry of the crack 
and the way in which the signals are processed. Hence, they are relative measures. Practically, 
sensing damage and estimating its extent would require a signal processing algorithm that 
preserves time domain information and is able to meaningfully resolve small variations in 
received signals. 
 
 

Figure 12. Comparison of measured signals from damaged and undamaged short rods. 
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