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Abstract - AUVs are ideal platforms for search and rescue 

operations. They can also be used for inspection of underwater 
terrains. These vehicles need to be autonomous and robust to 
cope with unpredictable current and high pressures. In this 
paper it will be shown how a Kalman Filter is used to estimate 
the position of an autonomous vehicle in a three dimensional 
space. The Kalman filter is used to estimate movement and 
position using measurements from multiple sensors.  

 
I. INTRODUCTION 

 
In the world of underwater vehicles one of the main 

obstacles to overcome is accurate vehicle motion tracking. 
This is needed so that the position of the vehicle can be 
known. In the case of an autonomous vehicle this information 
becomes vital as the vehicle must know its own position 
before it can know how to get to a new position. The accuracy 
of the vehicle position is directly connected to the vehicle 
performance in terms of autonomous operations. Normally, 
accurate vehicle position is determined by use of expensive 
sensors. The low cost sensors are not accurate enough to be 
used on their own in such a system. 

For aerial and land autonomous mobile systems, a global 
positioning system (GPS) is normally used to determine the 
vehicle position and positioning measurement can be very 
accurate. In the case of an under water vehicle this system 
becomes unavailable due to the high level of attenuation of 
radio signals in water. This means that the vehicle position 
needs to be determined by other means.  

Many systems are available that can track the motion of 
such a vehicle and if the starting position is known, the 
vehicle’s current position can be determined. Some of these 
systems include inertial measurement units (IMU) or Doppler 
velocity log (DVL) systems. The problem with these systems 
is that small measurement errors can add up and in the end the 
resultant error can become huge, especially if the area to be 
covered is large. However these sensor systems may be 
combined to create a system where the measurement errors 
may be reduced. This is done by combining the data from two 

sensors that measure more or less the same thing and 
estimating the result.  

A problem with using these sensors is that sensors that give 
accurate data are very expensive and low-cost sensors are not 
accurate enough to be used on their own in such a system. 

In motion tracking of an underwater vehicle one has to track 
movement in six degrees of freedom (DOF). This includes 
linear movement along the three axes as well as rotation 
around the three axes, roll around the X axis, pitch around the 
Y axis and yaw around the Z axis. The six degrees of freedom 
is illustrated in Fig. 1. 

 

 
Figure 1 – Illustration of the 6 DOF of an AUV [3] 
 
The vehicle used for the experiments performed in this 

paper is a simple rectangular vehicle with thrusters facing 
different directions for improved manoeuvrability. The vehicle 
is shown in figure 2. 

 
II. SENSOR SYSTEM 

 
Some of the most commonly used sensor systems to track 

vehicle motion will be discussed in this section. The first 
sensor system to be discussed is the IMU. This sensor system 
consists of three accelerometers and three gyros. The 
accelerometers are positioned on the X, Y and Z axes and 
measure acceleration in their respective directions. 



 

 
 
Figure 2 – Underwater vehicle design 
 
The three gyros are then positioned to each measure 

rotational speed around each of the above mentioned axes.To 
determine vehicle motion from these sensors one can use the 
gyro data and determine the integral over time. This will 
reveal the total degrees rotated around the axis in question. 
This data can then be used to determine the orientation of the 
vehicle. The accelerometer data can be used to determine 
linear motion by calculating the double integral of the 
accelerometer data over time. This will give the calculated 
movement of the vehicle in the given direction. The 
accelerometer data can also be used to calculate pitch and roll 
of the vehicle since the 3 accelerometers will always measure 
a downwards vector force thanks to gravity. This vector can 
be used to determine the angles between the two horizontal 
axes which will then be the pitch and roll angles of the 
vehicle. 

Another commonly used sensor to measure the movement 
of an underwater vehicle is a DVL. This type of sensor 
bounces acoustic pulses off the bottom and uses it to calculate 
the velocity and direction of the vehicle’s movement. If the 
starting position of the vehicle is known one can easily use 
this information to calculate the current position of the 
vehicle. These sensors are described in more detail in [4].  

Some systems have also been implemented where beacons 
with fixed positions have bean deployed. These beacons 
transmit their position and the vehicle calculates the distance 
to all beacons from which it received the position signals and 
thus determines its own position at the point where all these 
circles intersect i.e. triangulation. 

Additional sensors that can be used are digital compasses, 
which can measure the yaw of a vehicle directly. One can 
include a pressure sensor to measure the water pressure 
outside the vehicle and use this information to calculate the 
depth of the vehicle. One can also include inclinometers or tilt 
sensors to measure the roll and pitch of the vehicle. 

 
III.  SENSOR FUSION USING A KALMAN FILTER 

 
Once the data from all sensors have been collected they 

must be combined to determine the position of the vehicle in 

all six DOF. Since many sensors measure more or less the 
same thing or the same DOF, we use some form of sensor 
fusion to combine the data obtained from these sensors to 
calculate an estimate of the vehicles position or orientation. 
This paper proposes the use of a Kalman-Bucy filter to 
combine sensor data and estimate the vehicles current 
position. The prospect of sensor fusion also improves on the 
measurement of vehicle position by using data from more than 
one sensor to calculate a more exact estimate of the vehicle 
position than just with a single sensor. The Kalman filter can 
deliver the required estimates in an optimal way. The Kalman 
filter was develloped by Rudolph E. Kalman in 1960 [6] and 
the Kalman-Bucy filter which is implemented for a continuous 
time process in 1961 [7]. The filter was derived based on a 
stochastic noise model [8]. The filter uses differential 
equations to define the state estimates and filter gains. The 
Kalman-Bucy filter will be used for the purposes discussed in 
this paper. 

To be able to use this filter one needs to have a system 
model in the form of differential equations as shown in 
equations (1) and (2) taken from [1]. 

 
ẋ  = A(t) x + B(t) u + v            (1) 
 
y = C(t) x + D(t) u + w             (2) 
 
In these equations x represents the state vector to be 

estimated, y is the measured output for u the measured input. 
ẋ  denotes to the derivative of x. v and w denotes the state and 
measurement noises respectively and are both zero mean and 
white. To get the system model values for A, B, C, and D must 
to be chosen so that the model is complete. This will be shown 
in the following section. 

The estimate will be calculated using the Kalman-Bucy 
filter as shown by Eitelberg [1], given in equations (3), (4) and 
(5). 

. 
P(t) = A(t)P(t)+P(t)AT(t)–P(t)CT(t)R-1(t)C(t)P(t)+Q(t)    (3) 
 
K (t) = P(t)CT(t)R-1(t)                      (4) 
 
ẋ (t) = A(t)x(t)+B(t)u(t)+K (t)[y(t)–D(t)u(t)–C(t)x(t)]       (5) 
 
Equation (3) first calculates the error covariance P(t) where 

Q(t) is the covariance of v given in equation (1) and R(t) is the 
covariance of the measurement noise given in equation (2). 
Equation (4) then calculates the filter gain given the new value 
for P(t). The next step is to calculate the estimate in equation 
(5), where y(t) is the measured output and u(t) is the measured 
input. One also needs to choose reasonable starting values for 
the state variable x(t) and for the error covariance P(t). All 
three these calculations need to be done for all iterations of the 
process. x(t) can be found from ẋ (t) by calculating the integral 
and the same goes for P(t). The values of R(t) and Q(t) can 
now be adjusted until suitable results are obtained. 

 
IV.  VEHICLE YAW ESTIMATION 

 
In the case of yaw estimation an experiment was carried out 

to see how the use of a Kalman-Bucy filter and the use of two 



sensors measuring the same thing can improve on results 
taken using a single sensor.  

 
A. Experimental setup 

The sensors used in this experiment all needed to measure 
rotation around the Z axis or yaw. The sensors chosen were 
the Z gyro of a low-cost IMU and a digital compass. The IMU 
used in this case was the ADIS16350 from Analog Devices. 
The gyro gives a measurement of rotational velocity in 
degrees per second. The digital compass used was an 
HMC6352 from Honeywell and the data is in the format of 
degrees from magnetic north. Both these sensors have their 
drawbacks but by combining their data one can get the best 
from both. To see how accurate the estimation was another 
sensor was needed as reference. For this purpose the two 
sensors were mounted together onto a potentiometer so that 
the actual rotation could be measured here as well. Data from 
the three sensors was captured together with a timestamp for 
each measurement. The data was processed afterwards to 
determine the optimal estimation. The sensor pack was then 
rotated on top of the potentiometer while data was being 
collected.  The data collected are thus from real sensors and 
not only simulated data 

 
B. System model 

As seen in equation (1) and (2) a system model in the form 
of differential equations is needed. The model is chosen to 
estimate the rotational position, so ẋ is chosen as shown 
below.  
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The values chosen for A, B, C and D is shown in equations 

(7) to (10). 
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 [ ]01=C                          (9) 
 

 0=D                         (10) 
 
The starting value for ẋ was taken as 0 for velocity and the 

first compass reading for position. The starting value for P is 
shown in equation (11). 
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After running the estimation steps a substantial amount of 
times it was determined that the following values for R and Q 
delivered good results. 

 
 

[ ]100=R                           (12) 
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All these values were then used in equations (3), (4) and (5) 

to calculate the estimate for the yaw of the vehicle iteratively 
as new data was collected from the sensors. 
 
C. Results 

The experimentation results can be seen in Fig. 2. In this 
figure the Y axis shows the rotational position or yaw in 
degrees and the X axis shows the time in seconds. The green 
line shows the measurements taken from the potentiometer. In 
other words this is then the actual rotational position of the 
unit. The black line shows the compass data with its low 
update rate. The blue line shows the gyro data which was 
integrated over time, with the first compass measurement 
taken as the starting value.  

One can see the sensor drift after about 30 seconds. The red 
line is the estimation using the Kalman-Bucy filter described 
above. One can now see the improvement from using only 
gyro data to calculate yaw. In this case the gyro data at a 
higher frequency is used to give the finer detail where the 
lower frequency data of the compass is used to align the result. 
This is seen in the last few seconds of the graph where the 
estimate tends back towards the actual position where 
significant movement in gyro data has stopped. 
 

V. VEHICLE PITCH AND ROLL ESTIMATION 
 

In the case of estimating roll and pitch of the vehicle the 
following experiment was performed to show how a Kalman-
Bucy filter can be used to estimate this. 

 
A. Experimental setup 

In the case of measuring pitch and roll, tilt sensors or 
inclinometers are used. Most of these sensors measure tilt by 
utilising some form of accelerometers and measuring the 
downward vector from gravity. Since the IMU already 
contains three accelerometers it was decided to use these 
instead of acquiring a new sensor. The measurements of the 
three accelerometers will always yield a downward vector due 
to gravity. The pitch and roll angles can then be calculated by 
calculating the angles between the Z axis and the gravity 
vector in the X and Y directions respectively. These are 
calculated using standard trigonometric functions.  

A problem with using only these sensors for pitch and roll 
calculation is that the measurements will be affected by linear 
movement of the vehicle. As it accelerates in a given direction 
another acceleration vector will be added to the gravity vector. 

Another sensor that may be used to calculate pitch and roll 
is the gyros also found in the IMU. To find pitch and roll 
movement from the gyro measurement one needs to find the 
integral over time of the gyro data as the measurements gives 
rotational velocity.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 - Yaw estimation results using a Kalman-Bucy filter 
 
The same IMU was used as in the previous experiment. The 
sensor pack was tilted in both pitch and roll directions and real 
sensor data was recorded in the experiment. 

 
B. System model 

For the system model in the case of both pitch and roll, the 
same values for A, B, C and D are being used as in the case of 
estimating vehicle yaw. The starting value for P is also 
similar. However for ẋ  we can take starting values of 0 as it is 
likely that the vehicle may start at the position for pitch and 
roll very close to 0. The values for R and Q which yields the 
best result are shown below.     
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C. Results 

The results of this experiment are shown in Fig. 3 and Fig. 4 
for pitch and roll respectively. In both figures the black line is 
the calculation of tilt using the accelerometer data as explained 
above. The blue line shows the gyro data which is again 
integrated over time. Once again the drift in the gyro data in 
both figures can be seen. The red line shows the estimation 
using a Kalman-Bucy filter. By playing around with the values 
of Q and R, one can move the estimate closer to either the 
gyro data or the accelerometer calculation. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
VI.  PROPOSED VEHICLE MOTION ESTIMATION 
 

For estimation of the linear movement of the vehicle, the 
main sensors to be used will be the accelerometers contained 
in the IMU. To determine the actual movement of the vehicle, 
a double integral of the data obtained needs to be calculated 
over time. This will then yield the movement along the given 
axis.  

An important aspect that needs to be taken into account is 
the fact that as the orientation of the vehicle changes the axis 
of the IMU changes in respect to the global axes of movement. 
This introduces the use of two reference frames. One is in 
respect to the world around the vehicle, for example the X axis 
may be from North to South, Y axis from East to West and the 
Z axis would be vertical. The second reference frame would 
always turn with the vehicle so the X axis would always go 
from the front of the vehicle to the rear, the Y axis always 
from the left of the vehicle to the right and the Z axis from the 
bottom of the vehicle to the top. These reference frames can 
be referred to as the global and the local reference frames 
according to [2]. 

To be able to track the vehicles movement one needs to 
keep track of the differences between these reference frames.  

In the case of estimating the vehicles linear movement one 
will again need multiple sensors for measurement, so that the 
resultant estimate can be an improvement on using just a 
single sensor. As stated previously, the main sensor to be used 
in this case will be the accelerometers included in the IMU. 
Other sensors that may be used to track linear movement may 
be DVL for forward or sideways movement, or pressure 
sensors for vertical movement.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 – Pitch estimation results using a Kalman-Bucy filter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Roll estimation results using a Kalman-Bucy filter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



The system model for using a Kalman-Bucy filter can now 
be derived. The model is chosen so that ẋ is give as in 
equation (16).  
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This means that the position will be contained in x as ẋ is 

simply the derivative of x. The values for A, B, C and D are 
shown below. 
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These values may be used in equations (3), (4) and (5) 

iteratively as new sensor data are obtained. In equations (3), 
(4) and (5), u(t) will be taken as the accelerometer reading and 
y(t) as the positional reading from whatever extra sensor is 
implemented. The system should now be simulated using 
different values for P, Q and R to find the values that will 
yield optimal results for the estimation. 

 
VII.  CONCLUSION 

 
In this paper it has been shown how the Kalman-Bucy filter 

can be used to find an estimate of an AUV’s position. This can 
in fact be used for position estimation of any type of vehicle 
where one wants to use multiple sensors that measure the 
same thing, to improve on measurements from a single sensor. 
In many cases, acquiring sensors with a high enough level of 
accuracy can be very costly. Instead the designer can rather 
obtain multiple low cost sensors and improve on the 
measurements by implementing the algorithm for this filter. In 
other words the filter is being used for sensor fusion. The 
Kalman-Bucy filter can be optimised so that the estimate tends 
more towards the measurements of one sensor than the other. 
This may be useful in cases where the designer knows the 
characteristics of the sensors being used. 

 
VIII.  FUTURE WORK 

 
The next step would be to acquire sensors to measure linear 

movement. The filters must then be implemented and similar 
experiments as shown in sections IV and V must be carried 
out. After this has been done the estimation of all six DOF has 
been achieved. The filter then needs to be implemented on an 
AUV and all six DOF put together.   

The estimation results can also be improved once the 
mechanical dynamics of the system is known and has been 
modelled. The motion of an underwater vehicle, for example, 
is different to that of a wheeled land vehicle. The knowledge 

of this motion can be used to improve on the estimation 
process.   

The six calculations can then also be combined into a single 
model where the estimation result will be a 12x1 vector and 
all other matrices needs to be adjusted accordingly. This will 
result in all six DOF estimated in a single calculation. 
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