Do We Practise What We Preach in Formulating Our
Design and Development Methods?

. 2
Paula Kotzé' and Karen Renaud

" Meraka Institute (CSIR) and School of Computing (UNISA),
P O Box 395, Pretoria, 0001, South Africa
* Department of Computing Science, University of Glasgow,
Lilybank Gardens 17, Glasgow, G12 8RZ, United Kingdom
paula.kotze@meraka.org.za, karen@dcs.gla.ac.uk

Abstract. It is important, for our credibility as user interface designers and
educators, that we practice what we preach. Many system designers and
programmers remain sceptical about the need for user-centred design. To win
them over, we need to be absolutely clear about what they need to do. We, as a
community, propose many ditferent methods to support naive designers so that
they will design and implement user-centred systems. One of the most popular
methods is HCI design patterns — captured and formulated by experts for the
sole purpose of transferring knowledge to novices. In this paper we investigate
the usability of these patterns. using both theoretical and experimental analysis,
and conclude that they arc not usable. Hence, unfortunately, we have to
conclude that we don't practice what we preach. We conclude the paper by
making some suggestions about how we can address this situation.

Keywords: Design patterns, usability, learnability, memorability, efficicncy,
crrors, satisfaction.

I Introduction

in human-computer interaction we advocate that human factors must be considered
during the planning, design, development, implementation and evaluation stages of
mteractive systems. In software engineering there is a growing awareness of human
factor issues, although few of the effects of this awareness are evident in actual
systems development processes and delivered system interfaces. A myriad of tools,
techniques, methods, etc. are being advocated for use by designers and developers to
support them in developing systems that cater for the human factor issues in
interactive systems. A cursory scan of any of the prominent textbooks used in the
teaching of HCI will reveal many of these techniques. Examples of these are lifecycle
models, such as the Star lifecycle model by Hartson and Hix [24], the Usability
Engineering Lifecycle by Mayhew |39], and the Simple Lifecycle Model of Preece et
1l [46]. There are also design rules, such as principles to support usability [15, 44],
standards |26, 27], guidelines {38. 52], golden rules [51] and heuristics [43], and HCI
lesign patterns [18, 55, 571.

I Gulliksen et al. (Eds.): EIS 2007, LNCS 4940, pp. 567-585, 2008.
 IFIP International Federation for Information Processing 2008

568 P. Kotz¢ and K. Renaud

Most of these techniques and tools attempt to address the needs of the user of the
interactive system. There is also another angle to be considered: that of the designer
and/or developer of the interactive system. The above-mentioned methods claim to
facilitate the design of usable systems, but the question we are asking is whether these
methods themselves are usable? This paper focuses on this key question: do the
guidelines and principles we promote for facilitating the design of usable products
apply to the very methods we advocate for the development of such usable products?
Furthermore, do these methods adhere to the usability principles advocated by
usability experts such as Nielsen [43]?

Using both a theoretical and experimental analysis, this paper will examine the use,
by designers. of one of the most popular methods and one that has received a lot of
attention in recent years: HCI design patterns. We will analyse design patterns from
the perspective of the most widely accepted usability metrics with special attention
being paid to the most relevant of these: learnability and memorability.

Section 2 introduces and discusses patterns. Section 3 describes widely accepted
usability metrics. Sections 4 to 7 consider patterns from the perspective of each of
these metrics in turn. Section 8 wraps up by considering how the usability of patterns
can be improved. Section 9 concludes.

2 HCI Design Patterns

A design pattern can be defined as ‘a piece of literature that describes a design
problem and a general solution for the problem in a particular context’ [10:2].
Designers have striven towards the elusive goal of reuse for many years now, but it
only became widely achievable with the advent of the object-oriented paradigm [20]
ind the patterns that emerged from repeated use of successful object-orientation. The
ase of design patterns in HCI was a natural progression from the use of patterns in
sther domains and was discussed at a number of workshops in the late 1990s (for
example at CHI 97, INTERACT 99, and HCI '00) [14]. An influential book by
Jamma, Helm, Johnson and Vlissides [20], based on the Alexandrian format, also
slayed a role in promoting the acceptance and use of design patterns in the field of
ACL [4].

An object-oriented SE design pattern can be considered a ‘solution to a general
design problem in the form of a set of interacting classes that have to be customized
to create a specific design’ [48:225]. The definition of an HCI design pattern has a
romewhat different perspective — as a proven solution for a common user interface or
usability problem that occurs in a specific context of work [14].

HCI design patterns are assigned to different categories, including task representation,
dialogue, navigation, information, status representation, layout, device aspects and
physical interaction, user-profile, and overall system architecture [14]. A comprehensive
list of HCI design patterns is available from Tidwell’s collection [55], Sally Fincher’s
Pattern Form Gallery [18] and Van Welie’s collection [57], amongst others.

Over the last few years, the idea of anti-patterns has gained favour in SE design
pattern research [36, 58]. Anti-patterns capture poor or sub-optimal design or software
development practices, and many also explain why such practices appear attractive to
a novice and why they turn out to be a bad solution [6, 9]. The basic rationale in

Do We Practise What We Preach in Formulating Our Design and Development Methods? 569

publishing anti-patterns is to identify recurring design flaws for the purpose of
preventing other people from making the same mistakes. An anti-pattern is therefore a
pattern that ‘describes a commonly occurring solution to a problem that generates
decidedly negative consequences’ [6:7].

HCI patterns and pattern languages are characterised by a number of features, that,
it is claimed, distinguish them from rules and guidelines [2, 14, 16]:

e They capture design practise and represent knowledge about successful solutions
(in the case of patterns) or unsuccesstul solutions (in the case of anti-patterns).

* They encapsulate the essential common properties of good design, but do not tell
the designer exactly how to do something, but rather when to do something and
why.

¢ They represent design knowledge at varying levels, encompassing a range of issues
from social issues through to widget design.

* They are not neutral but represent values within their rationale, e.g. they can
express values about what is humane in interface design.

* As the concept of pattern languages is generative in nature, they can provide
support in the development of complete designs.

¢ Patterns appear to be an effort to introduce an HCI-wide ‘lingua franca’. They are,
in general, claimed to be intuitive and comprehensible and it is claimed that they
can therefore be used as a communication medium between various stakeholders.
If this claim is true, then HCI patterns should be accessible and understandable by
end-users. The end-users, in our context, are the designers of user interfaces.

Having given a bricf overview of patterns, we now consider their usability in
supporting the design process in the following sections.

3 Usability

The 1SO 9241 Standard [26] defines usability as the effectiveness, efficiency and
satisfaction experienced by a user in achieving specified goals in a specific
environment. These three aspects are in line with the five attributes that contribute to
usability as identified by Nielsen [42]:

1. Learnability: Learnability refers to the promptness with which users start
performing their tasks with the system. It pertains to the features allowing novice
users to understand how to use the system initially and how to attain a maximal
level of performance once the system has been mastered [15]. This aspect is
directly related to short-term memory and the skill acquisition process.

2. Memorability: Memorability refers to how easy it is to remember how to use a
system feature, once learned [46] and the effort required to reuse the system feature
after not having used it for some time. This aspect is directly related to long-term
memory and skill retention. If something is memorable, it can be recalled with
little conscious effort,

3. Efficiency: Efficiency refers to the level of productivity, i.e. the resources spent in
relation to the accuracy and completeness of the goals achieved [26]. Efficiency
therefore refers to the ways in which a system supports users in carrying out their

570 P. Kotz¢ and K. Renaud

tasks [46]. The kinds of resources we usually measure are time and monetary cost
to the user.

4. Errors: Users should be able to use the system with accuracy without making
undue errors, and, if errors are made, they should be able to recover from them and
still achieve their goals with minimal disruption.

5. Satisfaction: Satisfaction refers to the comfort and acceptability of the user-system
interaction process, as well as the effects on other people affected by its use [26].
This is also related to the cognitive load placed on a user by the system — if the
cognitive load is high, users will generally feel dissatisfaction.

The following section will consider learnability and memorability issues, since
both are related to memory and therefore cannot be separated. For example, a system
cannot be memorable unless it is easily mastered — and it needs to exhibit a high level
of learnability to support this.

4 Learnability and Memorability

4.1 How Do Humans Learn?

To judge anything in terms of learnability and memorability, we must first understand
how humans learn and remember things, i.e. how we form mental models and how
knowledge transfer takes place.

People store what they know in mental models, which are small-scale
psychological representations of real, hypothetical, or imaginary situations [12]. The
mind constructs mental models as a result of perception, imagination and knowledge,
and the comprehension of discourse [28, 29] in order to be able to anticipate events, to
reason and to underlie explanation. It is therefore reasonable to assume that we
construct mental models to represent HCI patterns (and anti-patterns) in a problem
context.

People ‘learn’ by repeated exposure to concepts using one of two major types of
learning: implicit or explicit:

* Implicit learning, or unintended learning or tacit (silent) learning [45, 47], can be
seen as a passive process where people, when exposed to information, simply
acquire knowledge of the information by means of that exposure, i.e. it is
unconscious and always active [30, 47, 54]. Invoking implicit knowledge involves
the indirect application of the knowledge without the requirement of knowledge
declaration [30]. This aspect is thus related to the memorability of a system.

* Luxplicit learning, or intended learning, in contrast, is characterised by people
actively seeking out the structure of any information presented to them, i.e. it is
intentional and conscious [3, 30, 54]. For example, explicit learning would be
mvolved if a designer is instructed to acquire some target knowledge and then
explicitly to apply and state the knowledge acquired in design phase [30]. This
aspect is related to the learnability of the system.

Do We Practise What We Preach in Formulating Our Design and Development Methods? 571

An alternative perspective on learning, closer to the process of learning as supported
by HCI design patterns, is presented by Gorman [23], who identifies four types of
knowledge in technology transfer:

I. Declarative knowledge (what) refers to the recall of facts and events, Declarative
knowledge is composed of chunks, consisting of a number of slots each of which
can hold a value (which can also be another chunk) [33]. In the context of design
patterns this is the process of learning about a design pattern — its name, its
rationale, its recommended application.

- Procedural knowledge (how) that refers to the skill of knowing how to do
something. Procedural knowledge is usually encoded as declarative knowledge
first and then translated into procedures (algorithms) [1], but can also be learned by
feel or intuition. Procedural knowledge therefore consists of productions, which are
condition-action pairs specifying the action to be taken if a particular condition is
satisfied [33]. In the context of design patterns this is the process of learning how
to use the design pattern.

3. Judgement knowledge (when) that involves the ability to recognise when
knowledge is applicable to a particular instance, i.e. recognising that a problem is
similar to one for which a solution is known and knowing when to apply a
particular procedure or solution. Judgement knowledge is therefore structured in a
way that facilitates problem solving, and is usually applied by experts in a
particufar context. Whereas novices would rely more on declarative and to a lesser
extent on general or weak heuristics based on procedural knowledge, experts rely
more on judgement knowledge. [33]. In the context of design patterns this is the
process of learning to recognise situations where the previously learnt pattern
should be applied.

4. Wisdom (why) knowledge refers to meta-cognitive monitoring which may lead to a
new course of action. It is related to judgement knowledge referring to the ability
to reflect, question, and come up with new courses of action. It involves an element
of moral reasoning. [33]. In the context of design patterns this is the process of
understanding the rationale of the pattern, and understanding why it comprises a
good and effective design.

b2

This model is confirmed by Miller [41] in his ‘pyramid of competence’. Miller was
concerned with the assessment of medical students. He proposes 4 levels of
competence:

I. Knows - factual knowledge.

2. Knows how — ability to apply the knowledge.

3. Shows how — ability to identify situations where knowledge can be applied.
+. Does — ability to use the skills in everyday medical practice.

Level 1 aligns well with Gorman's ‘what’ level. Gorman’s ‘how’ level encompasses
ievel 2 of Miller’s pyramid while level 3 accords well with Gorman’s ‘when’ level.
Finally Gorman’s ‘why’ level can be thought to be somewhat similar to level 4 — the
‘does” level (see Fig. 1). Interestingly, both Miller and Gorman communicate the
oncept of different kinds of knowledge building onto each other, and the acquisition of
‘he knowledge being acquired in a particular sequence over a period of time.

372 P. Kotz¢ and K. Renaud

How
[What
3
Time Gorman’s Knowledge Millers’s Pyramid of Time
Transfer Process Competence

Fig. 1. Gorman and Miller's perspectives on knowledge transfer models

The distinction between declarative and procedural knowledge maps roughly onto
the distinction between explicit and implicit knowledge since declarative knowledge
15 generally accessible (and therefore explicit) while procedural knowledge is
generally inaccessible (and therefore implicit). It is, however, not uncommon for
mplicit learning also to require declarative knowledge, although there is no
consensus as to the function or the source of the declarative knowledge [30]. The
development of judgement knowledge is also implicit, and occurs over a period of
time during the process of applying declarative and procedural knowledge to
problems or instances, and whilst experience is gained in the use of this knowledge.
Wisdom is tacit knowledge and therefore implicit [23]. Wass et al. [59] refer to
Miller’s pyramid of competence and point out the difficulty of assessing whether a
student has reached competence in the top-most level of the pyramid. They argue that,
even if the student is able to pass exams testing the first two competencies and is
observed treating a patient to test the third level (‘shows how’), this still does not
guarantee competence at the apex of the pyramid. The implication is that the ‘does’
competence does not follow automatically from the student having mastered the
<nowledge this builds on. This appears to imply that the ‘does’ competence is
mplicitly mastered, unlike the explicitly studied knowledge it builds on. In this
~ontext, Fig. 2 gives a graphical representation of the relationship between implicit
and explicit learning and the four knowledge types identified by Gorman [23].

Whether or not implicit or explicit learning is involved, one cannot present a
concept only briefly and expect it to be encoded and available for retrieval after any
significant interval without any further effort. There has to be an effort made in order
10 encode the information. If, during the encoding process, the new concept is linked
to already-encoded knowledge, the retrieval process becomes easier and more likely
at a later stage. Repeated exposure 1o a concept strengthens the encoding and makes
tetrieval faster and stronger, i.e. memorability is improved.

Do We Practisc What We Preach in Formulating Our Design and Development Mecthods? 573

Declarative
Knowledge ‘
1
‘ _ _ _ _y! Production !
: Mental Model ‘L > Rules
' ; ’ . |
i -
Procedural ' -
Knowledge N : -
“ X -
| s
.) e
. . -
N | ,
ALY M
I Judgement & . | = » Explict Learning
: Wi
Knolvsvdlg(;%e il Implict Learning

Fig. 2. The relationship between different types of learning and knowledge types

Fig. 1 aims graphically to depict the knowledge transfer/acquisition process using
Gorman's |23] and Miller’s classifications and their relationship with time. It
indicates that time is required to form procedural knowledge based on acquired
leclarative knowledge, and then judgement and wisdom knowledge built on these.
We can therefore realistically use the Gorman model, as presented in this figure, to
2valuate the learnability and memorability of HCI design patterns and anti-patterns.

4.2 Knowledge Encapsulated in HCI Design Patterns

\ pattern aims to encompass all the different types of knowledge enumerated by
'Jorman [23]. The procedural and declarative knowledge types can be taught and
earnt but the judgement and wisdom knowledge can only be assimilated over time. It
therefore is clear that novice designers master the declarative and, to a small extent,
the procedural pattern-related knowledge, but that they do not develop judgement
<nowledge very quickly. This is probably due to the fact that the only way to develop
_udgement knowledge is by making use of the declarative and procedural knowledge
over a period of time. Gorman [23] explains that judgement knowledge is developed
sradually over a long period of time, so it is perfectly understandable that novice
designers cannot develop this knowledge simply because they have been given a book
of design patterns to read. Judgement knowledge is implicit — and is developed in the
process of using explicit knowledge repeatedly, in context.

However, given the fact that patterns are being used as a knowledge transfer
artefacts, let us consider how a novice designer might assimilate the knowledge
captured in the pattern.

374 P. Kotz¢ and K. Renaud

A mnovice designer’s receptivity to the pattern creator’s envisaged transfer of
pattern-encapsulated knowledge will depend absolutely on how well the pattern is
formulated and how strongly it is linked to the problem for which the pattern is the
solution. The efficacy of the pattern, therefore, does nor depend on the technical
brilliance of the implemented design, but rather on the quality of the mental model the
user constructs as a result of the way in which the pattern is structured and presented.
This internalised mental model will be matched against future design problems
encountered by the novice, and used if the problem matches the potential solution
proffered by the model. If the model is sufficiently well captured, there is a better
chance of the learner identifying it and using it. Hence, the efficacy of any design
pattern’s knowledge transfer process depends on how well the issues in the pattern are
communicated to the learner ar the first encounter, which is when the pattern is first
understood and internalised, and the mental model constructed [56].

The tricky problem in the formulation of effective patterns therefore lies in
ensuring that the formulation satisties the needs of naive user interface designers.
Experts often omit essential details, simply because they assume knowledge of these
facts. The efforts of many researchers in the field of HCI design patterns have been
aimed at closing this communication gap [17, 50]. When we consider the use of
patterns in HCI knowledge transfer, the closing of this gap becomes essential.

Fig. 3 contrasts the knowledge transfer model (as illustrated in Fig. 1) with the
general presentation structure of HCI design patterns [55, 57]. We used the Tidwell
HCI Pattern Definition format [55] as example format, but other HCI design pattern
formats have a similar structure.

. What
How
]
&3

What D
Time Gorman’s Knowledge Tidwell’s HCI Pattern Presentation
Transfer Process Definition Sequence

Fig. 3. The pattern presentation sequence vs. the knowledge transfer process

When we study Fig. 3 closely, we uncover what may be the primary reason for the
difficulties many naive designers have with comprehending and using patterns. The
order in which information is presented in patterns, and the assumptions of embedded
knowledge linked to this imposed order, simply do not align with the knowledge
iransfer process, which needs to occur in a specific sequence. Patterns typically

Do We Practisc What We Preach in Formulating Our Design and Development Methods? 575

o
How
How
£l
3

What Not
£
Time Gorman’s Knowledge Anti-pattern Definition Presentation
Transfer Process Sequence

Fig. 4. The anti-pattern presentation sequence vs. the knowledge transfer process

introduce first the ‘when” and the *why’ and this assumes prior mastery of the ‘what’
and the *how’. Patterns appear, at first glance, to accord well with human information
processing processes because they include information related to all the mental model
knowledge representation processes. However, their knowledge presentation structure
does not align correctly with the accepted knowledge acquisition process and this
could impair their efficacy.

This problem is even more severe when anti-patterns are contemplated, since the
cognitive processing of anti-patterns has to deal with negation. An anti-pattern
theoretically shows how to do the *opposite’ of the required solution or ‘how not to do
it" (not necessarily the opposite of any proper solution).

The negation schema involved with anti-patterns is the schema-plus-tag model [32].
The schema-plus-tag model states that the core supposition of a premise is processed as
a cognitive unit, which is then marked with a negative tag [8, 40]. The critical issues
are the argument that the core can be disassociated from the negation tag at a later
stage (and as result the individual might remember the opposite of the intended
meaning), and that the consideration of the core supposition activates associations
congruent with the core, but incongruent with the intended meaning of the negation as
a whole. The negation of a premise is therefore kept as a ‘mental footnote’ in the
designer’s mind, whereas the solution itself is kept as a mental model. These tags
sometimes fail to activate and can lead to systematic errors and illusions. For example,
if you tell a designer: ‘don’t use red print on a green button’, the designer has to think
bout the green button with red print on it before storing it with the footnote reminding
nim/her of the folly of this course of action. According to the schema-plus-tag model
we tend to internalise what we focus on, so when the designer thinks of colour schemes
for a button s/he may well use a green button with red print because the mental trace to
hat concept has survived but the footnote has failed to activate.

Fig. 3 demonstrated the inherent defects related to the commonly used design
sattern structure. Fig. 4 compares the anti-pattern structures to Gorman’s knowledge
‘ransfer process. There are two things to be noted about this comparison:

576 P. Kotzé and K. Renaud

. Two ‘not’ tags are used — “how not’ and ‘why not’. This invokes the use of the
schema-plus-tag negation model, and either or both tags could thus easily go
missing.

. The anti-pattern assumes prior knowledge of the ‘what’, which, in a novice, cannot
be assumed (the “what” knowledge is not explained or referenced in an anti-pattern
presentation).

i

The effects of anti-patterns on novice designers, therefore, could be confusing, at
least, and detrimental, at worst.

4.3 Learnability and Memorability of HCI Design Patterns and Anti-patterns

From the arguments above it seems as if design patterns will indeed exhibit problems
when assessed for learnability and memorability. But is this indeed the case?

In researching the practice ol teaching in the negative we did a number of
experiments with the teaching of patterns and anti-patterns and observed how students
learn based on the mode of teaching. The results of these experiments are described in
detail in Kotzé, Renaud and Van Biljon [32], but we will highlight our findings here
to support our argument that the learnability and memorability of design problems
may be suspect.

* The work of a third year group of software engineering students at the University
of Glasgow was observed and serves to illustrate the pattern knowledge transfer
process. Students were randomly allocated to groups of five to do a project during
their third year. The project entailed the design and implementation of a project
management system. Students were taught basic software engineering and HCI
design patterns and given examples of their use in a graphical user interface.
Although a group project, the students were required to write an individual report
about what they learnt during the project, including the role of patterns. Only one
of the students reported making use of the full complement of patterns (they could
use 5 in the exercise). But what is more interesting is that the student’s team
members did not report using the same 35 patterns. Even though students had two
lectures on patterns, and the lecture notes were also freely available on the module
website, only 28% of the students appear to have made use of patterns in their
group project. It is possible that students made use of patterns and then did not
report it, but this is unlikely because it was an explicitly mentioned topic. The only
conclusion we can draw from this is that students had the theoretical knowledge
but had difficulty applying it. The discussion on different knowledge levels above
offers some explanation for this phenomenon — students master declarative
knowledge and, to a lesser extent, procedural knowledge, but they do not develop
Jjudgement knowledge.

* Two experiments were conducted on teaching patterns and anti-patterns with third-
year Computing Science students at the University of Glasgow: an intra-group study
and an inter-group study. The intra-group study found that students had difficulty in
applying guidelines stated in the negative, in contrast with guidelines stated in the
positive, which resulted in fewer errors. The inter-group study had two groups of
students receiving group tutorials separately, either being taught using positive HCI
design pattern-like information or anti-pattern like information. Table 1 depicts, as

Do We Practise What We Preach in Formulating Our Design and Development Methods? 577

percentages, the difference between the average scores of the students in the patterns
group and those in the anti-patterns group for each of the assessed components. It is
clear from the results in this table alone that the students in the patterns group
performed significantly better in all of the assessed concepts than did the students in
the anti-patterns group. But what is also clear is the extremely low performance even
in the group that were taught with patterns, i.e. positively.

Table 1. Comparing the marks (as percentages) of students in the anti-pattern group and the
pattern group per component

Use of Colour Instructions Button Design Error Reporting
given
Anti-Patterns 39 41 22 46
Patterns 47 54 37 59

The findings of these experiments can be criticised for not focusing on the usability
issues directly, and therefore we conducted a survey with another group of 17 third-year
Computing Science students at the University of Glasgow focussing specifically on their
experiences with patterns. This survey was done within two weeks of their receiving a
number of lectures on patterns. When asked ‘how easy it was to understand design
patterns when first taught’, 12 of the 17 found it to be difficult, while only 1 thought it
was easy. More than half of the students did not understand the rationale behind
specific patterns. When asked ‘how easy is it 10 remember patterns that were taught
after a week or two’, the overwhelming response was that it ‘was hard’ (only 2 though it
was relatively easy). They also had problems in remembering the patterns they were
taught the year before. They forgot either the rationale behind the patterns they were
taught or the design method it represented, or both.

Evidence from these experiments, and from the theoretical foundations, therefore
show that HCI design patterns and anti-patterns could be deficient with respect to
learnability and memorability. This leads us to the inescapable conclusion that HCI
design patterns and anti-patterns do nor meet the first two of Nielsen’s [43] usability
attributes.

In the next three sections we will briefly look at the other three attributes of
asability, namely efficiency, errors and satisfaction and consider the extent to which
HCT design patterns adhere to these attributes.

5 Efficiency

Efficiency refers to the level of productivity. i.e. the resources spent in relation to the
wccuracy and completeness of the goals achieved [26]. Efficiency also refers to the
ways in which a system supports users in carrying out their tasks.

For a pattern language to be efficient in generating solutions it should be
Zenerative, allowing users to develop new solutions, and provide a taxonomy enabling
he user to easily locate relevant core patterns, to find related or proximal patterns,
and to evaluate the problem from different standpoints [19].

578 P. Kotz¢ and K. Renaud

The organization of pattern languages in HCI is particularly problematic because of
the wide range of different levels that have to be addressed by HCI design patterns,
from the broader social context in which an interactive system is used, to the low-
level details of interaction itself [14].

Efficiency is therefore related to the completeness of the pattern languages. This is
particularly problematic in HCI design patterns, as no coherent pattern language
exists. There are a lot of competing voices and individual (and often repeated) efforts
[14]. This 1s often as a result of the demands on researchers to publish and own work.
Although pattern language development needs to be a community effort, the
competitive pressures within the wider research context can mediate against such a
cooperative approach [2].

Unless a collaborative process can be developed in future whereby participants can
select and develop the patterns towards a coherent pattern language, HCI design
patterns will continue to fail to meet the efficiency usability attribute.

Our experiences [32] suggest that poor knowledge transfer by means of the use of
patterns can be attributed directly to the fact that students do not develop judgement
knowledge in the short period of time allowed for teaching a concept. Furthermore,
we also argued that anti-patterns confused students and did more harm than good.

During our survey amongst the third-year Computing Science students we asked
them “how difficulr it is to match design problems to the patterns you were taught
when you are designing software now?” Only 4 of the 17 students found it relatively
casy — the other 13 found it very hard. When they were asked whether they ‘ger
frustrated when they have to try to find a pattern to match a problem’, 12 of the 17
2xpressed dissatisfaction and frustration with matching patterns to problems.

In terms of efficiency and efficacy in knowledge transfer and use, therefore,
patterns have yet to prove their worth.

6 KErrors

When we introduced the concept of patterns in section 2, we referred to two types of
ratterns, namely patterns and anti-patterns. There is, however, a third type of pattern,
called an amelioration pattern. An amelioration anti-pattern tells the reader how to go
rom a bad solution to a good solution. It defines a migration path (or refactoring)
rom a negative to a positive solution. It tells you why the bad solution appeared
Jiable in the first place, why it turned out to be bad in conjunction with the desired
1ew outcome or behaviour, and what positive patterns are applicable instead [6].
Amelioration anti-patterns are only required because people fail to locate the correct
pattern and then apply the wrong pattern, or, if they do manage to match the correct
pattern to the problem, they apply it incorrectly.

The mere existence of amelioration patterns hints at problems with the usability of
HCI design patterns. Recovering from a problem should not require the designer to
look up a solution from yet another set of HCI design patterns. On the positive side, if
an amelioration pattern exists for a specific problem or incorrectly applied solution, it
will provide the designer with a ‘way out’ when things go badly wrong or when the
designer does not know how to correct an obvious mistake, At present there are,
unfortunately, only a small number of amelioration HCI design patterns in existence.

Do We Pructise What We Preach in Formulating Our Design and Development Methods? 579

In terms of errors, once again HCI design patterns do not prove to be the silver
bullet of design — confirming Fred Brooks’ [S] prediction that design, being inherently
complex and difficult, will never be eased by one particular innovation or tool.

7 Satisfaction

Cognitive load is high when designers are working on a project within limited time
constraints, and this has been proved to be counter-productive for the interpretation of
false or negated information [21, 22], or detailed information requiring the designers
to choose between various option (e.g. choosing the correct HCI design pattern for a
specific interaction design).

For seasoned designers who have developed judgement and wisdom knowledge
this should not be a problem, but for novice designers who are still attaining and
developing such knowledge, it might lead to a high degree of dissatisfaction if they
cannot easily identify a suitable design pattern. Furthermore it is likely that they
simply will not understand how to use it or why it should be used.

Although all but 3 of the students in our survey saw the point of learning patterns,
the majority of them (12 of the 17) found patterns to be obscure.

Dearden and Finlay [14] argue that one of the most obvious weaknesses of HCI
designs patterns is the lack of substantive evidence as to the benefit of using them in
actual design practice. Considerable attention has focused on generating patterns and
developing various individual pattern languages. rather than on their use in practice.
Significant effort is now required to examine the use of these languages in actual
design (e.g. via empirical and observational studies) and in education to demonstrate
what, if any, benefits might be gained from a patterns-led approach. We argue that
satisfaction levels will stay low until these benefits have been proven.

8 Improving Pattern Usability

From the arguments above we have to conclude that HCI design patterns do not meet
any of the basic usability principles or attributes. Our investigations have also
convinced us that patterns are neither efficient nor efficacious in transferring expert
HCI design knowledge to naive designers.

Should we give up on patterns altogether? Not at all! We should simply be more
realistic and circumspect about their use.

We can compare the process of learning how to design systems with language
acquisition, albeit on a very superficial level. People learn a new language starting by
mimicking particular words. Only once they have accumulated a fair number of
commonly used words, and built up a bare framework of the language, and used it for
some time, can they start to understand more intricate formalisms such as sentences,
enses and grammar,

Perhaps we can learn a lot from the way schools have changed how they teach in
he last 40 odd years. Crystal |13] provides some interesting insights into the
changing modes of language instruction. Before the 1960s children were taught
Jrammar - given sentences to analyse in terms of grammatical constructs. Those of us

380 P. Kotz¢ and K. Renaud

who experienced this approach often remember it with a sense of repugnance.
Grammar was reduced 1o a set of rules but the meaning and richness of the language
was never experienced or understood. Between the 1960s and the mid 1990s children
were laught no grammar at all. This too was found to be unsatisfactory because one
needs an understanding of grammar to understand the immense creative power of
language. A comprehensive study of grammar also helps us to master second and
third languages. Consequently, in the late 1990s the approach changed once more, to
reintroduce grammar into the curriculum. Only now, a different, more effective
paradigm was applied — discovery-based learning. Grammar was no longer merely
prescriptive, but was introduced to help students to understand meanings and effects
of different constructs in communicating and language. The paradigm was: discovery
first. definitions of terms last.

The fact is that we learn in a stepwise fashion, learning rudimentary skills
tdeclarative and procedural) first. then we learn by doing and by watching others
more skilled than ourselves (moving towards judgement and implicit procedural
skills) and then, only once we have mastered the basics and used them over a period
of time, can we be said to have the basic skills to start looking at formalisations such
as patterns (once we have the judgement knowledge.)

Someone learning to design interfaces will learn information about basic widgets,
ind accumulate an understanding of basic HCI principles in a discovery-based way.
Inly once they are fully conversant with the basic building blocks of the interface can
hey start thinking about formalisms such as using basic concepts in conjunction with
cach other o create more complicated artefacts that are, nevertheless, usable. Only
onee they have spent some time cngaged in this process will they be ready for the
vattern formalisms and for understanding patterns which bring all the different
concepts together in a structured way.

Since we've argued that patterns are contra-indicated for naive designers, what
should we do to direct them and prevent them from making errors? We should provide
vhem with rules and guidelines, which are easily understood and applied. We should
provide them with a mentor — a seasoned designer to guide their discovery process.

This is not an arbitrary recommendation. There is empirical evidence that
ituidelines may be easier to use and more effective than patterns [11, 60]. There is
little evidence that interfaces produced by using HCI design patterns are better than
interfaces designed using guidelines [11]. Koukouletsos, Babak and Dearden [317] also
tound that patterns, being longer in text and more difficult to assimilate, are harder for
novice designers to comprehend. Novice designers need to undertake an extra mental
process when contemplating the use of a pattern. Patterns need to be analysed and
well understood to be efficacious. Guidelines do not suffer from these problems. The
University of California studies in the early 1990’s on teaching with or without
patterns also confirm this |7, 25, 34, 35, 37, 49]. The group’s overall finding was that
patterns need rich connections to examples and multiple links to context of use if they
were to be effective in teaching. If patterns are too narrow or inflexible, novices have
difficulty abstracting from them and would rarely use them. It is generally accepted
that the way in which expert programmers work has a great deal more to do with large
‘libraries” (patterns) they have built up over time of stereotypical solutions to

Do We Practise What We Preach in Formulating Our Design and Development Methods? 581

problems, as well as strategies for coordinating and composing them, than the mere
syntax and semantics of language constructs [53]. If novice students are to mature
into expert programiners, they should be taught explicitly about building up these
libraries and developing strategies for activating them.

We therefore argue that HCI design patterns should be recorded by experienced
designers but should not be inflicted on naive designers — rather they should be
available for use by seasoned designers, those who have attained a particular
proficiency in the language of design — much as colloquialisms are understood only
by people who have attained a high level of proficiency in a particular language. In
the same way. patterns can only really be comprehended and correctly applied by
people who have attained a high level of proficiency in the language of design.

9 Conclusion

It is clear that HCI design patterns are basically unusable by their currently targeted
audience. since they do not exhibit the basic characteristics of usability, as defined by
Nieisen [42].

If HCI design patterns were to be representative of the design and development
methods promoted for the design of interactive systems then the answer to our
question ‘do we practise what we preach in formulating our design and development
methods’ should be in the negative: and the obvious conclusion should be that we
unfortunately do not practice what we preach.

Unfortunately this does not apply to HCI design patterns only — the same might be
said about design patterns in general, as was exhibited in the University of California
studies. As educators and mentors, we should consider these findings carefully and
we should be more careful about recommending a technique that we, as experts, find
helpful. in the mistaken belief that it will be equally helpful to novices.

References

1. Anderson, J.R.: Rules of the Mind. Lawrence Erlbaum Associates, Hillsdale (1993)

2. Bayle, E., Bellamy, R., Casadav. G., Erickson, T., Fincher, S., Grinter, B., Gross, B.,
Lehder, D., Marmolin, H., Moore, B., Potts, C.. Skousen, G., Thomas, J.: Putting it all
together: Towards a pattern language for interaction. SIGCHI Bulletin 30(1), 17-33 (1998)

3. Berry, D.C.: How Implicit is Implicit Learning? Oxford University Press, Oxford (1997)

4. Borchers, J.A.: Teaching HCI Design Patterns: Experience from Two University Courses.

In: Patterns in Practice: A Workshop for Ul Designers (at CHI 2002 International

Conterence on Human Factors of Computing Systems). City (2002)

Brooks, F.P.: The Mythical Man Month and Other Essays on Software Engineering.

Addison Wesley, Reading (1995)

6. Brown, W.J., Malveau, R.C., McCormick III, H.W., Mowbray, T.J.. AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis. John Wiley & Sons, Inc., New
York (1998)

7. Clancy, M.J., Linn, M.C.: Patterns and pedagogy. ACM SIGCSE Bulletin (3/99), 37-42
(1999)

N

582

9.

10.
1.

12

3.
4.

19.

20.

26.

28.

P. Kotz¢ and K. Renaud

. Clark, H.H., Chase, W.G.: On the process of comparing sentences against pictures.

Cognitive Psychology 3, 472-517 (1972)

Cockburn, A., Baruz, A., Engelund, A., Hancs, P.B., Brown, C., Siska, C., Olson, D.,
Xexeo, G., Lowe, I, Chapman, J., Coplicn, J.O., Holloway, J., Brown, K., Eichin, M.,
Phillips. R., Jetfries, R., Gordon. S., McCormick III, H.W.: Antipattern (2005) [cited 2005
2005-12-12), http://c2.com/cgi/wiki?AntiPattern

Coplien, J.O.: Software Patterns. SIGS Books & Multimedia, New York (1996)

Cowlcy. N.L.O., Wesson, J.L.: An experiment to measure the usefulness of patterns in the
interaction design process. In: Costabile, M.F., Paternd, F. (eds.) INTERACT 2005.
LNCS. vol. 3585, pp. 1142-1145. Springer, Heidelberg (2005)

Craik, K.: The Nature of Explanation. Cambridge University Press, Cambridge (1943)
Crystal, D.: How Language Works. Penguin, London (2005)

Dearden, A., Finlay, J.: Pattern Languages in HCI: A critical review. Human-Computer
Interaction 21(1), 49-102 (2006)

. Dix. A. Finlay, J.. Abowd, G.D., Beale, R.: Human-computer Interaction. Pearson

Education Limited, Harlow (2004)

. Dix, A., Finlay, J., Abowd, G.D., Beale, R.: Human-Computer Interaction, 3rd edn.

Pearson Education I.td., Harlow (2004)

. Faridul, L: Investigating XML us Language for HCI Patterns Representation. Concordia

University, City (2003)

. Fincher, S.: The Pattern Gallery (2000) [cited 2005-12-12],

http://www.cs.kent.ac.uk/people/staff/saf/patterns/
gallery.html

Fincher, S., Windsor, P.: Why patterns are not enough: some suggestions concerning an
organising principle for patterns of Ul design. In: CHI 2000 Workshop on Pattern
Languages for Interaction Design: Building Momentum (2000)

Gamma. E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

21, Gilbert, D.T., Krull, D.S., Malone, P.S.: Unbelieving the unbelievable: some problems in

the rejection of false information. Journal of Personality and Social Psychology 59, 601—
613 (1990)

. Gilbert, D.T., Tafarodi, RW., Malone, P.S.: You cannot believe everything you read.

Journal of Personality and Social Psychology 65, 221-233 (1993)

23, Gorman, M.E.: Types of knowledge and their roles in technology transfer. Journal of

Technology Transfer 27(3), 219-231 (2002)

24. Hartson. H.R., Hix, D.: Toward empirically derived methodologies and tools for human-

computer interface development. International Journal of Man-Machine Studies 31, 477—
494 (1989)

25. Hoadley, C.M., Linn, M.C., Mann, L.M., Clancy, M.J. (eds.): When, why, and how do

novice programmers reuse code? In: Gray, W.D., Boehm-Davis, D. (eds.) Empirical
Studics of Programmers, vol. 6. Ablex, Norwood (1996)

International Organization for Standardization: 1S09241: Ergonomic requirements for
office work with visual display terminals (VDTs) (1997) [cited 2006-12-01],
http://www.1lso.0rg/is0/en/1s09000-14000/1index.html

International Organization for Standardization: 1SO14915: Software ergonomics for
multimedia user interfaces (2002) [cited 2006-12-01],
http://www.1so.0rg/iso/en/1is09000-14000/index.html

Johnson-Laird, P.N.: Mental Models. In: Posner, M.J. (ed.) Foundations of Cognitive
Science, pp. 469-499. MIT Press, Cambridge (1989)

Yo We Practise What We Preach in Formulating Our Design and Development Methods? 583

29.

30.

i

-
[¢]

33,

7.

Johnson-Laird, P.N., Girotto, V., Legrenzi, P.. Mental Models: A Gentle Guide for
Outsiders (1998), http://www.s1.umich.edu/ICOS/gentleintro.html
Kirkhart, M.W.: The nature of declarative and nondeclarative knowledge for implicit and
explicit lcarning. The Journal of General Psychology 128(4), 447-461 (2001)

Kotzé. P, Renaud, K., Koukouletsos, K., Khazaei, B., Dearden, A.: Patterns, anti-patterns
and guidelines: Effective aids to teaching HCI principles? In: Hvannberg, E.T., Read, J.C.,
Bannon, L., Kotzé, P., Wong, W. (eds.) Inventivity: Teaching theory, design and
innovation in HCI - Proceedings of HCIEd2006-1 (First Joint BCS / IFIP WG 13.1 / ICS
/EU CONVIVIO HCI Educators Workshop, pp. 115-120. University of Limerick,
Limerick (2006)

Kotzé. P., Renaud, K., Van Biljon, J.: Don’t do this - Pitfalls in using anti-patterns in
teaching human-computer intcraction principles. Computer & Education (2006),
doi:10.1016/j.compedu.2006.10.003

Lebiere, C., Wallach, D., Taatgen, N.: Tmplicit and explicit learning in ACT-R. In: Ritter,
F., Young, R. (eds.) Proceedings of the Second Conference on Cogative Modelling
(ECCM 1998), pp. 183-189 (1998)

. Linn, M.C.: How can hypermedia tools help teach programming? Learning and

Instruction 2, 119-139 (1992)

. Linn, M.C.. Clancy, M.J.: The case for case studies of programming problems.

Communications of the ACM 35:3), [21-132 (1992)

36. Mahernoff, ML.J., Johnston, L.J.: Principles for a usability-oriented pattern language. In:

Proceedings of the Australasian Computer Human Interaction Conference, Adelaide, pp.
132-139 (1998)

Mann. [.M.: The Implications of Functional and Structural Knowledge Representations
for Novice Programmers. In: Graduate Group in Science and Mathematics Education.
University of California, City (1991)

38. Mayhew, D). Principles and Guidelines in Software and User Interface Design. Prentice

Hall, Englewood Cliffs (1992)

. Mayhew. D The Usability Engincering Lifecycle. Morgan Kaufmann, San Francisco

(1999

. Mayo, R, Schul, Y., Burnstein, E.: I am not guilty vs 1 am innocent: Successful negation

may depend on the schema used for its encoding. Journal of Experimental Psychology 40,
433--449 (2003)

. Miller, G.E.: The assessment of clinical skills/competence/performance. Acad. Med. 65,

563-567 (1990)

. Nielsen, J.: Usability Engineering. Academic Press, Boston (1993)
. Niclsen, J.: Heuristic evaluation. In: Nielsen, J., Mack, R.L. (eds.) Usability Inspection

Mecthods. John Wiley & Sons, New York (1994)
Norman, D.: The Design of Everyday Things. MIT Press, London (1998)

. Polanyi, M.: Personal Knowledge - Towards a Post-Critical Philosophy. Routledge and

Kegan Paul, London (1958)

. Precce. J., Rogers, Y., Sharp, H.: Interaction Design: Beyond Human-computer

[nteraction. John Wiley & Sons, Inc., New York (2002)

. Reber. A.: Implicit fearning and tacit knowledge. Oxford University Press, Oxford (1993)
. Schach, S.R.: Object-oriented and Classical Software Engineering, 6th edn. McGraw Hill

Higher Education, New York (2005)

19. Schank, P.K., Linn, M.C., Clancy, M.J.: Supporting Pascal programming with an on-line

template library and case studies. International Journal of Man-machine Studies 38, 1031-
1048 (1993)

S84 P. Kotz¢ and K. Renaud

50. Seffah, A.: Learning the ropes: human-centercd design skills and patterns for software
enginceers education. Interactions 10(5), 36-45 (2003)

51. Shneiderman, B.: Designing the User Interface. Addison-Wesley, New York (1998)

52. Smith, S.L., Mosicr, J.N.: Guidelines for designing user interface software. Mitre
Corporation Report, MTR-9420 (1984)

53. Soloway. E.: Learning to program = lcarning to construct mechanisms and explanations.
Communications of the ACM 29(9), 850-858 (1986)

34, Taatgen, N.A.: Learning without limits: from problem solving towards a unified theory of
learning (1999) [cited 2005-06-03].
http://www.ub.rug.nl/eldoc/dis/ppsw/n.a.taatgen/

55. Tidwell. 1.2 Designing Interfaces: Patterns for Effective Interaction Design (2005) [cited
2006-07-01], http://designinginterfaces.com/

36. Van Biljon, J., Kotzg, P., Renaud, K., McGee, M., Seffah, A.: The use of anti-patterns in
human computer interaction: wise or ill-advised? In: Marsden, G., Kotzé, P., Adesina-Ojo,
A. (eds.) Fulfilling the promise of ICT, SAICSIT (ACM Conference Proccedings Series),
Pretoria, pp. 176185 (2004)

37. Van Welie, M.: Patterns in Interaction Design (2006) [cited 2006-07-01],
http://www.welie.com/

38. Van Welie, M., Van Der Veer, G.C.: Pattern languages in interaction design: structure and
organization. In: Rauterberg, M., Menozzi, M., Wesson, J. (eds.) Human-computer
interaction, INTERACT- 2003, pp. 527-543. [0S Press, Amsterdam (2003)

39. Wass, V., Van Der Vleuten, C., Shatzer, J., Jones, R.: Assessment of Clinical Competence.
The Lancet 357, 945-949 (2001)

50. Wesson, J., Cowley, N.L.O.: Designing with patterns: Possibilities and pitfalls. In: 2nd
Workshop on Software and Usability Cross-Pollination: The Role of Usability Patterns
(2003) [cited 2005-12-23), http://wwwswt.informatik.uni-rostock.de/
deutsch/Interact/05WessonCowley.pdf

Questions

Michael Harrison and Janet Wesson:
Duestion: About the Experiment: How do you measure the quality of the resulting
roduct?

Answer: We checked the product for obvious mistakes such as violation of guidelines,
nismatch of colours, etc...

Michael Harrison:
Juestion: How did you train the students in the use of patterns?

Answer: Students were introduced to patterns, as is general practice,during lectures.
To ensure that they understood how to apply and use the patterns, students were
nstructed to use them in a design exercise.

Laurence Nigay:
duestion: Were the inspected patierns specific to HCI?

Answer: Yes, but the discovered flaws and limitations may also be applicable to
»atterns in other domains (e.g. software design).

Jo We Practise What We Preach in Formulating Our Design and Development Methods? 585

Question: Why is it a problem to use patterns from different languages?

Answer: Different collections may contain patterns for the same problem, but with
nifferent (even contradicting) solutions. This can be explained by the fact that the
solution stated in the pattern is bound to the overall context of the language.

Kirstin Kohler:
Question: What makes you think that the problem is the way patterns are written and
a0t the way vou teach them to students?

Answer: The teaching method appears to be representative of the methods used by
nost Universities to teach patterns. Those practitioners who do not attend classes
isually attempt to learn patterns from a textbook. Transferring knowledge by means
of patterns is the real issue, which is the core of what we are saying. People can learn
A pattern as a kind of recipe to be followed, but matching that pattern to a problem is
something which cannot be taught - it only develops with experience.

