
Modeling and Solving Semiring Constraint
Satisfaction Problems by Transformation to

Weighted Semiring Max-SAT

Louise Leenen1, Anbulagan2, Thomas Meyer3, and Aditya Ghose4

1 DSL, SCSSE, University of Wollongong, Australia and DPSS, CSIR, South Africa
2 NICTA!! and ANU, Canberra, Australia

3 Meraka Institute, CSIR, Pretoria, South Africa
4 DSL, SCSSE, University of Wollongong, Australia

Abstract. We present a variant of the Weighted Maximum Satisfiability
Problem (Weighted Max-SAT), which is a modeling of the Semiring Con-
straint Satisfaction framework. We show how to encode a Semiring Con-
straint Satisfaction Problem (SCSP) into an instance of a propositional
Weighted Max-SAT, and call the encoding Weighted Semiring Max-SAT
(WS-Max-SAT). The clauses in our encoding are highly structured and
we exploit this feature to develop two algorithms for solving WS-Max-
SAT: an incomplete algorithm based on the well-known GSAT algorithm
for Max-SAT, and a branch-and-bound algorithm which is complete. Our
preliminary experiments show that the translation of SCSP into WS-
Max-SAT is feasible, and that our branch-and-bound algorithm performs
surprisingly well. We aim in future to combine the natural flexible rep-
resentation of the SCSP framework with the inherent efficiencies of SAT
solvers by adjusting existing SAT solvers to solve WS-Max-SAT.

1 Introduction

The Semiring Constraint Satisfaction Problem (SCSP) framework is an approach
to constraint satisfaction and optimization that generalises classical Constraint
Satisfaction Problems (CSPs), Partial Constraint Satisfaction Problems, Fuzzy
CSPs, Weighted CSPs, Probabilistic CSPs, and others (over finite domains) [1–
4], while also permitting the specification of interesting new instances. Consid-
erable interest has been shown in solving SCSPs. Complete methods exist [5–7]
but are likely to require exponential time. Bistarelli et al. [8] present a prototype
SCSP solver based on an incomplete local search method. Wilson [9] shows how
to use decision diagrams to solve SCSPs but provides no implementation.

A significant amount of work has been devoted to solving propositional satis-
fiability (SAT) problems, and specifically the well-known maximum satisfiability
problem (Max-SAT) [10, 11]. There is continuing interest in translations between
CSPs and SAT problems [12–14]. This prompted us to explore the application
of methods for solving Max-SAT to SCSPs. We modify the support encoding of
CSP to SAT by Gent [12] in order to translate SCSPs as a variant of the Weighted
!! NICTA is funded through the Australian Government’s Backing Australia’s Ability

initiative, in part through the Australian Research Council.

Max-SAT Problem, and call this encoding WS-Max-SAT. Our encoding results
in propositional clauses whose structure can be exploited in our algorithms to
solve WS-Max-SAT: a local search algorithm that is a modification of the GSAT
algorithm for solving Max-SAT [15], and a branch-and-bound (BnB) algorithm.

We show how to formulate a SCSP as a WS-Max-SAT, present a local search
and a BnB algorithm, and some experimental results. A comparison of our BnB
algorithm with CONFLEX [3], a fuzzy CSP solver, shows that our algorithm
performs surprisingly well, and is significantly faster than CONFLEX.

2 Semiring Constraint Satisfaction Problems

The SCSP framework is a popular approach for the representation of constraint
satisfaction and in particular, partial constraint satisfaction problems [1].
Definition 1. A c-semiring is a tuple S = 〈A,+,×,0,1〉 such that
i) A is a set with 0,1 ∈ A;
ii) + is defined over (possibly infinite) sets of elements of A as follows a) for
all a ∈ A,

∑
({a}) = a; b)

∑
(∅) = 0 and

∑
(A) = 1; c)

∑
(
⋃

Ai, i ∈ I) =∑
({

∑
(Ai), i ∈ I}) for all sets of indices I (flattening property);

iii) × is a commutative, associative, and binary operation with 1 as unit element
and 0 as absorbing element; iv) × distributes over + (i.e., for any a ∈ A and
B ⊆ A, a×

∑
(B) =

∑
({a× b, b ∈ B})).

The elements of the set A are the preference values to be assigned to tuples of
values of the domains of constraints. A partial ordering !S over the set A can
be defined: α !S β iff α + β = β.

Definition 2. A constraint system is a 3-tuple CS = 〈Sp,D,V 〉, where Sp =
〈Ap,+p,×p,0,1〉 is a c-semiring, V is an ordered finite set of variables, and
D is a finite set containing the allowed values for the variables in V. Given
CS = 〈Sp, D, V 〉, where Sp=〈Ap,+p,×p,0,1〉, a constraint over CS is a pair
c = 〈defp

c , conc〉 where conc ⊆ V is called the signature of the constraint, and
defp

c : Dk → Ap (k is the cardinality of conc) is called the value of the constraint.

Definition 3. Given CS = 〈Sp, D, V 〉, a SCSP over CS is a pair P = 〈C, con〉
where C is a finite set of constraints over CS and con =

⋃
c∈C conc. Assume

〈defp
c1

, conc〉 ∈ C and 〈defp
c2

, conc〉 ∈ C implies defp
c1

= defp
c2

.

Definition 4. Given CS = 〈Sp, D, V 〉 with V totally ordered via (, consider
any k-tuple t = 〈t1, t2, . . . , tk〉 of values of D and two sets W = {w1, . . . , wk}
and W ′ = {w′

1, . . . , w
′
m} such that W ′ ⊆ W ⊆ V and wi (wj if i ≤ j and w′

i

(w′
j if i ≤ j. Then the projection of t from W to W ′, written t ↓W

W ′ , is defined
as the tuple t′ = 〈t′1, . . . , t′m〉 with t′i = tj iff w′

i = wj.
For CS = 〈Sp, D, V 〉, Sp = 〈Ap,+p,×p,0,1〉, and two constraints c1 = 〈defp

c1
, conc1〉

and c2 = 〈defp
c2

, conc2〉 over CS, their combination, c1 ⊗ c2, is the constraint
c = 〈defp

c , conc〉 with conc = conc1 ∪ conc2 and defp
c (t) = defp

c1
(t ↓conc

conc1
) ×p

defp
c2

(t ↓conc
conc2

). Let
⊗

C denote c1 ⊗ ...⊗ cm with C = {c1, ..., cm}.

Definition 5. Given CS = 〈Sp, D, V 〉, with Sp = 〈Ap,+p,×p,0,1〉, a con-
straint c = 〈defp

c , conc〉 over CS, and a set I of variables (I ⊆ V), the projection
of c over I, written c ⇓ I, is the constraint c′ = 〈defp

c′ , conc′〉 over CS with
conc′ = I ∩ conc and defp

c′(t
′) =

∑
{t|t↓conc

I∩conc
=t′} defp

c (t). Given a SCSP P =
〈C, con〉 over CS, the solution of P is a constraint defined as Sol(P) =

⊗
C.

Definition 6. Given a SCSP problem P = 〈C, con〉, consider Sol(P) = 〈defp
c ,

con〉. The abstract solution of P is the set ASol(P) = {〈t, v〉 | defp
c (t) = v and

there is no t′ such that v <Sp defp
c (t′)}. Let ASolV (P) = {v | 〈t, v〉 ∈ ASol(P)}.

3 Max-SAT and Weighted Max-SAT
The SAT problem is to determine whether a given propositional formula has a
model (is satisfiable) or is unsatisfiable. The maximum satisfiability problem is
the optimisation variant of SAT: given a set of clauses, the problem is to find a
variable assignment that maximises the number of satisfied clauses. In Weighted
Max-SAT a weight is assigned to each clause and the goal becomes to maximise
the total weight of the satisfied clauses. More formally, let C = {C1, C2, . . . , Cm}
be the set of clauses that involve n Boolean variables x1, x2, . . . , xn that can take
the value true or false, and wi with i = 1, . . . ,m, is the weight assigned to each
clause. The objective function is defined as f(x) =

∑m
i=1 wi · I(Ci) , where I(Ci)

is one if and only if the clause Ci is satisfied, and otherwise is zero. When we
refer to Max-SAT in the remainder of this paper we assume the weighted version.

Some of the best exact Max-SAT solvers [16, 10, 11, 17, 18] implement variants
of a BnB algorithm: given a CNF formula θ, a BnB algorithm explores the search
tree representing all possible assignments for θ in a depth-first manner. The lower
bound (LB) of a node is the sum of the weights of all clauses satisfied by the
current partial assignment plus an over-estimation of the sum of the weigths of
all clauses that will become satisfied if the current assignment is completed. If
LB ≤ UB (UB is the upper bound, or best solution found so far), the subtree
below the current node is pruned, and the algorithm backtracks to a node at a
higher level in the tree. If LB > UB, the algorithm tries to find a better solution
by extending the current partial solution by instantiating one more variable. The
solution is the value of UB after the whole tree has been explored.

4 Weighted Semiring Max-SAT
In this section we show how to encode a SCSP into a WS-Max-SAT. Our encod-
ing of a SCSP into a WS-Max-SAT is based on the support encoding of CSPs
into Boolean SAT [12]. Every propositional clause in our encoding will receive a
semiring value from the semiring associated with the SCSP as a weight.

For the remainder of this paper let P = 〈C, con〉 be a SCSP over a constraint
system CS = 〈Sp, D, V 〉, such that every variable i ∈ V has D = {d1, . . . , dd}
as its domain, and Sp = 〈Ap,+p,×p,0,1〉. Assume the cardinality of V is n, the
cardinality of C is m, and that there are s semiring values in the set Ap. Every
constraint c ∈ C, c = 〈defp

c , conc〉 with r the cardinality of conc and conc ⊆ V .
For every SCSP variable i ∈ V , we have d WS-Max-SAT variables: the WS-

Max-SAT variable Xi,j is true if the SCSP variable i has the value dj ∈ D with

j = 1...d. Our WS-Max-SAT encoding (encoding of P) has three kinds of clauses:

1. at-least-one clauses to ensure that each SCSP variable is assigned at least
one value from its domain;

2. at-most-one clauses to ensure that each SCSP variable is assigned at most
one value from its domain;

3. support clauses to represent all the possible value pairs (tuples) with their
associated semiring values for every constraint. For every constraint we have
at most s such clauses, and every clause receives the associated semiring
value as its weight.

– For every variable i ∈ V we have one at-least-one clause:
Xi,1 ∨Xi,2 ∨ . . . ∨Xi,d.

– For every variable i ∈ V we have 0.5[d(d−1)] at-most-one clauses: one clause,
¬Xi,v ∨ ¬Xi,w, for every pair (dv, dw), where 1 ≤ v < w ≤ d.

– For every constraint, we have at most s support clauses: one clause to repre-
sent all the tuples that have the same associated semiring value. Suppose
Ap = {p1, p2, . . . , ps}, then every constraint c ∈ C has at most s sup-
port clauses, suppt

c with t = 1, . . . , s. A support clause suppt
c for a con-

straint c = 〈defp
c , conc〉 is a disjunction of the representation of all tuples

〈Xc1,v1 , . . . ,Xcr,vr 〉 (the conjunction of all these literals) that has the asso-
ciated semiring value pt, ci ∈ conc, and vi ∈ D for i = 1 . . . r.

All the clauses except the support clauses have to be satisfied and we call
these clauses the hard clauses. The minimum semiring value, 0, is assigned as
the weight of the negation of each hard clause. If a hard clause is not satisfied by
an assignment, this unsatisfied clause contributes the minimum semiring value
to the total weight. Note that at most one support clause for each constraint
can be satisfied by a truth assignment if we assume that the at-most-one and at-
least-one clauses are all satisfied. We regard the support clauses as soft clauses:
the weight assigned to each support clause is the combined semiring value of the
tuples represented in that support clause.
Definition 7. Given a SCSP P and a WS-Max-SAT encoding of P , let the set
Sup contain the support clauses in the encoding and α be some truth assignment
for the clauses in Sup. Then tαsol = 〈X1,val1 , . . . ,Xn,valn〉 is a solution tuple for
the encoding iff the following holds:
– for every constraint c ∈ C exactly one of its support clauses, supk

c , (1 ≤ k ≤
ps) is satisfied by α. This support clause represents a disjunction of tuples
of this constraint, each as a conjunction of WS-Max-SAT variables, with
exactly one tuple, tc = 〈Xc1 , . . . ,Xcr 〉 with ci ∈ conc, vi ∈ D, i = 1 . . . r,
and such that all Xci,vi = true, and

– if ci is equal to j (j = 1, . . . , n) then vi = valj.
The semiring value associated with tαsol is srα

sol = sp1×p . . .×pspm where spc = k
and supk

c is the support clause satisfied by assignment α for a constraint c.

Definition 8. Given a SCSP P , let Cl be the set of clauses that represents
the WS-Max-SAT encoding of P . Let Clh = 〈cl1, . . . clh} ⊆ Cl be the clauses

that are satisfied by some truth assignment α. The WS-Max-SAT problem is to
find max f(α) =

⊗h
i=1 wi , where wi ∈ Ap is the weight assigned to clause

i ∈ Clh, f(α) is maximal with respect to the partial order <Sp , and tαsol =
〈X1,val1 , . . . ,Xn,valn〉 is the solution tuple for the encoding Cl. The ordered pair
〈〈val1, . . . , valn〉, f(α)〉 ∈ ASol(P).
Example 1. Suppose we have a SCSP P = 〈{c1, c2, c3}, V 〉 over 〈Sp, D, V 〉,
with V = {A, B,C} and D = {1, 2, 3}. The three constraints are explicitly
defined by c1 : A < B, c2 : B < C, and c3 : C < A. The semiring is
Sp = 〈{0, 5, 10}, max,min, 0, 10〉. See the constraint definitions in Table 1. Note

t c1 : A < B c2 : B < C c3 : C < A t c1 : A < B c2 : B < C c3 : C < A
〈1, 1〉 5 5 5 〈2, 3〉 10 10 10
〈1, 2〉 10 10 10 〈3, 1〉 0 0 0
〈1, 3〉 10 10 10 〈3, 2〉 0 0 0
〈2, 1〉 0 0 0 〈3, 3〉 5 5 5
〈2, 2〉 5 5 5

Table 1. Constraint definitions

that the first coordinate reflects the value of the first variable in a constraint and
the second coordinate reflects the value of the second variable. For example, the
preference value associated with the tuple 〈1, 3〉 for constraint c1 is when A has
the value 1 and B has the value 3. Tuples that satisfy the constraints get the
highest preference value. Among the tuples that do not satisfy the constraints,
we prefer those where the first coordinate equals the second coordinate. These
tuples get a preference value of 5, and all the remaining tuples get the worst
value, 0. The WS-Max-SAT encoding of the problem follows below.

At-least-one clauses: A1 ∨A2 ∨A3, B1 ∨B2 ∨B3, and C1 ∨ C2 ∨ C3

At-most-one clauses: ¬A1∨¬A2, ¬A2∨¬A3, ¬A1∨¬A3, ¬B1∨¬B2, ¬B2∨¬B3,
¬B1 ∨ ¬B3, ¬C1 ∨ ¬C2, ¬C2 ∨ ¬C3, and ¬C1 ∨ ¬C3

Support clauses:
c10
1 : [(A1 ∧B2)∨ (A1 ∧B3)∨ (A2 ∧B3)], c5

1 : [(A1 ∧B1)∨ (A2 ∧B2)∨ (A3 ∧B3)],
c0
1 : [(A2 ∧B1)∨ (A3 ∧B1)∨ (A3 ∧B2)], c10

2 : [(B1 ∧C2)∨ (B1 ∧C3)∨ (B2 ∧C3)],
c5
2 : [(B1 ∧C1)∨ (B2 ∧C2)∨ (B3 ∧C3)], c0

2 : [(B2 ∧C1)∨ (B3 ∧C1)∨ (B3 ∧C2)],
c10
3 : [(C1 ∧A2)∨ (C1 ∧A3)∨ (C2 ∧A3)], c5

3 : [(C1 ∧A1)∨ (C2 ∧A2)∨ (C3 ∧A3)],
c0
3 : [(C2 ∧A1) ∨ (C3 ∧A1) ∨ (C3 ∧A2)]

In our example, each support clause has its associated semiring value as its
weight. The negation of all the remaining clauses are each given a weight of 0:
1. ¬A1 ∧ ¬A2 ∧ ¬A3 2. ¬B1 ∧ ¬B2 ∧ ¬B3 3. ¬C1 ∧ ¬C2 ∧ ¬C3

4. A1 ∧A2 5. A2 ∧A3 6. A1 ∧A3

7. B1 ∧B2 8. B2 ∧B3 9. B1 ∧B3

10. C1 ∧ C2 11. C2 ∧ C3 12. C1 ∧ C3

We want to find an assignment that does not satisfy any of the (hard) clauses
numbered 1 to 12. A truth assignment that satisfies one or more of the support
clauses with an associated semiring value of 10 is preferred over one with lower
semiring values. We can prove that our encoding is correct.

Theorem 1. Let SCSP P be a set of clauses Cl containing a WS-Max-SAT
encoding for P , and a truth assignment α.
– If tαsol = 〈X1,val1 , . . . ,Xn,valn〉 is a solution tuple for the WS-Max-SAT en-

coding of P, then t = 〈X1, . . . ,Xn〉 with Xi = vali for i = 1, . . . , n is a
solution tuple for P .

– If srα
sol is the semiring value associated with tαsol, then the associated semiring

value of t is srα
sol.

5 Algorithms to solve WS-Max-SAT
Most SAT and Max-SAT solvers require the propositional clauses to be in con-
junctive normal form (CNF). In our encoding, the propositional clauses are
highly structured and we do not have to convert them into CNF. We only al-
low truth assignments where the at-least-one-variable and at-most-one-variable
clauses are satisfied in our implementation. This leaves only the support clauses
that have to be checked for satisfiability: exactly one support clause can be sat-
isfied for every constraint. We simply search for the support clause with the best
associated semiring value for each constraint under the current truth assignment.

5.1 The GSAT Algorithm for WS-Max-SAT
GSAT [15] is a greedy algorithm that tries to maximise the number of satisfied
clauses by selecting different variable assignments based on the score of a variable
x under the current assignment α: this is defined as the difference between the
weight of the clauses unsatisfied by α and the assignment obtained by flipping
x in α. GSAT is not a complete algorithm and can get stuck in local minima.
GSAT starts with a random truth assignment. After a maximum number of
allowed flips has been performed, a new random truth assignment is generated.
This improves the probability to find a solution.

We have adjusted GSAT, as presented in Algorithm 1, to solve a WS-Max-
SAT problem for SCSPs with binary constraints. The procedure chooseVariable
selects the next variable to be flipped by considering the score of each variable
x in WS-Max-SAT. The score of a variable x in an assignment α is the f value a
truth assignment αx has if αx is identical to α except for the truth value assigned
to x. There may be more than one variable with a maximum score. In this case
any variable with a maximal f value is chosen at random to be flipped. When a
WS-Max-SAT variable Xi,j is chosen to be flipped, we consider two cases:
– The current value of Xi,j = true and has to be flipped to become false. Some

variable Xi,l with l = 1, . . . , d and l 2= j is chosen at random to become true.
– The current value of Xi,j = false and has to be flipped to become true.

Some variable Xi,l with l = 1, . . . , d and l 2= j is currently true and is given
the value false.

Example 2. Suppose we generate the following random truth assignment α1:
A1 = A2 = B1 = B2 = C1 = C3 = false and A3 = B3 = C2 = true. The
following three clauses are satisfied: c5

1, c0
2, and c10

3 with f(α1) = min(5, 0, 10) =
0. The procedure chooseVariable finds that all flips result in f values of 0, so it
randomly selects C1 to be flipped. Now C1 = true and C2 = false. In the next
iteration it finds that C3 has a score of 5 and it flips C3: in this case the three
clauses c5

1, c5
2, and c5

3 with f(α3) = min(5, 5, 5) = 5.

Algorithm 1 GSAT for WS-Max-SAT
Require: Cl (WS-Max-SAT encoding); W , (set of weights); Sp, (semiring);

MaxFlips, MaxSteps
1: Initialise αBest = 0;
2: for i = 1 to MaxSteps do
3: Let α = a randomly generated truth assignment for Cl;
4: if f(αBEST) <Sp f(α) then
5: αBEST = α;
6: for j = 1 to MaxFlips do
7: if f(αBEST) <Sp f(α) then
8: αBEST = α;
9: if f(α) = 1 then

10: return α
11: else
12: x = chooseVariable(Cl,α);
13: α = α with truth value of x flipped ;
14: return αBEST ;

5.2 The BnB Algorithm for WS-Max-SAT

We present a BnB algorithm to solve WS-Max-SAT, as sketched in Algorithm 2.
The variables are ordered according to their membership in the signatures of the
constraints. We place the variables in the signature of the first constraint on a
queue, and then check whether these variables appear in the signatures of other
constraints. If they do, the unlisted variables in the others constraints’ signatures
are also placed on the queue. Repeat this step until all constraints’ signatures
have been checked. Every variable has a main constraint which is the constraint
where the variable has been identified to be placed on the queue. To find a value
for a variable we search among the tuples of its main constraint for a tuple with
a maximal associated semiring value under the current partial assignment. From
this chosen tuple we get a value to instantiate the current variable.

After a variable has been instantiated, we calculate a lower bound value for
the current node in the search tree, i.e. we calculate an estimated semiring value
for the variable-value tuple of the current (in most cases, partial) assignment.
The lower bound is computed by looking at constraints whose signatures have
been entirely instantiated by the current (possibly partial) solution and com-
bining the semiring values assigned to the projection of the current solution to
the signatures of these constraints. For all the remaining constraints (i.e with
uninstantiated variables), we estimate the maximal semiring value for the pur-
pose of finding a lower bound. The upper bound is initialised with the worst
semiring value and the lower bound with the best semiring value. The variable
var is instantiated with the next variable from Queue and var domain contains
the domain values for that variable.

6 Experimental Setting and Results

We used an Intel Pentium 4 processor at 2.53GHz with 512MB RAM.

Algorithm 2 BnB(NoInstantiated,LB)
Require: Input variables: Cl, (WS-Max-SAT encoding); W, (set of weights); Sp (a

semiring); N (number of variables)
Global variables: Queue (variables in order of instantiation); UB (upper bound)
Value parameters NoInstantiated ; LB (lower bound)

1: if (NoInstantiated < N) then
2: var = pop Queue;
3: while (var domain not empty) do
4: var value = finds best value from var domain;
5: var domain = var domain - var value;
6: NewLB = lower bound for current node;
7: NewLB = ×p(LB, NewLB);
8: if (UB <Sp NewLB) then
9: LB = NewLB;

10: if (NoInstantiated = N-1) then
11: UB = LB ;
12: Best-Solution = current assignment ;
13: if (UB = 1) then
14: return 1;
15: Prune all tuples with associated semiring value ≤Sp UB ;
16: if (BnB(Noinstantiated+1,LB) = 1) then
17: return 1;
18: return 0;

6.1 Results of GSAT-based Algorithm

We solved three sets of randomly generated binary fuzzy CSPs where each set
contains 100 instances. Each instance has 10 domain values. Instances in Set 1
has 80 variables and 10 constraints, in Set 2 100 variables and 10 constraints,
and in Set 3 has 120 variables and 20 constraints.

In each set of 100 instances, 50 instances have a tightness of 70% and the
other 50 instances have a tightness of 90%. A tightness (T) of x% means that
(100-x)% of the possibles tuples have been assigned the maximum semiring value.
All the problems have the following semiring values, Ap = {0, 0.3, 0.5, 0.8, 1}, the
comparative operator is max and the combination operator is min. The results
are in Table 2. In the third row (S=1) we show for how many instances the
algorithm found a maximal solution (with a solution tuple that has a semiring
value of 1). In the next rows we show for how many instances we found solution
tuples with semiring values of 0.8, 0.5 and 0.3, respectively.

There were no instances where a solution with the minimum semiring value
was found. The last two rows contain information for those instances where the
maximal solution were found: it shows on average when the solution was found.
We show during which step, and after how many flips, the algorithm halted.
Each step consists of a maximum of 1000 flips.

All the problems instances have maximal solutions apart from three instances
in set 3 with tightness 90% (last column). These three instances have a best

Set 1 1 2 2 3 3
T 70% 90% 70% 90% 70% 90%

S = 1 50 2 50 0 1 0
S = 0.8 0 48 0 49 33 0
S = 0.5 0 0 0 1 16 38
S = 0.3 0 0 0 0 0 12

steps 1.34 2.00 1.28 n/a 1 n/a
flips 452.4 836.5 438.5 n/a 329.0 n/a

Table 2. Results for the GSAT-based algorithm

solution with a combined semiring value of 0.8. Our GSAT algorithm performs
reasonably well for a relatively small number of steps and flips.

6.2 Results of BnB Algorithm

We solved two sets of randomly generated binary fuzzy CSPs with CONFLEX [3]
and with our BnB algorithm. We used the CONFLEX executable for Windows
downloaded from the CONFLEX website.5 The 40 instances in Set 4 has 10
variables, 10 constraints, 10 domain values (20 instances with tightness 60%
and 20 with tightness 80%). The 20 instances in Set 5 has 15 variables, 10
constraints, 10 domain values (10 instances with tightness 60% and 10 instances
with tightness 80%). Table 3 gives the results.

Set 4 4 5 5
Tightness 60% 80% 60% 80%

CONFLEX 12.34 19.89 154.42 165.14
BnB 0.44 0.29 0.05 0.26

Table 3. Average runtime for Sets 4 and 5 (in seconds)

We experienced difficulty in running larger problems on the Windows version
of the CONFLEX software. However, it is clear from these experiments that our
BnB algorithm is considerably faster than CONFLEX.

We also solved the three sets of problems of Table 2 and a fifth set containing
50 instances, where each instance has 150 variables, 30 constraints and a domain
size of 20. All the problems in Set 5 have a maximal solution. See Table 4.

7 Conclusion and Future Work

We define a WS-Max-SAT problem by translating a SCSPs into propositional
weighted Max-SAT problem. We present an incomplete GSAT-based algorithm
to show that this translation is feasible to solve SCSPs. We also present a BnB
algorithm that performs surprisingly well, outperforming the CONFLEX system.

5 http://www.inra.fr/internet/Departements/MIA/T//conflex/adressesConflex.html

Set 1 1 2 2 3 3 5
T 70% 90% 70% 90% 70% 90% 90%

Runtime 0.27 0.48 0.35 0.52 0.86 1.52 5.30

Table 4. Runtime for the BnB algorithm (in seconds)

A next step is to investigate the adaptation of existing efficient Weighted Max-
SAT algorithms to solve WS-Max-SAT. We also plan to test our BnB algorithm
by solving benchmark problems.

References

1. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint solving and
optimization. Journal of the ACM 44(2) (1997) 201–236

2. Wilson, M., Borning, A.: Hierarchical constraint logic programming. Journal of
Logic Programming 16 (1993) 277–318

3. Dubois, D., Fargier, H., Prade, H.: The calculus of fuzzy restrictions as a basis for
flexible constraint satisfaction. In: Proc. of IEEE Conf on Fuzzy Syst. (1993)

4. Fargier, H., Lang, J.: Uncertainty in constraint satisfaction problems: a probabilis-
tic approach. In: ECSQARU-1993. (1993)

5. Georget, Y., Codognet, P.: Compiling semiring-based constraint with clp(FD,s).
In: CP-1998. (1998)

6. Rossi, F., Pilan, I.: Abstracting soft constraints: Some experimental results. In:
Proc. of Joint Annual Workshop of ERCIM Working Group on Constraints and
the CologNET area on Constraint and Logic Programming. (2003)

7. Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G.:
Semiring-based CSPs and valued CSPs: Basic properties and comparison. Con-
straints 4 (1999) 199–240

8. Bistarelli, S., Fung, S., Lee, J., Leung, H.: A local search framework for semiring-
based constraint satisfaction problems. In: Soft-2003. (2003)

9. Wilson, N.: Decision diagrams for the computation of semiring valuations. In:
IJCAI-05. (2005)

10. Xing, Z., Zhang, W.: MaxSolver: An efficient exact algorithm for (weighted) max-
imum satisfiability. Artificial Intelligence 164(1-2) (2005) 47–80

11. Alsinet, T., Manya, F., Planes, J.: Improved exact solver for weighted Max-SAT.
In: SAT-2005. (2005) 371–377

12. Gent, I.P.: Arc consistency in SAT. In: ECAI-2002. (2002)
13. Walsh, T.: SAT v CSP. In: CP-2000. (2000) 441–456
14. Bennaceur, H.: The satisfiability problem regarded as a constraint satisfaction

problem. In: ECAI 1996. (1996) 155–159
15. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability

problems. In: AAAI-1992. (1992) 440–446
16. Li, C.M., Manyà, F., Planes, J.: Detecting disjoint inconsistent subformulas for

computing lower bounds for Max-SAT. In: AAAI-06. (2006)
17. de Givry, S., Larrosa, J., Meseguer, Schiex, T.: Solving Max-SAT as weighted CSP.

In: CP-2003. (2003)
18. Larossa, J., Heras, F.: Resolution in Max-SAT and its relation to local consistency

in weighted CSPs. In: IJCAI-05. (2005)

