Deriving optimal exploration target zones on
mineral prospectivity maps’

P. Debba?, E. J. M. Carranza®, A. Stein? and F. D. van der Meer?

TReceived ; accepted
2CSIR, Logistics and Quantitative Methods, CSIR Built Environment,
P. O. Box 395, 0001, South Africa.
JInternational Institute for Geo-Information Science and Earth
Observation (ITC), Hengelosestraat 99, PO Box 6, 7500AA Enschede,
The Netherlands.

Suggested Running Head: Deriving optimal exploration target zones

Corresponding Author:
P. Debba
Telephone: +27-12-8413421
Fax: +27-12-8413037
Email: pdebba@csir.co.za / pdebba@gmail.com



ABSTRACT

This paper describes a quantitative methodology for deriving optimal exploration target zones
based on a probabilistic mineral prospectivity map. The methodology is demonstrated in the
Rodalquilar mineral district in Spain. A subset of known occurrences of mineral deposits of the
type sought were considered discovered and then used as training data, and a map of distances
to faults/fractures and three band ratio images of hyperspectral data were used as layers of
spatial evidence in weights-of-evidence (WofE) modeling of mineral prospectivity in the study
area. A derived posterior probability map of mineral deposit occurrence showing non-violation
of the conditional independence assumption and having the highest prediction rate was then
input to an objective function in simulated annealing in order to derive a set of optimal explo-
ration focal points. Each optimal exploration focal point represents a pixel or location within
a circular neighborhood of pixels with high posterior probability of mineral deposit occurrence.
Buffering of each optimal exploration focal point, based on proximity analysis, results in optimal
exploration target zones, many of which coincide spatially with at least one of the occurrences
of mineral deposit of the type sought in the subset of cross-validation (i.e., presumed undis-
covered) mineral deposits of the type sought. The results of the study show usefulness of the
proposed methodology for objective delineation of optimal exploration target zones based on a
probabilistic mineral prospectivity map.

Keywords: Simulated annealing, epithermal deposits, weights-of-evidence, hyperspectral re-
mote sensing, hydrothermal alteration

INTRODUCTION

Occurrences of mineral deposits, which could be in the form of mines (surveyed in three dimen-
sions), prospects (surveyed mostly in two dimensions) or even showings (significant outcrops),
are considered samples of a mineralized landscape. Occurrences of mineral deposits of the type
sought are used for training in data-driven predictive mapping of mineral prospectivity. Basi-
cally, mineral prospectivity mapping involves delineating exploration targets, whereabouts the
probability for occurrence of mineral deposit-type of interest is high. Such targets might necessi-
tate a more detailed survey in a further stage of mineral exploration. In regional- to district-scale
mineral prospectivity mapping, the objective is to delineate exploration target zones (i.e. poly-
gons). This differs in local- to deposit-scale mineral prospectivity mapping, where the objective
is to define exploration target locations (i.e. points).

Several mathematical methods exist for regional- to district-scale data-driven mapping of
mineral prospectivity. Particular possibilities include the weights-of-evidence or WofE method
(Bonham-Carter, Agterberg and Wright, 1988, 1989; Agterberg, Bonham-Carter and Wright,
1990), logistic regression (Chung and Agterberg, 1980; Agterberg and Bonham-Carter, 1999),
canonical favorability analysis (Pan, 1993), neural networks (Porwal, Carranza and Hale, 2003;
Rigol-Sanchez, Chica-Olmo and Abarca-Hernandez, 2003) and evidential belief functions (Car-
ranza and Hale, 2003). Regardless of which data-driven method of mineral prospectivity map-
ping is applied, a logical question regarding the usefulness of a regional- to district-scale mineral
prospectivity map in making a decision to proceed (or not to proceed) to the next higher scale



of mineral exploration is: “Which areas of high likelihood of mineral deposit occurrence are
optimal exploration target zones for further surveying of undiscovered occurrences of mineral
deposits of the type sought?”

The objective of this paper is to demonstrate a methodology that we have developed in
order to provide a plausible answer to the aforementioned question in a district-scale case study.
We have tested our proposed methodology, for deriving optimal exploration target zones based
on using a district-scale WofE-derived mineral prospectivity map of the Rodalquilar mineral
district (southeastern Spain).

GENERAL DESCRIPTION OF THE METHODOLOGY

Initially, we created a mineral prospectivity map via the WofE method (Fig. 1), which is based
on a Bayesian probability framework to update the prior probability of mineral deposit occur-
rences of the type sought in every unit cell or pixel in a study area. We used a set of training
mineral deposit occurrences of the type sought and a number of thematic map layers of geologi-
cal evidence having positive spatial association with such type of mineral deposits. The output
mineral prospectivity map is a map of posterior probability of mineral deposit occurrences of the
type sought. In such a map, we considered individual pixels to be prospective if their posterior
probability is greater than the estimated prior probability. After determining the prediction
rate of the WofE-derived mineral prospectivity map (i.e., proportion of cross-validation deposits
that coincide with prospective pixels), we used it as input spatial information to our proposed
methodology (explained below), in order to determine optimal exploration target zones. Al-
though we used WofE to create a mineral prospectivity map in this case study, we postulate
that any mineral prospectivity map derived by any of the methods mentioned earlier could also
be useful for the same purpose.

In order to determine the optimal exploration target zones from a given mineral prospectivity
map, we adopt the following paradigm. In searching for target object(s) of interest, not only
in regional- or district-scale mineral exploration but also in other types of “search endeavors”
at similar scales (i.e., in large areas), one intuitively defines at first instance a focal point
according to a set of criteria and then draws a perimeter (i.e., a search radius) around such
a focal point according to another set of criteria. The perimeter around the focal point is
usually, but not always, circular within which to continue searching for the target object(s) of
interest more intensively. Thus, with this intuitive paradigm, we used a WofE-derived posterior
probability map in order to determine optimal exploration target zones in the following way
(Fig. 1). First, we used the prediction rate of the WofE-derived posterior probability map and
the number of cross-validation deposits delineated correctly by the map in order to estimate a
number of exploration focal points. For this purpose, we used the binomial distribution model.
Second, we used the posterior probabilities in the WofE-derived map and the estimated number
of exploration focal points as input data and as a control parameter, respectively, in order to
derive the locations of optimal exploration focal points. An optimal exploration focal point is
a pixel or location, at and around which there is high posterior probability of mineral deposit
occurrences of the type sought.
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Because mineral deposit occurrences are samples of a mineralized landscape; a configuration
of exploration focal points can also be considered as a sampling scheme. Many studies have
demonstrated that a sampling scheme can be optimized satisfactorily via simulated annealing
(SA). Previous studies of SA applications to obtain optimal sampling schemes involved stratifi-
cation of input data (van Groenigen, Gandah and Bouma, 2000), definition of thresholds (van
Groenigen, Gandah and Bouma, 2000), definition of a weight function (van Groenigen, Pieters
and Stein, 2000) and application of ordinary kriging (Shyan-Shu, Ji-Zheng and Shi-Shang, 2005).
Previous studies of deriving optimal sampling schemes in conjunction with remote sensing have
used multispectral data (Tapia, Stein and Bijker, 2005) or hyperspectral data (Debba and oth-
ers, 2005). These previous studies typically developed model-based optimal sampling schemes
(de Gruijter and ter Braak, 1990). In this study, we demonstrate application of SA to derive a
set of optimal exploration focal points based on a probabilistic mineral prospectivity map.

The optimal exploration focal points derived via the application of SA are then subjected to
proximity analysis in order to delimit the optimal exploration target zones around each of them.
Each of the optimal exploration target zones are prioritized according to certain criteria. The
delineated optimal exploration target zones are then validated for each of the prioritized optimal
exploration target zones and is tested against the set of cross-validation deposits that was also
used to test and determine the prediction rate of the input WofE-derived posterior probability
map (Fig. 1).

GENERATION OF PROSPECTIVITY MAP

Weights of Evidence (WofE) Modeling

WofE modeling (Bonham-Carter, Agterberg and Wright, 1988; Agterberg, Bonham-Carter and
Wright, 1990) is a Bayesian method that combines information from multiple layers of spatial
evidences in order to predict the occurrence of a binary pattern. Each mineral deposit occurrence
is treated as a binary object, being either present or absent, in every unit cell or pixel. In mineral
prospectivity mapping, each layer of spatial evidence has either a positive or negative spatial
association with a set of training mineral deposit occurrences. Each layer of spatial evidence
thereby either increases or decreases the posterior probability of mineral deposit occurrence at
unvisited locations.

Let D represent a set of discovered mineral deposits with each deposit either contained in or
represented by just one unit cell. Let P(D) be an estimate of the prior probability of mineral
deposit occurrence. Further, let B* denote a binary pattern of a layer of spatial evidence with a
threshold at ¢, which is a spatial data attribute (e.g. band ratio or distance to faults/fractures),
that is initially arbitrarily chosen. The conditional probability given the presence of B! is

P(B'ID)

P(D’Bt) = P(D) P(Bt)

, (1)
where P(D|B") is the posterior probability of mineral deposit occurrence, given the presence
of the binary pattern. Similarly, we can define the posterior probability of mineral deposit
occurrence, given the absence of the binary pattern, Bt.



In WofE, the posterior probability is converted to posterior odds ratio (O(A) = P(A)/P (A)
for any occurrence A), by dividing both sides of Equation 1 by P(D|B") and simplifying by
replacing P(D|B") - P(B') = P(B'|D) - P(D). This yields

P(B'|D)

O(D|B") = O(D) - PB'D)’

(2)

where O(D|B?) is the posterior odds of D given B* and O(D) is the prior odds of D. By taking
the natural logarithm on both sides of Equation 2, we get

InO(D|B") =InO(D)+ W™, (3)
. . P(B'D) . . | o .
where W™ = In m is the weight of evidence for the presence of B*. Similarly, using the
posterior probability of mineral deposit occurrence given the absence of BY, we arrive at
InO(D|BY) =InO(D) + W~ , (4)
P(BYD
where W™ =In g is the weight of evidence for the absence of B!.
P(B'|D)

The statistical significance of the weights can be determined based on their variances, which
are approximated from Bishop, Fienberg and Holland (1975) as

2(WH) = L ! an
“W = ¥EaD) T Nwop) ™
! ] (5)

sfW-) =

— S
N(B'NnD) N(BIND)

where N(-) denotes the number of counts; for example, N(B*N D) is the number of mineral
deposit occurrences in the presence of binary pattern B!. Once the weights W and W~ are
determined from Equations 3 and 4 for each layer of spatial evidence B! using several different
thresholds, the maximum spatial contrast, C = W' — W~ usually indicates the optimum
threshold value of ¢, which can be calculated. If the number of mineral deposit occurrences
is small, the studentized spatial contrast, C'/s(C') (where s(C') is the standard deviation of
('), aids in determining an optimum threshold value of spatial evidence in order to create
B;. A studentized spatial contrast > 1.96 (Bonham-Carter, 1994) is a useful criteria on an
optimum threshold value of ¢. The binary predictor maps, B;, are then used to determine the
posterior probability of mineral deposit occurrence. For k sets of spatial evidence, resulting in
By, Bs, ..., By binary predictor maps,

P(B,...,By|D)- P(D)
P(Bi,...,By) ]
P(B,...,By|D)- P(D) (6)

P(Bi,...,By|D) - P(D)+ P (By,...,By|D) - P(D)

P(D|By..... By)

6



Equation 6 allows us to calculate the posterior probability of a mineral deposit occurrence given

the binary presence of an evidence. Because of their interaction, the terms P (By,...,B|D)
and P (Bl, ceey Bk]D) are difficult to estimate, unless conditional independence (CI) is assumed.
k

Assuming CI, then P (By,..., By |D) = H P(B;|D). A similar expression applies for the second
i=1

term in the denominator of Equation 6. With & binary predictor maps, 2* possible combinations

of spatial evidence exist, depending on whether binary predictor map pattern B; is present or

not. This also means that there are 2* unique conditions in the posterior probability map, being

equivalent to 2* polygons or grid cells in which the same combination of evidence occurs. After

assuming CI in Equation 6 and some simplifications, we obtain, in odds formulation,

k
nO; (D| By,...,B) =lmnO(D) + > Wy, (7)
i=1
where V[/ij denote the weights (W," or ;) contributed by spatial evidence in binary predictor
map B; (i = 1,2,..., k) to the jth unique condition (j = 1,2, ...,2*). The posterior probabilities
are then obtained from the posterior odds using

O,(D|\By,....B
P, = P(DIB,, ..., By) = 2P . B

_ , 8
1+ 0,(D|B,...,By) ®)

The variance of the posterior odds is
$(0) =) (W), (9)

where s?(W;) is either s?(W;") or s*(W,”) (defined by Equation 5 for each binary predictor map
B;) depending on whether the binary predictor map B; is present or not.

The images of hyperspectral band ratios and the image of distances to faults and fractures
were converted to binary predictor maps B; by finding the optimum threshold value in these
images with respect to D in order to maximize positive spatial association of these evidential
data with the target variable D as indicators of mineral deposit occurrence. In the binary
predictor maps, the corresponding values of W+ and W~ are then assigned to the pattern
indicating presence or absence of evidence, respectively. The binary predictor maps are then
combined using Equation 7 and the posterior probability is estimated using Equation 8.

WofE modeling assumes CI among the evidence maps with respect to a set of mineral deposit
occurrences. Violation of this assumption causes the posterior probabilities to be over-estimated.
The assumption of CI is tested using the new omnibus test (NOT) (Agterberg and Cheng,
2002; Thiart and others, 2004). The NOT compares the number of training mineral deposit
occurrences N (D) to the number of predicted training mineral deposit occurrences N(D)pred,
where

N(D)prea = Z PN (A)}, (10)
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and {N(A)}; is the area in unit cells for the 7th unique condition. The test statistic (Agterberg
and Cheng, 2002; Thiart and others, 2004) under the null hypothesis Hy : N(D)prea = N (D) is

N(D)pred - N(D)

N = N Dl

(11)

where the variance of the number of predicted training mineral deposit occurrences s2[N (D) pred]
is estimated by

ok

SIN(D)prea] = ) [N} x *(Fy) (12)

i=1

and the variance of P; is estimated based on the variance of the weights (Bonham-Carter,
Agterberg and Wright, 1989) by

P(B) = oy + 20 W) x PR (13)

Values of NOT are assumed to approximate the standard Gaussian distribution and the
hypothesis will be rejected in favor of Hy : N(D)pea > N(D) for a statistically larger difference.

An integrated model showing non-violation of the CI assumption is then used to create a
posterior probability map. The prediction rate of a posterior probability map is estimated as
the proportion of predicted undiscovered mineral deposit occurrence in a cross-validation set.
This corresponds with prospective pixels (i.e., pixels with posterior probability greater than
the prior probability) in a WofE model created by using a training set of discovered mineral
deposit occurrences. By interchanging the roles of the two sets of mineral deposit occurrences as
training and cross-validation data, the WofE model showing non-violation of the CI assumption
and having the highest prediction rate is chosen as input to our proposed method for final
derivation of the optimal exploration target zones.

Case Study
Geology and Mineralization of the Rodalquilar Mineral District

The Rodalquilar mineral district is located in the Sierra del Cabo de Gata volcanic field, in the
south-eastern part of Spain (Fig. 2), consisting of pyroxene andesites to rhyolites of the late
Tertiary age. Extensive hydrothermal alteration of the volcanic rocks resulted in formation of
high to low temperature minerals as: silica — alunite — kaolinite — illite — chlorite. Occur-
rences of high- or low-sulphidation epithermal precious- and base-metal deposits are in veins
or in hydrothermal breccias (i.e. fracture controlled) associated with hydrothermally altered
rocks (Arribas and others, 1995). High-sulphidation precious-metal deposits are associated with
advanced argillic (alunitetkaolinite) and intermediate argillic (kaolinitetillite) zones, whereas
low-sulphidation precious- and base-metal deposits are associated with argillic to pyropylitic
(illite£chlorite) zones (Arribas and others, 1995). The epithermal minerals are localized along
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Figure 2. A generalized geological map of the Rodalquilar area mineral district.

faults and fractures that cut through the volcanic host rocks. Based on these generalized ge-
ological characteristics of discovered epithermal mineral deposits in the district, we apply two
recognition criteria in mapping prospectivity for epithermal mineral deposits, (1) hydrothermal
alteration evidence and (2) structural evidence.

Data for Hydrothermal Alteration Evidence

We used a sub-scene, consisting of 2640 x 1300 pixels, of airborne imaging spectrometer data
acquired by the Hyperspectral Mapper (HyMAP) in July 2003 during the HyEUROPE 2003
campaign over the study area and its vicinity. HyMap is a 126-band sensor that collects spectral
data in a cross-track direction by mechanical scanning and along-track direction by movement
of the airborne platform. The HyMap sensor is an imaging spectrometer of reflected solar ra-
diation within the 0.4-2.5 ym wavelength region of the electromagnetic spectrum. The spectral
coverage of HyMap is nearly continuous in the visible-to-near-infrared (VNIR) and shortwave-
infrared (SWIR) regions with small gaps in the middle of the 1.4 and 1.9 um atmospheric water
absorption bands. The spatial configuration of the HyMap sensor accounts for an instantaneous-
field-of-view (IFOV) of 2.5 mrad along track and 2.0 mrad across track resulting in a pixel size of
3-5m for the data used in this paper. Due to malfunction of HyMap’s SWIR 1 detector during
acquisition, there are no data in the 1.50-1.76 pm spectral window. Data acquired by the SWIR 2
detector (bandwidth 16 nm), within the 1.95-2.48 um spectral range were atmospherically and
geometrically corrected using the Atmospheric and Topographic Correction (ATCOR 4) model
(Richter, 1996). The 1.95-2.48 ym spectral region covers the most prominent spectral absorp-
tion features of hydroxyl-bearing minerals, sulfates and carbonates, which are common to many
hydrothermal alteration assemblages (Kruse, 2002). SWIR 2 data are useful for mapping hy-
drothermal alteration assemblages as well as for regolith characterization (Abrams and others,
1977; Goetz and Srivastava, 1985; Cudahy, Okada and Brauhart, 2000; Kruse, 2002).
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Figure 3. Plot of seven endmembers from USGS spectral library (Clark and others, 1993) in the
spectral range 1.95-2.48 ym. Vertical lines indicate the band centers used to obtain band ratio images
(see text for further information).

Figure 3 shows the plots of spectra of seven most prominent hydrothermal alteration min-
erals in the study area (Arribas and others, 1995), at spectral intervals coinciding with the
HyMAP SWIR 2 data. This figure shows the differences in absorption features of the dif-
ferent minerals, in terms of shape, size, symmetry, depth and position. Except the quartz
spectrum, all the other spectra have distinctive absorption features at wavelengths of approx-
imately 2.2 ym, although each absorption feature differs slightly in position and depth. In
order to delineate predominant minerals in hydrothermal alteration zones associated with the
epithermal deposits, hyperspectral band ratio images (Lillesand, Kiefer and Chipman, 1994)
were created using the HyMap SWIR 2 bands corresponding to the wavelengths indicated
in Figure 3, namely, bands 103/107 (2.100/2.171 ym), bands 107/109 (2.171/2.205 pm) and
bands 118/112 (2.357/2.258 um). Band ratioing is a way to enhance the presence of a material
of interest from spectral images by dividing data in a spectral band with data in another spec-
tral band. Band ratioing images can convey information, attributable to spectral properties of
surface mineral, independent on variations in scene illumination. We used an arctan transfor-
mation on the band ratios (Lillesand, Kiefer and Chipman, 1994), which considers the gradient
of spectral data between two bands.

Figure 4 displays the images of band ratios used as input evidence layers in WofE modeling.
Pixels in the image of band ratio 1 (2.100/2.171 um) are brighter (i.e. higher ratios) for alunite,
kaolinite and pyrophyllite but slightly darker (i.e. lower ratios) for illite (Fig. 4(a)). The first
three minerals are predominant in advanced argillic zones. Pixels in the image of band ratio 2

10



(2.171/2.205 pum) are brighter for illite and kaolinite but are darker for alunite and pyrophyllite
(Fig. 4(b)). The brighter pixels in the image of band ratio 2 thus enhance predominant minerals
associated with intermediate argillic zones. Pixels in the image of band ratio 3 (2.357/2.258 um)
are darker for minerals predominant in advanced argillic zones but brighter for minerals pre-
dominant in argillic to pyropylitic zones (Fig. 4(c)).
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Data for Structural Evidence

Mapped faults and fractures were screen-digitized on georeferenced raster-scanned maps, which
were obtained from published (IGME, 1981; Arribas and others, 1995) and unpublished sources.
In addition, faults and fractures were interpreted and screen-digitized on shaded-relief images
of a digital elevation model (DEM) derived from Advanced Spaceborne and Thermal Emission
Radiometer (ASTER) data acquired on 26 May 2002. A map of distances to mapped and
interpreted faults and fractures was then created (Fig. 4(d)) and used in WofE modeling.

Mineral Occurrence Data for WofE Modeling

Two sets of locations of mineral deposit occurrences were used in WofE modeling. One set, of
14 epithermal deposit occurrences, was digitized from a 1:50,000 scale geological map of Spain
(IGME, 1981); and from a map in Arribas and others (1995). The other set, of 47 epithermal
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deposit occurrences, was digitized from the mineral prospectivity map of Rigol-Sanchez, Chica-
Olmo and Abarca-Hernandez (2003), which actually shows 49 epithermal occurrences although
two of these fall outside our study area. In this latter set, 11 epithermal deposit occurrences were
discarded because each of them lie within 25 m of an epithermal deposit occurrence in the first
set, which indicates high likelihood that these are the same 11 of the 14 in the first set. Thus,
the second set has 36 epithermal deposit occurrences, each of which is believed to be different
from the 14 epithermal deposit occurrences in the first set only in terms of location, but not in
terms of deposit type. Each of the two sets of epithermal deposit occurrences were then used
for training and for cross-validation of a WofE model. A training set is assumed to represent
discovered mineral deposits, whereas a cross-validation set is assumed to represent undiscovered
mineral deposits. Prediction rate was the criterion applied to select the better of the two
WofE models created as input for derivation of optimal exploration zones. The epithermal
deposit occurrences in either of the sets used are at present not economically interesting under
the prevailing economic and geo-political conditions. Thus implications for the usefulness of
the methods demonstrated here, based on either of these two deposit occurrence datasets, are
discussed later.

Results of WofE modeling of Mineral Prospectivity

The study area consists of 65253 unit cells of 25 x 25 m, based on the spatial resolution of the
ASTER DEM. All the maps/images used in the analyses were resampled to this spatial reso-
lution, which is adequately small and appropriate for WofE modeling (Agterberg, 1992). Each
unit cell or pixel containing a mineral deposit occurrence in training set 1 (with 14 epithermal
occurrences) was buffered to a minimum of 25m so as to increase the number of training set 1
pixels (to 70) in order to obtain statistically significant weights and contrasts. The distance
buffer, derived by point pattern analysis (Boots and Getis, 1988), represents the minimum dis-
tance from each mineral deposit occurrence within which there is zero probability of another
mineral deposit occurrence. The estimate of P(D) based on training set 1 is 0.00107, whereas
the estimate of P(D) based on training set 2 is 0.00055. Table 1 shows the results of WofE
modeling to create binary predictor patterns using the sets of hydrothermal alteration evidence
and structural evidence with respect to either set of epithermal deposit occurrences.

Zones with high values of band ratio 1 (CR1) and of band ratio 2 (CR2) have positive
spatial associations with epithermal deposit occurrences in either set of training data. Positive
spatial association between zones with high values of CR1 and epithermal deposit occurrences is
stronger than positive spatial association between zones with high values of CR2 and epithermal
deposit occurrences as indicated by the magnitude of W and C. Zones with high values of band
ratio 3 (CR3) have negative spatial association with epithermal deposit occurrences in either set
of training data. These results are consistent with field observations, as most epithermal deposit
occurrences in the area are associated with intermediate argillic to advanced argillic alteration
zones while some are associated with argillic to propylitic zones.

The epithermal deposit occurrences in training set 1 have a positive spatial association
with faults and fractures, and the spatial association is optimal within 70 m of such geological
features. The spatial association of faults and fractures with the epithermal deposit occurrences
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Table 1. Results of WofE calculations for binary predictor patterns based on range of spatial data
attributes (in brackets under column 1) having optimum spatial associations (in terms of studentized
C') with the training epithermal deposit occurrences.

Binary predictor |y gy | N(pnBye | W | sov ) | W | sy | € | stud. ©
patterns
Using training set 1 (N (D) = 14 epithermal deposit occurrences) for WofE modeling?
CR1 (> 0.80) 13038 46 1.19 0.15 | -0.85 0.20 | 2.04 8.10
CR2 (> 0.79) 32509 44 0.23 0.15 | -0.30 0.20 | 0.53 2.16
CR3 (> 0.71) 52290 38 -0.56 0.18 | 1.01 0.16 | -1.57 -5.97
DFF (< 70m) 24800 48 0.59 0.14 | -0.68 0.21 | 1.27 4.55
Using training set 2 (N (D) = 36 epithermal deposit occurrences) for WofE modeling
CR1 (> 0.81) 9819 19 1.26 0.23 | -0.59 024 | 1.84 5.52
CR2 (> 0.79) 22791 19 0.41 0.23 | -0.32 0.24 | 0.73 2.20
CR3 (> 0.70) 55419 21 -0.38 0.22 | 1.02 0.26 | -1.39 -4.12
DFF (< 170m) 45396 32 0.25 0.18 | -1.01 0.50 | 1.25 2.36

@ Values in brackets indicate attributes of spatial data within pattern representing presence of binary
evidence. CR1 = values of channel ratio 1 (Fig. 4(a)). CR2 = values of channel ratio 2 (Fig. 4(b)).
CR3 = values of channel ratio 3 (Fig. 4(c)). DFF = distances to faults and fractures (Fig. 4(d)).

b Values in this column refer to number of pixels within pattern representing presence of binary evidence.
¢ Values in this column refer to number of pixels of training data within pattern representing presence
of binary evidence.

¢ Each location of epithermal deposit was buffered to 25 m, which increased number of training pixels
from 14 to 70.

in training set 2 is also positive, and it is optimal within 170 m of such geological features. These
results suggest in training set 1 there is a higher proportion of vein-type epithermal deposits than
disseminated-type epithermal deposits, whereas in training set 2 there is a higher proportion of
disseminated-type epithermal deposits than the vein-type epithermal deposits. The types and
relative strengths of spatial associations (as indicated by C' or Studentized C') of the individual
layers of spatial evidence with the epithermal deposit occurrences in set 1 and in set 2 are the
same. This indicates that the epithermal deposit occurrences in either set 1 or set 2 have very
similar geological characteristics. This implies further that a mineral prospectivity map derived
through WofE modeling using either one of the two training sets would be able to predict a
large proportion of epithermal deposit occurrences in the other set. Table 2 shows the results of
the tests of CI on 3-layer and full 4-layer models of posterior probabilities of epithermal deposit
occurrence based on each training set.

Only two 3-layer models based on training set 1 pass the NOT for CI assumption. The two
3-layer models exclusive of CR1 and CR3 both do not violate the CI assumption, whereas the
models inclusive of CR1 and CR3 violate the CI assumption. Violation of the CI assumption
is mainly due to overlap between positive values in W7 patterns of CR1 and positive values in
W~ patterns of CR3 (Table 1), which results in over-estimation of posterior probability. Each
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Table 2. Results of tests of the CI assumption based on NOT.

Predictor map combination | NOT value | p(NOT) | CT test
Integrated models based on training set 1 (N(D) = 14
epithermal deposit occurrences) for WofE modeling

CR1-CR2-CR3 1.77 0.038 Fail
CR1-CR2-DFF 0.49 0.312 Pass
CR1-CR3-DFF 2.09 0.018 Fail
CR2-CR3-DFF 1.00 0.159 Pass
CR1-CR2-CR3-DFF“ 2.24 0.012 Fail

Integrated models based on training set 2 (N (D) = 36
epithermal deposit occurrences) for WofE: modeling

CR1-CR2-CR3 1.34 0.090 Pass
CR1-CR2-DFF 0.35 0.363 Pass
CR1-CR3-DFF 0.85 0.198 Pass
CR2-CR3-DFF 0.17 0.432 Pass
CR1-CR2-CR3-DFF 1.37 0.085 Pass

@ CR1 = values of channel ratio 1 (Fig. 4(a)). CR2 = values of channel ratio 2 (Fig. 4(b)). CR3 =
values of channel ratio 3 (Fig. 4(c)). DFF = distances to faults and fractures (Fig. 4(d)).

of the two 3-layer models, which pass the CI test, can be used mainly to map prospective zones
for epithermal deposits associated with intermediate argillic to advance argillic zones. Based
on prospective pixels, the CR1-CR2-DFF model has a prediction rate of 0.58, (i.e., it predicts
correctly 21 of the 36 cross-validation deposit occurrences), whereas the CR2-CR3-DFF model
has a prediction rate of 0.47, (i.e., it predicts correctly 17 of the 36 cross-validation deposit
occurrences). The posterior probability map based on the CR1-CR2-DFF model from training
set 1 is shown in Figure 5(a).

All the 3-layer models and the full 4-layer model based on training set 2 pass the NOT for CI
assumption. Models inclusive of CR1 and CR3, however, barely pass the NOT. This indicates
to some degree the existence of conditional dependence that the binary predictor patterns of
CR1 and CR3 are to some extent conditionally dependent, and this is mainly due to the overlap
between the positive values in W™ patterns of CR1 and the positive values in W~ patterns
of CR3 (Table 1). Because all the integrated models based on training set 2 pass the CI test,
each of them can be used to map prospective zones for epithermal deposits. However, only
the full 4-layer model was considered further in the analysis because it includes all of the four
pieces or layers of spatial evidence, suggesting that it is useful not only for mapping zones
prospective for epithermal deposits associated with intermediate to advanced argillic zones but
also for epithermal deposits associated with argillic to propylitic zones. Based on prospective
pixels and on training set 2, the CR1-CR2-CR3-DFF model has a prediction rate of 0.64 (i.e.,
it predicts correctly nine of the 14 cross-validation deposit occurrences). The full 4-layer model
based on training set 2 is thus superior to any of the models based on training set 1. The
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Figure 5. Maps of posterior probability of epithermal deposit occurrences.
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posterior probability map based on the CR1-CR2-CR3-DFF model from training set 2 is shown
in Figure 5(b).

Discussion on Predictive Modeling of Mineral Prospectivity

Deriving optimal exploration target zones depends on the accuracy of an input mineral prospec-
tivity map, which in turn depends on the number and accuracy of evidential datasets and, in
the case of data-driven methods, on the number and accuracy of training data used in model-
ing. In the present work, we used four sets of evidential data and two sets of training deposit
occurrences. Three sets of our evidential data are remotely-sensed data, which are indications
of hydrothermal alteration. The accuracy of each set of remotely-sensed evidence is reliable
based on a number of spectral measurements of ground samples used by Debba and others
(2005). Several other methods exist to detect hydrothermal alteration from spectral remote
sensing data. For example, principal component scores from several spectral band ratio images
(Crosta and others, 2003) could be used as evidence for the presence of hydrothermal alteration.
With principal component analysis, however, it may be difficult to judge the hydrothermal al-
teration assemblages associated with epithermal mineralization. Selecting pairs of hyperspectral
bands for band ratioing in order to enhance the presence of hydrothermal alteration is, how-
ever, more intuitive and practical than applying principal component analysis. The accuracy of
interpreted faults/fractures, which were combined with published mapped faults/fractures, was
also considered reliable based on ground-checking.

The two sets of mineral deposit occurrences, used for training and cross-validation were each
derived from independent published literatures, namely, IGME (1981), Arribas and others (1995)
and Rigol-Sanchez, Chica-Olmo and Abarca-Hernandez (2003). The mineral deposit occurrences
derived from the published literatures were considered accurate mainly in terms of their locations
but not in terms of deposit (sub-)type homogeneity. The rather low prediction rate (of 64%) of
the probabilistic prospectivity map shown in Figure 5(b) is attributable partly to the (a) small
number of evidential datasets used and (b) presence of two (precious- and base-metal) sub-
types of epithermal deposits used in modeling prospectivity. In regard to the latter, we could
have prepared relatively homogeneous sets of training data (for e.g., precious-metal epithermal
deposits) by reclassification of all the epithermal deposits in the district through application of
artificial neural network (Singer and Kouda, 1997, 2003). Required datasets (e.g., mineralogy,
grade and tonnages, etc.) for classification of mineral deposits via application of artificial neural
networks, however, are incomplete or unavailable. Alternatively, we could have combined the two
mineral deposit occurrence datasets and then made a series of random partitions into training
and cross-validation data sets in order to carry out a bootstrap or jackknife validation, leading
to the ‘best’ mineral prospectivity map. This was not an objective of this study, but rather to
obtain a properly created and validated mineral prospectivity map with a good prediction rate
based on limited available evidential data and mineral deposit occurrence data.

The 14 epithermal deposit occurrences in training set 1 are now mostly defunct mines and
prospects, whereas the 36 epithermal deposit occurrences in training set 2 are mostly prospects
and showings. The epithermal deposit occurrences in either set are therefore not economically
interesting under the present economic and geo-political conditions. In view of this, one might
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question the value of a mineral prospectivity map derived from using such training sets, in
particular training set 2. The results of using such training sets, however, are consistent with
results of previous works (e.g., Carranza and Hale, 2000), where a larger training set of relatively
non-economic deposit occurrences results in a mineral prospectivity model that is better than a
mineral prospectivity model derived from a smaller training set of relatively economic deposit
occurrences. The theoretical explanation for this is that ‘non-economic’ deposit occurrences
have much higher frequencies, corresponding to a large number of samples, whereas ‘economic’
deposit occurrences have lower frequencies, corresponding to a small number of samples. Because
mineral prospectivity mapping involves the concept of sampling, better mineral prospectivity
models are more often derived when using larger number of samples than when using smaller
number of samples. The two probabilistic prospectivity maps (Fig. 5) were created from two
independently collected epithermal deposit occurrence data, and each map was validated with
deposit occurrence data not used in modeling (Agterberg and Bonham-Carter, 2005). The
prospectivity map with better prediction rate (Fig. 5(b)) was used as input data to the proposed
method for deriving optimal exploration zones.

DERIVATION OF FOCAL POINTS AND TARGET ZONES

In order to derive optimal exploration target zones, the posterior probabilities in a mineral
prospectivity map are used (a) to estimate a reasonable number of exploration focal points (or
pixels) and (b) as weights in an objective function to derive optimal exploration focal points
via SA. Each of the optimal exploration focal points is then buffered with a reasonable distance
determined via proximity analysis in order to derive a set of optimal exploration target zones.

Number of Exploration Focal Points

The number of exploration focal points must be estimated prior to deriving their optimal lo-
cations. Each optimal exploration focal point is represented by just one unit cell or pixel and
is considered to be the centroid of a circular optimal neighborhood or zone of adjoining unit
cells where mineral deposit occurrence can be investigated further by an appropriate exploration
technique. Since any optimal zone around each exploration focal point may or may not con-
tain at least one undiscovered mineral deposit, the number of exploration focal points must be
greater than or equal to the number of undiscovered mineral deposits. Methods for estimation
of the latter is discussed by Singer (1993). Here, we describe a procedure used for estimating
the number of exploration focal points based on a mineral prospectivity map.

In order to estimate the number of exploration focal points, we employed the binomial
distribution because mineral deposit occurrence is a binary variable, being either present or
absent. Thus, estimation of n exploration focal points so as to yield (or discover) at least r
mineral deposit occurrences, with a probability of success p, at a 95% confidence, requires a
solution for the following equation:

i (Z_Z)p"u ) =095, (14)



The obtained value of n from Equation 14 is a way to determine the number of optimal
exploration focal points. Each of the n optimal exploration focal points is a local optimum in
a neighborhood of pixels where posterior probabilities are not only high but also having low
uncertainty. Therefore, the optimal exploration focal points sought are non-adjoining pixels so
that the assumption of independence among every n in Equation 14 is not violated. Deriving the
optimal exploration focal points requires definition of an objective function, called the fitness
function.

Simulated Annealing

Simulated annealing is a generally applicable optimization technique for finding the global op-
timum of an objective function in the presence of local optima (Kirkpatrick, Gelatt and Vecchi,
1983; Bohachevsky, Johnson and Stein, 1986). In SA, a fitness function ¢(S), depending on the
sampling configuration S, has to be minimized. Starting with a random sampling scheme S,
let S; and S;;; represent two solutions with fitness functions ¢(S;) and ¢(S;.1), respectively.
Sampling scheme S;,; is derived from S; by randomly replacing one of the points of S; towards
a new point not in S;. A probabilistic acceptance criterion decides whether S;,; is accepted or
not:

1, if (Siy1) < ¢(Si)
Pe(S; — Sit1) = exp <¢(Si) - ¢(Si+1)) 7 it $(Ssi1) > &(S)

C

(15)

where ¢ denotes a positive control parameter, usually called the temperature in SA problems.
The parameter c is lowered, according to a cooling schedule as the process evolves, in order to
find the global minimum. A transition takes place if S;;; is accepted. Next, a solution S;,5 is
derived from S;;1, and the probability P.(S;11 — S;i2) is calculated with a similar acceptance
criterion as in Equation 15. For each value of ¢, several transitions have to be made before the
annealing can proceed, and c can take its next value.

A slow linear cooling schedule was chosen, in order to prevent solutions at local minima so
that the chance of arriving at the global minimum increases. The cooling schedule starts with
an initial value ¢y which has an acceptance ratio () of 0.95 or higher for alternative solutions.
For 1 =0,1,2,..., the decrements of c is given by ¢;;; =v-¢;, with 0 <y < 1.

For a two-dimensional region A divided into N(A) unit cells, let the spatial configurations
of n optimal exploration focal points be denoted by S™. We denote the posterior probability of
mineral deposit occurrence per unit cell in A derived from WofE modeling (i.e., A represents
all prospective pixels) by P(X) = {P;(X)|X € A}, where X is the location vector of the unit
cell in A, with a corresponding pixel in an image I, for unique condition j. A fitness function
#(S™) : S™ — R™, which is an extension to the Weighted Means Shortest Distance (WMSD)-
criterion (Debba and others, 2005; van Groenigen, Pieters and Stein, 2000), is minimized to
optimize the search for n exploration focal points.

¢WMSD+V(SH) = ﬁ Z P(?) H_> _ an<§>)H + (1 — )\)SQ(OSn) , (16)
XEeA
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where Qg (?) is the location vector of an optimal exploration focal point in S” nearest to X,
and s?(Ogr) is the variance of the posterior odds [Eq. 9] at every optimal exploration focal point
in S™. The spatial distribution of posterior probabilities express the knowledge or assumptions
about the spatial distribution of mineral deposit occurrences in region A, while the magnitude of
the posterior probabilities controls the selection of a unit cell or pixel as an optimal exploration
focal point. A pixel with posterior probability higher than its neighboring pixels, therefore, is
a candidate for selection as an optimal exploration focal point. The variance of the posterior
odds also controls the selection of optimal exploration focal points in a neighborhood of pixels
where posterior probabilities are not only high but also having low uncertainty. The objective
function used was optimized by considering not only the magnitude but also the uncertainty of
the posterior probability so that optimal exploration focal points are spread over the district
and positioned in pixels with high posterior probability and low uncertainty of coinciding with
or being proximal to an undiscovered deposit (i.e., a deposit occurrence in the cross-validation
set that is predicted correctly by the input WofE model of mineral prospectivity). This means
that optimal exploration focal points are sited in areas characterized by strong and statistically
significant positive spatial associations between evidential patterns and discovered (i.e., training
set of) mineral deposit occurrences. The A € [0, 1] is a constant controlling the effect of the
posterior probability and the variance of the posterior odds in finding and selecting optimal
exploration focal points. The value of A could be estimated automatically by random selection
between [0, 1] when the above fitness function is minimized through SA.

Case Study

The posterior probability map (Fig. 5(b)) based on training set 2 was used as input data to
derive optimal exploration focal points. Training set 1 was used (as cross-validation set and) as
reference for the number of undiscovered epithermal deposits (i.e., deposit occurrences in the
cross-validation set that are predicted correctly by the input WofE model of mineral prospec-
tivity) in order to validate the derived set of optimal exploration target zones.

Results of Deriving Optimal Exploration Target Zones
Estimated Number of Exploration Focal Points

In solving for n in Equation 14, we first assumed that » = 9 based on the nine predicted out
of 14 undiscovered epithermal occurrences in training set 1 and that p = 0.0025 based on the
average posterior probabilities of prospective pixels in the input WofE prospectivity model. With
these assumptions we derive n = 6280. This number of exploration focal points is intractable.
However, we interpret and show later that 6280 is approximately the total number of unit cells
within plausible exploration target zones. Instead of p = 0.0025, we used p = 0.6 based on the
approximate prediction rate of the input WofE model. Accordingly, n = 22, which is a plausible
number of exploration focal points as centroids of individual exploration target zones wherein
to search further for the nine (assumed) undiscovered epithermal deposit occurrences.
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Figure 6. Optimal exploration target zones defined by buffering to 238 m each of the optimal explo-
ration focal points.

Locations of Optimal Exploration Focal Points

By using the posterior probability map shown in Figure 5(b) as input and by specifying n = 22
and A = 0.5 in Equation 16, the locations of the optimal exploration focal points were derived.
The value of A = 0.5 was chosen instead of being estimated automatically in order to avoid
computational time problem and to specifically avoid giving preference to the effect of either
the posterior probability or the variance of the posterior odds in the fitness function. Each of the
derived optimal exploration focal points (Fig. 6) occupies a unit cell with the highest posterior
probability value based on training set 2 in a circular neighborhood of unit cells with posterior
probabilities greater than the prior probability estimate. This indicates that the algorithm was
effective in finding and selecting optimal exploration focal points in prospective ground (i.e.,
adjoining prospective pixels). Each of the derived optimal exploration focal points does not
fall exactly on but is proximal to a unit cell representing an undiscovered epithermal mineral
deposit occurrence belonging to either set of epithermal deposit occurrence data in training
set 1 (i.e., a validation occurrence predicted correctly by the input WofE model). Because the
derived optimal exploration focal points are each considered to be the centroid of a circular
neighborhood or zone of adjoining pixels where mineral deposit occurrence could be explored at
higher scales, exploration target zones should be delineated around them.

Optimal Exploration Target Zones

In order to define optimal exploration target zones around each of the derived optimal ex-
ploration focal points, the following analysis was performed. We quantified proximity to an
undiscovered deposit occurrence by utilizing the estimated number of 6280 unit cells required
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to delineate the nine predicted deposit occurrences out of the 14 cross-validation deposit oc-
currences and using p = 0.0025 in Equation 14. The total area represented by the 6280 unit
cells is approximately 6280 x 252 = 3925000 m?. If each of the nine undiscovered deposit oc-
currences, predicted by the WofE model, out of the 14 cross-validation undiscovered deposit
occurrences, is within a delineated sub-area of 3925000/22 = 178409 m? containing each of the
optimal exploration focal points, then this indicates that an optimal exploration target zone
is proximal to at least one undiscovered deposit occurrence. This also means that, if each of
the nine predicted undiscovered deposit occurrences, delineated by the WofE model, out of the
14 cross-validation undiscovered deposit occurrences, is within a radius of 1/178409/7 = 238 m
(area of circle = 7 X radiusQ) around a derived optimal exploration focal point, then an optimal
exploration focal point is in close proximity to at least one undiscovered deposit occurrence.

Each of the 22 derived optimal exploration focal points was then buffered with a radius
of 238 m in order to delineate optimal exploration target zones. Seven of the nine (assumed)
undiscovered deposit occurrences, delineated by the WofE model out of the 14 cross-validation
undiscovered deposit occurrences, are within the delineated optimal exploration target zones.
The result of this analysis indicates that the derived optimal exploration focal points are proximal
to undiscovered epithermal deposit occurrences. The average of posterior probabilities of unit
cells within each of the delineated optimal exploration target zones is 0.010, which is higher
than the average posterior probability (0.0024) of unit cells representing discovered epithermal
deposit occurrences (training set 2) and the average posterior probability (0.0029) of unit cells
representing (assumed) undiscovered epithermal deposit occurrences (training set 1). These
indicate that the algorithm is efficient in finding and selecting optimal exploration focal points
in prospective ground. The results also suggest that within the delineated exploration target
zones there is much higher probability of mineral deposit occurrence than would be expected due
to chance, which is translatable theoretically to increased chance of mineral deposit discovery.
This suggestion is validated below.

Prioritization and Validation of Optimal Exploration Target Zones

In practice, exploration target zones are prioritized or ranked according to some criteria. The
criteria we applied to prioritize each of the 22 optimal exploration target zones are (a) number
of prospective pixels and (b) average posterior probability of prospective pixels. The first cri-
terion represents a measure of whether or not an exploration target zone is wholly made up of
prospective cells, whereas the second criterion is an index of mineral occurrence. To each opti-
mal exploration target zone, descending ranks from 1 through to 22 were assigned according to
decreasing values per criterion. The ranks per criterion were then added to represent a measure
of relative prospectivity; for example, lower sums indicate higher prospectivity. The sums of
criteria ranks of each individual exploration target zones were assigned ascending ranks from 22
to 1 indicating their priority for further investigation. Table 3 summarizes the priority/rank
derived for each exploration target zone.

In order to validate the derived optimal exploration target zones, the presence of at least one
undiscovered deposit occurrence within each of the derived optimal exploration target zones was
determined. In addition, the distance from each of the derived optimal exploration target zones
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Table 3. Results of prioritization and validation of optimal exploration target zones. Rows in bold
and italics indicate that target (i.e., buffered) zones around individual optimal exploration focal points
that, respectively, contain and are proximal to 30 m of an undiscovered deposit occurrence (i.e., cross-
validation deposit occurrence predicted correctly by WofE predictive model of mineral prospectivity).

Prioritization of target zones Validation of target zones
ID® | Crit1® | Rank1¢ | Crit2? | Rank2° | SumR12/ | Final Rank? | Within zone” | Distance’
TO1 | 237 1 0.00512 1 2 1 Yes 159.7
TO2 | 222 4 0.00395 4 8 2 Yes 33.9
T03 231 2 0.00370 7 9 3 No 314.6
T04 216 5 0.00376 6 11 4 No 638.9
T05 | 226 3 0.00353 9 12 5.5 Yes 150.0
T06 199 9 0.00401 3 12 5.9 No 266.2
TO7 212 7 0.00358 8 15 7 No 334.0
TO8 | 191 11 0.00378 5 16 8.5 Yes 217.8
T09 186 14 0.00430 2 16 8.5 No 430.8
T10 | 215 6 0.00311 13 19 10 Yes 222.6
T11 187 12.5 0.00323 11 23.5 11 No 464.6
T12 210 8 0.00255 16 2/ 12 No 261.4
T13 | 185 15 0.00345 10 25 13 Yes 164.6
T14 187 12.5 0.00292 15 27.5 14 No 759.9
T15 172 17 0.00318 12 29 15 No 706.6
T16 196 10 0.00189 21 31 16 No 246.8
T17 142 19 0.00302 14 33 17 No 905.1
T18 180 16 0.00237 18 34 18 No 1021.2
T19 116 20 0.00245 17 37 19.5 No 421.1
T20 143 18 0.00223 19 37 19.5 No 663.1
T21 | 106 21 0.00195 20 41 21 Yes 150.0
T22 47 22 0.00069 22 44 22 No 551.8

@ Target zone ID, with number representing priority.
b Values for criterion 1 (i.e., number of unit cells with posterior probability > prior probability within

each of the 238 m buffered optimal exploration focal points).

¢ Descending ranks assigned to decreasing values for criterion 1.
4 Values for criterion 2 (i.e., average posterior probability of all unit cells within each of the 238 m
buffered optimal exploration focal points).
¢ Descending ranks assigned to decreasing values for criterion 2.
f Sum of ranks for criteria 1 and 2.
9 Ascending ranks assigned to increasing sums of Rankl and Rank?2.

h Presence of (assumed) undiscovered deposit within the 238 m buffer zone.

¢ Distance to the nearest (assumed) undiscovered deposit (m).

22




to the nearest undiscovered deposit occurrence was determined. The 238 m buffer zones of seven
optimal exploration focal points (T01, T02, T05, T08, T10, T13 and T21) contain at least one
(assumed) undiscovered deposit occurrence (Table 3). Five of the top 10 priority optimal explo-
ration target zones (T01, T02, T05, TO8 and T10) contain at least one (assumed) undiscovered
deposit occurrence. The 238 m buffer zones of three optimal exploration focal points (T06, T12
and T16) are only about 10-30 m away from an undiscovered deposit occurrence. However, for
the other 12 optimal exploration focal points, whose 238 m buffer zones do not contain an (as-
sumed) undiscovered deposit occurrence and whose buffer limits are at least 50 m away from an
(assumed) undiscovered deposit occurrence, the average distance to their corresponding nearest
(assumed) undiscovered deposit occurrence is just about 600 m. Figure 6 also shows that all of
the nine (assumed) undiscovered deposit occurrences (i.e., those predicted correctly by the input
WofE model of mineral prospectivity) are within or very close (on average about 15m) from a
delineated optimal exploration target zone. The other five undiscovered deposit occurrences not
predicted by the WofE model (and thus not assumed to be undiscovered deposit occurrences
in the derivation of optimal exploration focal points) are, on average, about 230 m away from
the limits of an optimal exploration focal point. These results indicate that derived optimal ex-
ploration focal points are satisfactorily positioned such that further mineral prospecting within
(and up to a few tens of meters beyond) their 238 m buffer limits could potentially lead to
mineral deposit occurrence discovery.

Discussion on Derivation of Optimal Exploration Target Zones

Until now, there is no objective procedure for demarcating and prioritizing of new exploration
target zones based on regional- to district-scale mineral prospectivity maps that have been
determined subjectively. That is, portions of predicted prospective ground that are distal to
and not containing discovered mineral deposit occurrences are considered, based on subjective,
new exploration target zones. In this study, new exploration target zones are determined based
on the spatial distribution of estimated posterior probabilities of mineral deposit occurrence,
which are used as weights in an objective function in SA to determine optimal exploration
focal points. Cross-validation of the results, by using mineral deposit occurrence data, that
were not used to create the probabilistic mineral prospectivity map, suggests that the derived
optimal exploration target zones are useful in guiding further exploration towards probable
locations of undiscovered mineral deposits. Thus, by application of the proposed methodology,
optimal exploration target zones can be derived objectively, instead of subjectively, from a given
probabilistic mineral prospectivity map.

Although we demonstrated our proposed methodology for deriving optimal exploration tar-
get zones by using as input a posterior probability map, it can be adapted to accommodate
other maps of numerical indices of mineral prospectivity in the range [0,1]. Examples, such
as, fuzzy prospectivity membership values and degrees of evidential belief. Other numerical
indices of mineral prospectivity not in the range [0,1] can be transformed into this range so
they can be used as input to our proposed methodology. In addition, a threshold index for
differentiating between prospective and non-prospective pixels must be specified so that optimal
exploration focal points are searched and selected in neighborhoods of prospective pixels with
index of prospectivity above this threshold. In the present case study, we used the estimated
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prior probability of mineral deposit occurrence as threshold index. The graphical technique of
Porwal, Carranza and Hale (2003) can be useful in determining threshold indices particularly for
knowledge-driven fuzzy approaches that do not involve updating of prior probability of mineral
occurrence.

A critical consideration in the application of the objective function in SA is the plausible
number of exploration focal points. This number should be at least equal to the number of undis-
covered occurrences of mineral deposits. Estimation of undiscovered deposits in geologically-
permissive terrane (a) is based on grade-and-tonnage model of deposit-type of interest and (b)
is practically performed through consensus by a group of geoscience experts in mineral deposits
(Singer and Kouda, 1997). We did not performe this exercise because the first criterion is not sat-
isfied, as epithermal mineralizations according to our database are mostly showings or prospects
and while a few of them are deposits or measured reserves, and that not all of us met the second
criterion. Furthermore, we did not estimate number of undiscovered deposits in the district.
As an alternative procedure, we applied the binomial distribution to estimate a plausible num-
ber of exploration focal points based on correctly predicted (and thus assumed undiscovered)
cross-validation mineral deposit occurrences. Using an estimated number of exploration focal
points based on actually discovered known mineral deposit occurrences illustrates, nonetheless,
that our proposed methodology provides a potentially useful link between predictive modeling
of mineral prospectivity and assessment of undiscovered mineral resources. For example, if num-
ber of undiscovered deposits and their corresponding confidence or probability levels have been
estimated (e.g., Cox, 1993; Singer, 1994; Scott and Dimitrakopoulous, 2001; McCammon, Root
and Schruben, 2004), then such estimates could be used, respectively, in lieu of  and 0.95 in
Equation 14. For p in Equation 14, we have shown that using the prediction rate of a mineral
prospectivity model results in a plausible number of exploration focal points. If all discovered
mineral deposit occurrences would be used for modeling of mineral prospectivity, then p in
Equation 14 could be represented by the success or fitting rate of a mineral prospective model
(i.e., proportion of training deposit occurrences coinciding with prospective pixels or values in
a predictive model). In such a case, estimate of the number of undiscovered mineral deposit
occurrences and their corresponding confidence or probability levels should be obtained in order
to estimate the number of exploration focal points.

In district-scale mineral prospectivity mapping, as in the present case study, one does not
aim to define drilling targets as individual pixels but prospective zones defined by neighborhood
of pixels of high prospectivity for further exploration work. Therefore, after deriving optimal
exploration focal points as individual pixels based on a probabilistic mineral prospectivity map,
we defined exploration target zones around them. The analysis presented is based upon avail-
able datasets and geo-information derived from them, but avoids subjective expert opinion. As
alternative analysis, we have also studied the spatial support around the derived optimal ex-
ploration focal points based on variography of random samples of posterior probabilities in the
central part of the study area where most of the known epithermal deposits occur (Fig. 5(b)).
In this alternative analysis, we encountered two problems. First, the number of random sam-
ples of posterior probabilities was inadequate to define a meaningful spatial pattern. Second,
the variograms were mostly showing a pure nugget, which is probably due to (a) inadequacy
of numbers of random samples of posterior probabilities or (b) discretization of evidential data
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into binary maps in the WofE modeling. Delineation of optimal exploration target zones around
derived optimal exploration focal points apparently needs further research.

The best way to validate the proposed methodology for guiding mineral prospecting to
undiscovered deposit occurrences is to visit and perform detailed sampling and prospecting
work in the delineated and prioritized optimal exploration target zones. The way forward as
shown in our study is to further test the proposed methodology in control areas where works
on both mineral prospectivity modeling and assessment of undiscovered mineral resources have
been carried out.

CONCLUSIONS

This study resulted in three main conclusions.

e The proposed methodology provides for objectively, and with reasonable accuracy, de-
marcation and selection of optimal exploration target zones for further investigation of
undiscovered mineral deposit occurrences based on a given probabilistic mineral prospec-
tivity map. In the study area, nine out of 14 (assumed) undiscovered epithermal deposit
occurrences, predicted correctly by a WofE predictive model of mineral prospectivity, are
either within or at most 30 m away from a buffered zone of an optimal exploration focal
point.

e The analysis described for deriving optimal exploration focal points in order to demarcate
and prioritize exploration target zones is shown to be useful in this study. Further work,
however, is needed to test and/or improve the analysis or to test other approaches.

e Airborne hyperspectral images provide valuable information for predictive modeling of
prospectivity for epithermal deposits in the study area, particularly if they are supported
by other pieces of spatial evidence, such as proximity to faults and fractures.
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