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Abstract. The Semiring Constraint Satisfaction Problem (SCSP) frame-
work is a popular approach for the representation of partial constraint
satisfaction problems. Considerable research has been done in solving SC-
SPs, but limited work has been done in building general SCSP solvers.
This paper is part of a series in which incremental changes are made
to a branch and bound (BnB) algorithm for solving SCSPs. We present
two variants of a BnB algorithm: a backjumping algorithm and a for-
ward checking algorithm. These algorithms are based on the maximal
constraints algorithms of Freuder and Wallace [1], and we show they
perform better than the BnB algorithm on some problem instances.

1 Introduction and Background

Semiring Constraint Satisfaction is a general framework for constraint satisfac-
tion where classical CSPs, Fuzzy CSPs, Partial CSPs, and others (over finite
domains) can be cast [2]. Existing work on SCSP methods include [3–7]. Pre-
viously we presented a BnB algorithm to solve SCSPs [8] which is described
in Section 2. Section 3 contains the main contribution of this paper: two new
algorithms to solve SCSPs: a backjumping and a forward checking algorithm. In
Section 4 we test the algorithms. An overview of the SCSP framework follows.

Definition 1. A c-semiring is a tuple S = 〈A,+,×,0,1〉 such that
– A is a set with 0,1 ∈ A;
– + is defined over (possibly infinite) sets of elements of A as follows 3:
• for all a ∈ A,

∑
({a}) = a;

•
∑

(∅) = 0 and
∑

(A) = 1;
•

∑
(
⋃
Ai, i ∈ I) =

∑
({

∑
(Ai), i ∈ I}) for all sets of indices I;

– × is a commutative, associative, and binary operation such that 1 is its unit
element and 0 is its absorbing element;

– for any a ∈ A and B ⊆ A, a×
∑

(B) =
∑

({a× b, b ∈ B}).

The set A contains the preference values to be assigned to the constraint
tuples. We derive a partial ordering 6S over the set A: α 6S β iff α + β = β.4

The minimum element is 0, and 1 is the maximum element.
3 When + is applied to sets of elements, we will use the symbol

P
in prefix notation.

4 Singleton subsets of the set A are represented without braces.



Definition 2. A constraint system is a 3-tuple CS = 〈Sp, D, V 〉, where Sp

=〈Ap,+p, ×p, 0, 1〉 is a c-semiring, V is an ordered finite set of variables, and
D is a finite set containing the allowed values for the variables in V.

Definition 3. Given a constraint system CS = 〈Sp, D, V 〉, where Sp=〈Ap,
+p,×p,0,1〉, a constraint over CS is a pair c = 〈defp

c , conc〉 where conc ⊆ V
(the type), and defp

c : Dk → Ap (k is the cardinality of conc). A Semiring Con-
straint Satisfaction Problem (SCSP) over CS is a pair P = 〈C, con〉 where C is
a finite set of constraints over CS and con =

⋃
c∈C conc.

Definition 4. Given a constraint system CS = 〈Sp,D,V 〉 with V totally ordered
via �, consider any k-tuple t = 〈t1,t2,. . .,tk〉 of values of D and two sets W =
{w1,. . .,wk} and W ′ = {w′1,. . .,w′m} such that W ′ ⊆ W ⊆ V and wi � wj if
i ≤ j and w′i � w′j if i ≤ j. The projection of t from W to W ′, written t ↓WW ′ , is
defined as the tuple t′ = 〈t′1,. . .,t′m〉 with t′i = tj if w′i = wj.

Definition 5. Given a constraint system CS = 〈Sp,D,V 〉 where Sp = 〈Ap,+p,
×p,0,1〉 and two constraints c1 = 〈defp

c1
,conc1〉 and c2 = 〈defp

c2
,conc2〉 over CS,

their combination, written c1 ⊗ c2, is c = 〈defp
c ,conc〉 with conc = conc1 ∪ conc2

and defp
c (t) = defp

c1
(t ↓conc

conc1
)×pdef

p
c2

(t ↓conc
conc2

). Let (
⊗
C) denote c1⊗c2⊗...⊗cn

with C = {c1, ..., cn}. Given a constraint c = 〈defp
c , conc〉 over CS, and a set I

(I ⊆ V ), the projection of c over I, written c ⇓ I, is the constraint c′ = 〈defp
c′ ,

conc′〉 over CS with conc′ = I ∩ conc and defp
c′(t
′) =

∑
{t|t↓conc

I∩conc
=t′} def

p
c (t).

Definition 6. Given a SCSP P = 〈C,con〉 over CS, the solution of P is a
constraint is Sol(P ) = (

⊗
C) = 〈defp

c , con〉. The maximal solution of P is
MSol(P ) = {〈t,v〉|defp

c (t) = v and there is no t′ such that v <Sp
defp

c (t′)}.

2 A Branch and Bound Algorithm for SCSPs

In this section we describe Algorithm 1 which appeared in [8]. Assume a SCSP
P = 〈C, con〉 over CS = 〈Sp, D, V 〉, where Sp has best/worst semiring values
of 1/ 0. The upper bound, UB, contains the semiring value of the best solution
found so far and is initialised with 0. For each node in the search tree, its lower
bound, LB is a semiring value associated with a search path from the root node
up to a particular node, and is initialised with 1. If LB ≤Sp

UB, the subtree
below the current node is pruned, and the algorithm backtracks to a node at a
higher level in the tree.

Note that the starred parameters are variable parameters, and Queue con-
tains the decision variables. In line 6 we calculate the semiring value NewLB
associated with the current node by considering all the constraints which have
var as a member of its type, and is such that all the variables in their types have
been instantiated (i.e. we do a back check). Simply combine the semiring values
of the tuples of all these constraints. In line 7 we combine NewLB with the lower
bound value of the search path up to current node’s ancestor, i.e. LB. In lines
8-11 we calculate an estimated associated (lower bound) semiring value for the
search path below the current node up to a leaf. This estimated lower bound is



a semiring value a such that NewLB ⊗ a is maximal. This value a is combined
with NewLB. Note that the variables can be partitioned in disjoint sets, and
each partition can be solved as a smaller instance of the original problem.

Algorithm 1 BnB(NoInstantiated*,Queue*,LB*,UB,BestSolution)
Require: V ; C; D; Sp; N (number of variables).
1: if (NoInstantiated < N) then
2: var = pop Queue; [current decision variable]
3: while ( var domain not empty) do
4: var value = select best value from var domain;
5: var domain = var domain - var value;
6: NewLB = lower bound value for current node;
7: NewLB = ×p(LB, NewLB); [lower bound value for search path including current node]
8: if NoInstantiated 6= N-1 then
9: FullLB = FindFullLB(NewLB); [estimated lower bound]
10: else
11: FullLB = NewLB ; [complete assignment]
12: if (UB <Sp FullLB) then

13: LB = FullLB;
14: if (NoInstantiated = N-1) then
15: UB = LB ;
16: BestSolution = current assignment of values for decision variables;
17: if (UB = 1) then
18: return 1;
19: if ( BBnB(Noinstantiated+1,Queue,LB,UB,BestSolution) = 1) then
20: return 1;
21: return 0;

Table 1. Constraint Definitions

t 〈0, 0〉 〈0, 1〉 〈0, 2〉 〈0, 3〉 〈0, 4〉 〈1, 0〉 〈1, 1〉 〈1, 2〉 〈1, 3〉 〈1, 4〉 〈2, 0〉 〈2, 1〉 〈2, 2〉
defp

c1
(t) 3 2 3 1 0 0 2 3 4 2 3 2 4

defp
c2

(t) 3 2 3 0 2 1 1 1 3 3 1 4 0

defp
c3

(t) 3 0 4 3 0 2 2 3 3 3 3 2 3

defp
c4

(t) 4 0 1 2 2 2 2 1 2 2 2 0 2

defp
c5

(t) 2 0 2 2 0 3 3 2 2 0 0 4 3

t 〈2, 3〉 〈2, 4〉 〈3, 0〉 〈3, 1〉 〈3, 2〉 〈3, 3〉 〈3, 4〉 〈4, 0〉 〈4, 1〉 〈4, 2〉 〈4, 3〉 〈4, 4〉 -
defp

c1
(t) 1 2 2 2 0 0 0 0 2 2 1 2 -

defp
c2

(t) 1 0 4 3 0 2 3 1 3 1 2 2 -

defp
c3

(t) 0 2 3 3 0 2 0 0 3 1 3 4 -

defp
c4

(t) 3 2 3 2 1 0 3 4 3 3 2 1 -

defp
c5

(t) 0 0 0 3 0 2 2 1 3 3 4 0 -

Example 1. Consider a SCSP where Sp = 〈 {0, . . . , 5}, max,min, 0, 5}〉, V =
con = {A,B,C,D,E, F,G,H}, D = {0, 1, 2, 3, 4}, and C = {c1, c2, c3, c4, c5}.
Table 1 contains the constraint definitions with c1 = 〈defp

c1
, {A,B}〉, c2 =

〈defp
c2
, {C,D}〉, c3 = 〈defp

c3
, {E,A}〉, c4 = 〈defp

c4
, {F,G}〉, and c5 = 〈defp

c5
,

{F,H}〉. The order of instantiation is: A, B, E, C, D, F, G, H.
Phase 1: Select tuple 〈1, 3〉 in row 2 to assign A = 1 (LB= 4). Then B = 3
(LB= 4). In row 10 select tuple 〈3, 1〉 to set E = 3. LB= 3. Then C = 2, D = 1,
F = 0, G = 0, H = 0. LB= 2. UB = 2. Phase 2: Backtrack. H=2; H=3 ; back-
track; G=3; G=4; G=2 ; backtrack; F=4 (LB=3 ); G=0 ; H=3. UB= 3. Phase
3: H=1; H=2; H=0 ; backtrack; G=1; G=2; G =3; G=4 ; backtrack; F=2; F=3;



F=1 ; backtrack; D=0; D=3 ; backtrack; C=3; C=0; C=1; C=4 ; backtrack; E=4;
E=1; E=2 ; backtrack; B =2; B=1; B=4 ; backtrack; A=2 (LB=4 ); B = 2;
E = 0; C = 2; D = 1; F = 0. Note phase 4: G=0 ; H=0 (LB=2 ); backtrack;
H=2; H=3 ; backtrack; G=3; G=4; G=2 ; backtrack. F=4 (LB=4 ); G=0 ; H=3.
Maximal solution with associated semiring value of 4: A=2; B=2; C=2; D=1;
E=0; F=4; G=0; H=3.

3 Two new algorithms for solving SCSPs

Backjumping (BJ) [9] remembers the depth of failure, i.e. the deepest level, l at
which any of the values for a variable fails. When all values have been tried for
a variable, BJ can proceed directly to the level l. The BJ algorithm for maximal
constraint satisfaction (Max-CSP) [1] does not always jump back all the way to
the deepest level of failure. If any values below the level l were inconsistent when
chosen, it only jumps back to the deepest such level: other choices of values at
level l may result in fewer inconsistencies. In our new BJ algorithm, Algorithm
2, FailDepth1 contains the level where a variable’s value may fail first (i.e. closer
to the root.) I D (inconsistency depth) keeps track of the deepest level of failure
for any value. R D (return depth) is adjusted if a value fails: it is assigned the
maximum value at which a failure has been detected. R D is initialised with the
value 0, and it controls the level to which recursion is rolled back. If the current
node decreases LB (line 22), its level becomes the new I D value. FailDepth2
(line 26) controls the extent to which recursion is rolled back.

Example 2. BJ and BnB proceed in exactly the same way up to Phase 4. After
finding UB= 3, both algorithms backtrack until A = 2, and then extend the
search up to the leaf, try various values for H and then backtrack. Here BnB
tries various values for G, and backtracks before assigning F = 4. However, BJ
avoids backtracking from H to G: it backjumps from H to F .

Forward checking (FC) [10] combines backtracking with a check for local consis-
tency ahead in the search tree. In a partial CSP context, we require an initial
value for a bound on the allowed number of unsatisfied constraints. For each
value, the number of domains with no supporting values is counted and this arc
consistency count (ac) is a lower bound on the increment in the expected number
of unsatisfied constraints that will be incurred should this value be added to the
solution. In a particular search path, the ac for a proposed value assignment to
the current variable can be added to the number of unsatisfied constraints so
far, and compared to the current bound NB. If the sum is not less than NB,
then the current search path will not result in a better solution.

Our FC algorithm is similar to Algorithm 1 except for the addition just after
line 5, of a call toForwardCheck(var,var-value) to perform forward checking. This
procedure ensures that the newly instantiated decision variable has a consistent
value in the domains of all (uninstantiated) variables that appear in the same
constraints. For each of these constraints it ensures that every one of the unin-
stantiated variables of the constraint has at least one domain value such that



the resulting value tuple’s associated semiring value does not fail. Note that we
have to restore domain values removed from domains during a forward check for
a decision variable var with the value var-value, if this value fails.

Algorithm 2 BJ(NoInstantiated*,Queue*,Dom*,LB*,UB,BestSol,R D*,I D*)
Require: V ; C; Sp; N .
1: if (NoInstantiated < N) then
2: var = pop Queue;
3: if (var domain not empty) then
4: var value = select best value from var domain;
5: var domain = var domain - var value;
6: NewLB = lower bound for current node;
7: NewLB = ×p(LB, NewLB);
8: FailDepth1 = first node form root where var value fails
9: if NoInstantiated 6= N-1 then
10: FullLB = FindFullLowerBound(NewLB); [estimated lower bound]
11: else
12: FullLB = NewLB ; [complete assignment]
13: else
14: return R D;
15: if (UB <Sp FullLB) then

16: FailDepth1 = NoInstantiated;
17: if (NoInstantiated = N-1) [complete assignment] then
18: UB = FullLB ;
19: BestSol = current assignment of values for decision variables;
20: if (UB = 1) then
21: return N; /* finished */
22: if (FullLB <SP

LB) then

23: I D = NoInstantiated;
24: FailDepth2 = BJ(NoInstantiated+1,Queue,Dom,FullLB,UB,BestSol,0,I D);
25: if (FailDepth2 < NoInstantiated) or (FailDepth2 = N ) then
26: return FailDepth2 ;
27: else
28: R D = max(FailDepth1,R D,I D);
29: return BJ(NoInstantiated,Queue,Dom,LB,UB,BestSol,R D,I D);
30: R D = max(FailDepth1,R D,I D);
31: return BJ(NoInstantiated,Queue,Dom,LB,UB,BestSol,R D,I D);
32: return NoInstantiated - 1;

Example 3. FC and BnB both find UB = 3, backtrack and try 1 and 2 for H.
BnB then sets H = 0, but FC eliminates this value from the domain of
H as part of its forward checking at the point were it set F = 4. It used
constraint c4 to find this value for F , but value 0 for H fails in c5 during forward
checking. Both algorithms then backtrack to G and try values 1 and 2. BnB also
tries 3 and 4 for G, while FC has eliminated both these values from the
domain of G because they fail in c4. Both algorithms proceed in the same way
until Phase 4. After A = 2, BnB extends the search down to the leaf node, where
H = 0. FC only extends the search up to G = 0. FC removed all values from
the domain of H when F was instantiated. FC then backtracks one level,
but all values for G have been removed, so it backtracks and set F = 4.

4 Experiments and Conclusion

We compare the BJ and FC algorithms (without variable partitioning) to the
BnB algorithm with (BnBPart) and without variable partitioning. The exper-
iments were performed on an Intel Core 2 Duo processor at 2GHz with 2GB



RAM. We solved 3 sets of randomly generated binary SCSPs that are instances
of fuzzy CSPs. All the problems have Sp = 〈{0, 0.3, 0.5, 0.8, 1}〉,max, min, 0, 1〉,
and 10 domain values. The problems in sets 1/ 2/ 3 have 80/100/120 variables,
and 10/10/20 constraints. All sets have 50 problem instances with a tightness
of 70% and 50 instances with a tightness of 90%. Set 3 also has 50 instances
with a tightness of 85%. A tightness (T) of x% means that (100-x)% of all the
tuples have been assigned the best semiring value. Table 2 shows the average
runtimes. There is not a significant difference in the performance of the different
algorithms for smaller problems, but the results of FC and BJ on Set 3 with
90% tightness are much better than BnB’s results. Note that BPart’s runtimes
are at most 3 times faster than those of BnB, but on average at least 25 times
faster than CON’FLEX [4], a fuzzy CSP solver.

We presented two new algorithms for SCSPs that are extensions of the well-
known Max-CSP algorithms. Our new algorithms perform better than the BnB
algorithm on some problems. In the future, we plan to develop a backmarking
algorithm and to test our algorithms on non-trivial SCSPs.

Table 2. Average runtimes of the three algorithms (in seconds)

Set 1 1 2 2 3 3 3
T 70% 90% 70% 90% 70% 85% 90%

BnB 0.0124 0.0552 0.0206 0.0544 0.0688 0.1518 0.8078
BJ 0.0102 0.0774 0.0210 0.0772 0.0778 0.2142 0.6596
FC 0.0194 0.0696 0.0216 0.0698 0.0876 0.2056 0.4758

BPart 0.0164 0.0346 0.0204 0.0382 0.061 0.0916 0.3234
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