Acoustic cues identifying phonetic transitions for speech segmentation
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Abstract

Fae quality of corpus-based text-to-speech (TTS) systems de-
pends strongly on the consistency of boundary placements dur-
ing phonetic alignments.  Expert human transcribers use vi-
sually represented acoustic cues in order to consistently place
boundaries at phonetic transitions according to a set of conven-
tions. We present some features commonly (and informally)
used as aid when performing manual segmentation and inves-
tigate the feasibility of automatically extracting and utilising
these features to identity phonetic transitions. We show that a
number of features can be used to reliably detect various classes
of phonetic transitions.

1. Introduction

Defining exact boundaries between phonetic segments in
specch is diflicult, especially in those contexts where co-
arziculation berween neighbouring phoncs renders boundary
definition somewhat ambiguous. Nevertheless, for the purposes
of spoken language research and system development, a
pragmatic approach is necessary in order to define such
beundarics as accurately and consistently as possible. Research
ino the development of corpus-based text-to-speech systems
has suggested that consistency (in addition to accuracy) of
boundary placements is an important factor when considering
the eventual quality of these systems [1, 2].

Mot carly deveiopment of speech corpora involved manual cf-
fort by language or phonetics experts with a significant amount
of experience in identifying phonetic segments from visual and
auditory information. This reliance on expert human involve-
ment has endured, despite advances in speech recognition and
machine learning techniques applied to automating this task. As
much is evident when one considers that high quality corpora
are still manually checked by such individuals [3].

The expert manual transcription procedure can be viewed as a
two-stage process, where the transcriber initially identifies seg-
ments based on the acoustic properties (aided by visual rep-
resentations thereof) and subsequently refines boundary place-
ments between contiguous segments by considering sets of con-
sistent acoustic cues based on the transition context (defined by
broad phonetic classes).

The application of Hidden Markov Models (HMMs) to pho-
ne ic segmentation can be likened to the first stage of the expert
procedure described above and in cases where such models are
suTiciently trained. this leads to boundary placements which
for the most par are fairly similar to the “ideal” locations [4].
This is especially true when manually segmented data exists
with which to bootstrap the process involved in training HMMs.
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Nevertheless, a large amount of research has been done on fur-
ther reducing the discrepancics between HMM based and manu-
ally obtained boundaries (i.e. “boundary refinement™) [3, 6, 7].
This has been justified by the observation that manually seg-
mented and refined automated methods usually result in better
quality synthesis when compared to baseline methods [8, 9].
The implementation of the boundary refinement stage has
largely involved the application of statistical machine learning
techniques relying on samples of manually segmented data
in order to “learn” the conventions of expert transcribers
without explicitly considering the underlying process or
considerations taken into account. This has proved successful,
with researchers reaching levels of accuracy rivalling what
can be expected when compared to discrepancies between
independently verified alignments by experts [5].

Unfortunately, the feasibility of applying techniques such as
these is limited in the context of developing corpora toward
building systems for languages where resources and expertisc
are scarce. This is the case for two primary reasons:

¢ Corpora are designed minimally in order to minimisec ef-
fort in text selection (it is difficult to find reliable elec-
tronic texts for these languages) and expertise required
during recording and annotation. This results in corpora
where some phonetic contexts simply do not have suf-
ficient obscrvations in order to train adequate acoustic
models.

e No manually checked corpora pre-exist in most of the
languages of the developing world, because of a lack of
skilled persons to perform such tasks. Corpora which are
hand checked are small and have mostly been produced
by persons with limited background and training.

For the purposes of developing relevantly annotated corpora
with the goal of building high quality spoken language systems,
it is thus worthwhile investigating the automated extraction and
application of acoustic cues to identify phonetic transitions in
much the same way as a human transcriber would. To this end
we identify important features and the feasibility of extracting
phonetic events from such features. The identification of re-
liable acoustic cues would have the following advantages for
automated corpus development:

¢ Boundary candidates obtained in this way can serve as
an independent point of reference for judging the qual-
ity of alignments (whether automatically or manually ob-
tained).

¢ These boundary candidates can be integrated into an au-
tomated procedure in order to refine boundary place-
ments or improve the quality of training acoustic mod-



¢ls. taking into consideration a specific protocol with the

end goal of the segmented corpus in mind.
{2 this paper we present an initial analysis of the effectiveness
of various cues for detecting phonetic events in different con-
texts In order v determine the feasibility and potential impact
of applying this information. Section 2 describes the identifica-
tion of potential features, Section 3 describes the experimental
setup including the details of identifying boundary candidates.
Finally, we report on the results obtained (Section 4) and con-
c.ude with a discussion in Section §.

2. Acoustic features

fn large resource collection efforts the development of anno-
teted corpora has typically been realised by the collaboration
of a large number of trained individuals. The collaboration of
nwltiple individuals is essential in order to complete the sizable
tesk of manualy verifying the quality of phonetic alignments
within acceptatle time-frames, and to have reliable methods of
gaality assurance.

Lue 10 the ambiguities which exist at phonetic transitions, it
is common to define protocols for the placement of phonetic
boundaries based on broad phonetic class categories in order to
ensure the consistency of the end result across different individ-
uals {10, 3.

Typical protocols incorporate practical guidelines for the iden-
tiication of phonetic boundaries based on acoustic cues exhib-
itzd by various features that can be extracted or calculated and
displayed. This includes the signal cnergy, estimated funda-
imental frequency, periodicity (voicing), extracted formant con-
teurs, spectral characteristics and waveform shape. Instructions
on boundary placement range from complex and highly condi-
tionat (e.g. when transcribing approximants, some suggest ob-
scrving the formants, F3 and F4 for “energy reduction™) to rel-
atively simple and clearly defined (e.g. place a phonetic bound-
ary “just prior to the burst of energy” when transcribing a stop
consonant). Considering this and initial experiments on how re-
liably one can estimate or extract all of these features, we have
concentrated on the following features for the automatic identi-
fication of segmentation cues:

s Signal intensity,

e Fundamental frequency (f0),

» Signal ervelope, and

* Cepstral distances.
Due o difticulties in reliably determining the number of for-
mants present as well as the exact contours, we have chosen to
rely on the use of a “cepstral distance™ measure (defined in Scc-
tion 3.3.5) which we hope will identify changes in the formants
ard general spectral changes with sufficient accuracy.

3. Experimental setup

We employed the Praar [11] and 7/TK [12] software packages
to aid in extracting features from three sets of manually anno-
tated audio recordings representing typical minimally designed
TS corpora (see Table 1),

3.1, Broad phonetic classes

The most practical and relevant view of phonetic transition con-
tests tor this study is based on broad phonetic categorics. All
segment labels in the above-mentioned corpora are thus mapped
to one of the {ollowing [abels in accordance with International

| Language | Gender | Utterances | Duration | Phones |

Afrikaans | Male 134 21 mins. | 12341
isiZulu Male 150 19 mins. | 8559
Sctswana | Female | 332 44 mins. | 26010 ‘

Table 1: Reference data sets

Phonetic Alphabet (IPA) definitions: affricate, approximant,
click, fricative, nasal, pause, stop, tril{ and vowel.

The pause label is used both with reference to long pauses (typ-
ically only occurring at the beginning and end of utterances)
and short segments associated with little signal energy such as
glottal stops and closures.

3.2. Generating boundary candidates

In general. boundary candidates are established by firstly calcu-
lating or estimating contours for the particular feature and either
using this contour directly where applicable or deriving a sub-
sequent contour representing the slope by means of numerical
differentiation. After obtaining the appropriate representation,
we employ a simple peak detection algorithm in order to gen-
erate boundary candidates at specific time instants. We briefly
present these methods below.

3.2.1. Numerical differentiation

In order to obtain a relatively smooth contour suitable for sub-
sequent peak detection to be effective, we firstly calculate the
difference between each sample of the original contour  to ob-
tain a new sequence of differences x4 defined for time instants
in-between the original time instants. An odd number NV of “dif-
ference samples” are framed resulting in a frame 244 for each
time instant. From this the gradient is determined by first win-
dowing the frame with a simple exponential window function:

N-1
wn) = 2" "7 (N
obtaining a frame with weighted differences x4,
Tafw[n] = zaf [n]wln], )

and calculating the slope at ( (the time instant at the center of
the frame) by averaging the weighted differences in each frame:

1 N
.T,/[ﬁ} = N Z Tdfu [7’1] 3)

n=1

3.2.2. Peak detection

For detecting local extrema that are of interest during candidate
identification, we frame the relevant contour, obtaining an odd
number of samples that constitute each frame and simply flag
the time instant of the central sample within the frame if it is a
global extremum within the frame.

3.3. Acoustic cues

Taking into account the observations in Section 2 we experi-
mented with extracting features and identifying candidates au-
tomatically. We now briefly describe the particular cues inves-
tigated.

3.3.1. Intensity dynamics

It was observed that many phonetic transitions coincide with
changes in the signal intensity and initial experiments indicated
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Figire |- Detection rates: for each phonetic transition context we obtain detection rates Jor arange of time thresholds (in milliseconds),
darker areas represent higher detection rates: this figure represents rates when using the intensity gradient minima cue for each of the

funguages.

that the slope of the intensity contour peaked near potential
boundaries. We thus determine intensity values at Sms inter-
vals and subsequently obtain the derivative and flag the local
minima and maxima of the resulting contour (we distinguish
batween candidates at minima and maxima).

2 Waveform envelope

LY
373

Between neighbouring voiced regions such as vowels and
nasals. “dips™ in the waveform can indicate a phonetic transi-
tion. By obtaining the waveform envelope and flagging local
v inima. such events can be detected. The use of the intensity
contour directly was considered, but in cases such as just men-
tioned, the envelope provides a more pronounced cue.

333 oicing

By means of a pitch analysis in the frequency range 75Hz to
600Hz. one obtains regions that have a strong periodic com-
ponent which can be identified as voiced regions. By distin-
guishing between periodic and aperiodic regions one can place
boundary candidates between neighbouring regions in the hope
of detecting trarsitions between voiced and unvoiced segments.

334 Fundamental frequency dvnamics

It has been noted that there exists structure within the 10 contour
which can be used to identity phonemic events [9]. We attempt
to detect these events by employing the Praar pitch detection
al:zorithm [13] in the 75Hz to 600H range and analysing the
slope of the resulting contour.

333 Cepstral distance

Asameasure of spectral difference, which is often used directly
viy observing the spectrogram or more specifically the changes
in formants in order to identify boundary locations manually,
we caleutated 12 mel trequency cepstral coefficients in 20ms
windows with a 2ms time shift. Using this observation sequence
we consider windows of N obscrvations, calculate the average
ofthe first N - 1 observations and simply calculate the cuclid-

h

ian distance between the last observation and the average cal-
culated in order to obtain a contour representing a measure of
difference between each observation and the prior N — 1 obser-
vations. This contour exhibits peaks at points where the spectral
properties change radically.

3.4. Evaluation metric

Because boundary candidates will not coincide exactly with ref-
erence boundary locations, we consider a reference boundary
location to be detected when a candidate boundary is located
within a certain time threshold of the reference (following a
strategy similarly defined in [14]). Subsequently we define an
unambiguous detection where only detections with at most one
candidate within the defined window around the reference are
considered. This discredits detections where false alarms arc
present. For a specific phonetic transition context we can thus
define the unambiguous detection rate as the ratio between the
number of unambiguous detections and the number of occur-
rences for each context.

4. Results

By analysing the detection rates for various cues and phonetic
contexts over a range of time thresholds, it is possible to
obtain a detailed picture of the success of each cue based on
phonetic context (see Figure 1 for an example). To investigate
the detection rates for individual phonetic contexts, we have
to evaluate a range of time thresholds instead of one common
threshold (such as 20ms, which is often used), because of
the relative durations of phones (e.g. stop phones often have
average durations of less than 20ms).

In the subscquent sections we present quantitative results ob-
tained when applying the techniques described on the corpora
mentioned in Scction 3 (see Table 1).
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=.1. Transition detection: coverage

To measure the utility of each cue, the number of detections as a
percentage of tie total number of transitions is determined. This
13 done by firstly distinguishing contexts which are deemed suc-
cesstully detected in general (it was decided that any transition
context with detection rates in excess of 70% would be con-
stdered). after which detections are summed for these contexts.
The results of this process are presented in Table 2.

| Afrikaans | isiZulu | Setswana |

Intensity gradient maxima 39.8% | 49.1% 38.1%
Intensity gradient minima 36.4% | 28.9% 37.4%
i Cepstral difference 32.3% | 53.5% 35.2%
Waveform envelope minima 36.9% | 33.0% 52.8%
Vorcing 4.4% 5.8% 37.5%
- b gradient extrema 3.6% | 10.0% 17.9%

Table 2. Cue significance: the percentages reflect the fraction
of'all phonetic transitions which are successfully detected by
each of the lisied cues: onlv transition contexts for which at
least 70% detection is achieved are included in these counts.

By using the same notion of successfully detected context, it is
aiso interesting to note the combined transition coverage by the
complete set of cues. Figure 2 shows the cumulative coverage
when the total occurrences for successfully detected phonetic
contexts by cac cue are added in turn.
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Figure 2: Coverage: the graphs represent the fraction of all

phonetic transitions when the number of occurences of success-
fu'lv detected transition contexts are accumulated for each lan-

Lghage.

4.2, Problematic contexts

By differencing the sct of contexts that are successfully de-
tected with the complete set, the set of contexts which are
least successtully detected is obtained (listed in Table 3). The
seis obtained are not surprising considering most of the con-
texts listed arc generally found to be relatively ambiguous (e.g.
approximant-vowel transitions) and difficult to distinguish even
by manual transcribers. Some of the contexts listed here are

also relatively short in duration which suggests that the candi-
date generation methods used might not be well suited to these
conditions.

Afrikaans:

stop-fricative, stop-trill, stop-pause,

vowel-nasal, trill-approximant, fricative-pause,
approximant-vowel, trill-stop, nasal-nasal,
vowel-approximant, fricative-fricative

isiZulu:

pause-affricate, stop-approximant, approximant-pause,
affricate-pause, approximant-vowel, stop-vowel,
vowel-vowel

Setswana:

pause-affricate, stop-approximant, trill-pause,
trill-approximant, approximant-pause, nasal-trill,
trill-trill, stop-stop, affricate-pause,
approximant-vowel, affricate-affricate, stop-vowel,
fricative-nasal, vowel-vowel, pause-trill,
fricative-fricative

Tuble 3: Problematic transition contexts: the contexts listed
here were not successfully detected by any of the cues inves-
tigated.

5. Conclusion

In this paper we demonstrated the possibility of generating pho-
nctic boundary candidates based on specific acoustic cues that
were extracted for three different languages. We showed that it
is possible to detect actual boundary positions to a large degree
(especially in contexts where the specific cue is relevant from
the perspective of speech production).

Although each cue had specific contexts where it outperformed
others, the most significant cues were based on the intensity
contour and cepstral distance. The fundamental frequency
proved to be less successful than expected (based on [9]), but
this can probably be attributed to the nature of the reference
TTS corpora where the tone is kept more constant than in purely
natural speech. Another interesting observation is that the voic-
ing cue worked reasonably well for the female voice but poorly
for the male voices, based on these results one should proba-
bly carefully consider the exact pitch range of the specific voice
before attempting to use this cue.

The problematic contexts remaining seem to be either acousti-
cally ambiguous (e.g. approximant-vowel boundaries cannot be
easily distinguished by spectral properties or by observing the
waveform) or present cases where our method of candidate gen-
eration fails. Segments with very short durations can cause the
peak detection method or averaging process set up for the aver-
age case to miss detections and particularly the cepstral distance
measure proposed would also be more effective for longer seg-
ments. Future work in detecting the remaining transitions might
involve more sophisticated candidate generation or the applica-
tion of more appropriate features (formant contours might prove
successful).

The identification of boundary candidates presented here will
allow us to improve the quality of the alignment process auto-
matically. This can be done by defining a protocol similar to
protocols designed to allow consistency between multiple hu-
man transcribers and using this directly or integrating candi-
dates into training procedures in order to refine models with



respect Lo precise boundary placements. Another useful appli-
cation would ke to flag potentially misaligned boundaries dur-
ing quality control of manually or automatically segmented cor-
pora.

An important vbservation is that boundary refincment based on
these candidates can be done automatically and with the tar-
tet use in mind. This presents opportunity for further research
cucstions relating to text-to-speech synthesis quality when re-
Iying on certain acoustic cues to define boundaries. Important
acoustic properties relating to speech parametrisation used for
speech synthests should also be explored, e.g. when employ-
i1g the Harmonics Plus Noise Model, the maximum voiced fre-
cuency contour might prove relevant when performing segmen-
GHon.
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