Hard target LIDAR calibration for SO₂

<u>A du Plessis</u>, DE Roberts

CSIR National Laser Centre, Pretoria

our future through science

Project background

- Las-R-MAP: Laser Remote Measurement of Atmospheric Pollutants
- Mobile laser system for remote detection and quantification of pollutant gas concentrations
- Van with most hardware required integrated and mobile
- Project Life Cycle: currently in testing stage in local "field" setup

The LIDAR equation

$$S_{\lambda}(R) = \frac{cE_{p}\beta(R)}{R^{2}}e^{-2\int_{0}^{R}n(R)\sigma_{\lambda}dR}$$

- S(R): signal received from distance R
- c: constant dependant on detector response, absorption by other gases, etc.
- E_p: Laser pulse energy
- $\beta(R)$: Reflection coefficient at distance R
- n(R): concentration of target gas at distance R
- σ: cross section of target gas at on wavelength

The DIAL principle $S_{\lambda}(R) = \frac{cE_{p}\beta(R)}{R^{2}}e^{-2\int_{0}^{R}n(R)\sigma_{\lambda}dR}$ $R^{2} = \frac{1}{R}\int_{0}^{R}n(R)dR = \frac{1}{R}\int_{0}^{R}n(R)\sigma_{\lambda}dR$

$$\int_{0}^{R} n(R) dR = \frac{1}{2(\sigma_{on} - \sigma_{off})} \ln\left(\frac{S_{off}}{S_{on}}\right)$$

- Two wavelengths: "on" and "off"
- Close together in wavelength: $\beta_{on} = \beta_{off}$
- The known difference in absorption, measured difference in S, all else the same, used to calculate concentration (n).
- In this work "off" is chosen as zero absorption due to no gas present

Slide 4

© CSIR 2006

Atmospheric backscatter

Atmospheric backscatter

Hard target backscatter

Las-R-MAP hardware: laser system

Slide 10

© CSIR 2006

www.csir.co.za

our future through science

Las-R-MAP hardware: laser system

- Tunable Alexandrite:
- Fundamental @ 750 nm
- 2nd Harmonic @ 375 nm
- 3rd Harmonic @ 250 nm
- Hydrogen Raman cell @ 75 bar
- Raman-shifted
 3rd harmonic @ 280 nm

Choice of wavelength

Las-R-MAP hardware: detection system

© CSIR 2006

www.csir.co.za

our future through science

Las-R-MAP hardware: local "field" setup

Las-R-MAP hardware: pipe - Side view of pipe

Slide 15

Las-R-MAP hardware: pipe - Front view of pipe

Las-R-MAP hardware: pipe - Manager's view of pipe

Results: hard target backscatter

Slide 1_o

Results: Estimated 20 ppm SO₂

Las-R-MAP hardware: pipe - Measurement of SO₂ density

Results: 2nd harmonic hard target

Results: atmospheric backscatter

Slide 22

Las-R-MAP hardware: pipe - improvement of pipe

Slide 23

© CSIR 2006

Conclusions & outlook

- SO₂ has been detected, and calibration attempted (Hard Target technique)
 - Detection sensitivity 10-50 ppm
 - Low detection limit: laser energy and pulse-to-pulse variation
 - Upper detection limit: cross-section
- Calibration limitation is leak rate from pipe
 - Continual pipe improvement
- NO₂ next target gas, due to higher laser pulse energy
- Hard target technique used for first real field measurement
 - October 2006
 - Large hard target mirror has been designed

The End

Slide 25

© CSIR 2006

www.csir.co.za

our future through science