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Abstract

Conventional methods of solution of the Helmholtzntegral equation consist in
discretization of a radiating/scattering boundary onmultiple boundary elements,
assumption of a smooth distribution of the velocitypotential on every element and
transforming of the original problem to a system oflinear algebraic equations. This
method needs a large amount of time consuming caletions in the case when the
radiating/scattering surface is large and the freqency of the acoustic field could
not be considered as low or high and belongs to dmtermediate” frequency range.
Analysis of these effects is practically impossiblen a conventional PC due to the
number of boundary elements, which are necessary gpread over the surface of
the large-scale structure to guarantee the numeridaccuracy of solution. In the
present paper we propose to use a novel method aistion of the Helmholtz
integral equation, which is based on expansion olié integrands in double Fourier
series. The main difficulty of realization of the Burier series approach is that the
kernels of this equation do not satisfy to the Dighlet's theorem and hence, could
not be directly expanded into Fourier series. To arcome the abovementioned
difficulty we represent the Helmholtz integral as am of the integral with modified
kernel, which satisfy the Dirichlet’s theorem and & could be expanded in the
Fourier series, and an additional integral in the Ycinity of the point of singularity.
This approach helps to substantially reduce the vaime of calculations, takes
advantage of fast discrete Fourier transformation@nd achieves a substantial
progress in solution of acoustic radiation and sc&tring problems. The typical
example of scattering of an obliquely incident plaa wave by a large-scale structure
composed by a cylinder with two hemispherical endaps is considered.
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INTRODUCTION

Combined Helmholtz integral equation formulatiomfgen used In
boundary element methods for description of theat$fof radiation
and scattering of physical fields, for example,ustical fields. This
method has a substantial advantage over the “ddmmathods, such
as finite element methods, due to reduction ofetlchienensional
problems to two dimensions. Seybert described th@adeof integral
equations for solution of radiation and scattepngplems for
axisymmetric bodies and boundary conditions. FurSeenarko
generalized this method to the problems with axistnic bodies and
arbitrary boundary conditions. Present paper cansid general case
of arbitrary body, which could be uniquely charaeed by a system
of two parameters, with arbitrary boundary conaisioAfter
formulation of idea of the method the algorithnfiasnulated and
numerical example of a plane acoustic wave scatjdry a cylindrical
body with spherical end caps is considered.
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IDEA OF THE METHOD -1
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IDEA OF THE METHOD - 2
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IDEA OF THE METHOD - 3
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FORMULATION IN SPHERICAL
COORDINATES -1
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In Spherical Coordinates:
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FORMULATION IN SPHERICAL
COORDINATES - 2
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FORMULATION IN SPHERICAL
COORDINATES - 3
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'FORMULATION IN SPHERICAL

COORDINATES -4
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EXAMPLE -1

Discontinuity of %le
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EXAMPLE - 2
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a=3m h=54m a=30 deg f =500 Hz
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CONCLUSIONS

The method of solution of the Helmholtz integral egation is
formulated, which is based on representation of aelocity
potential in terms of Fourier series and finding the Fourier
coefficients of this expansion. The Green functiois modified so
to satisfy the Dirichlet’s theorem. Fourier coeffieents of the
modified Green functions are calculated using a desete Fourier
transform, in particular case by a fast Fourier transformation.
Using orthogonality of the sine and cosine functiathe original
problem is reduced to an overdetermined system ahlear
algebraic equations to obtain the unknown coefficigs of the
Fourier series expansion. This method is applicabl® a broad
range of acoustical problems of radiation and scagfring. It can
be easily parallelized and realized on grid or veor computers.
The example of calculation of near acoustic fieldsf large-scale
structures is given.
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