
Design of a real-time open architecture controller for
a Reconfigurable Machine Tool

I Masekamela, N S Tlale

Mechatronics and Micro Manufacturing
Council of Scientific and Industrial Research

Pretoria, South Africa
Email: imasekamela@csir.co.za, ntlale@csir.co.za

C M Kumile
Faculty of Built Environment and Engineering

Tshwane University of Technology
Pretoria, South Africa

Email: KumileCM@tut.ac.za

Abstract— The paper presents the design and the development of

a real-time, open architecture controller that is used for control of

reconfigurable manufacturing tools (RMTs) in reconfigurable

manufacturing systems (RMS). The controller that is presented

can be implemented on any controller hardware i.e. open

controller. The controller is designed in such a way that it satisfies

the time critical tasks required by reconfigurable manufacturing

tools (RMT) i.e. real time controller. The kinematics analysis of a

general 5-axis RMT is presented. Thereafter, software concepts

that are used in the controller implementation are discussed.

Software controller modules for RMTs are also discussed. The

controller architecture for satisfying real time control

requirements for RMTs is presented. The simulation results are

presented using the different configurations of 5-axes RMT.

I. INTRODUCTION

Globalization of the economy, saturated markets, rapid
advances in technology and the increase in consumer
awareness have precipitated the need for mass customization in
production of higher quality products. Even though this has
resulted in an increase in consumer satisfaction, it has brought
about uncertainties in markets demands for consumer goods,
with the current trend highly influenced by shorter life cycles.
This has led to a lot of unpredictability in market demands and
ultimately fragmentation of the market (size and time).
Therefore manufactures of consumer goods need to respond to
these volatile markets by timely producing high quality
products at lower cost and to the exact specifications of the
customers. In turn they need appropriate business strategies
and manufacturing technologies to accomplish this task.

In recent years the new concept of Reconfigurable

Manufacturing Systems (RMS) was conceived to address these
problems. In terms of design, RMS has a modular structure
(both in software and hardware) that allows rearranging of the
manufacturing system to adapt it to the new requirements. The

hardware is comprised of modular machines made of
mechanical components (modules) that can be assembled and
disassembled to meet the production requirements. On the
other hand open architecture controllers (OAC) are aimed at
eliminating the problem of implementation by creating a
flexible control system which can be attached to a wide variety
of machine tools. OAC’s ensures integration of existing and
new control devices and software modules, therefore adapting
the manufacturing system to the different operating conditions.
Thus modular machines and open architecture controllers are
key enabling technologies in providing manufacturing systems
that can integrate or remove hardware or software modules
without affecting the integrity of the whole system, hence
ensuring reusability.

The advent of faster processors for personal computers (PC)
and a general reduction in their prices have increased the use of
PC-based controllers [1]. PC-based controllers are generally
flexible, open and can be easily integrated into other
manufacturing functions. They also offer faster design cycles,
lower down times due to the presence of diagnostic and
simulation tools. These attributes help in enhancing
productivity and reduces maintenance costs.

The basic constituents of a PC-based controller are hardware
platform which comprises of a computer hardware,
communications network, peripheral devices and sensors. They
are capable of generating, receiving, transmitting, processing
and storing data or signals. Software layer which includes
operating system, device drivers, network communication and
application software enables inter-task communication,
multitasking, interrupts handling, network, memory
management, system level errors and controls device input and
output handling.

The paper is arranged as follows; Sections II describes the
characteristics of open controllers including related work while
section III introduces the aspects of real time controllers
Section IV introduces the concept of controller architecture.
Section V catalogues the kinematics and dynamics of a general
5-axes RMT with section VI discussing the controller

implementation. Finally section VIII concludes by stating the
expected outcome of the project and future work.

II. CHARACTERISTIC OF OPEN CONTROLLERS AND RELATED
WORK

An OAC offer services according to standard resources and
standard rules that describe the syntax and services. They are
capable of making changes with respect to functionality,
performance and dependability as well as adapting to target
platforms easily and cost effectively. The presence of support
for the integration of new activities in the control environment
makes open controllers very desirable. Moreover, they have
modular structure with well defined communication interfaces
enabling easy communication between modules. Furthermore
their ability to detect failures and makes the implementation of
recovery process easy.

The research into OAC for use in machine tools intensified in
the 90’s with organizations like Open Systems Architecture for
Controllers within Automation (OSACA) [2] , Open Modular
Controller (OMAC) and academic institutions like University
of Michigan and University of British Columbia providing
some useful platforms to date. Most of the controllers
developed need a human machine interface (HMI) in order to
alert the users of the processes involved and show the state of a
machine at a particular instance. Some developers have
suggested use of CAD/CAM systems for true simulation of the
manufacturing processes [3]. For the proper execution of tasks,
application programs are written for each task using C++, an
object-oriented programming language known for its
robustness. The application software requires a reliable
Application Program Interface (API) to interact with the
underlying hardware. A suitable API will abstract the
underlying hardware specific architecture and encapsulate the
assumptions of the software to allow different application
software to run in different hardware platforms. Most
developers designed their own API’s but unfortunately some
proved too hard to understand and they are only compatible to
the developer’s specially designed hardware.

The other common feature in the controllers was the
communication architectures and networks. Some introduced
novel communication architectures that have not been
thoroughly tested and did not meet the requirements. However
widely used communication networks include Ethernet,
VentureCom, Process Field Bus (PROFIBUS) and CAN
networks. Even though PROFIBUS is known for its high
speed, most experiments involved preferred CAN which has
proved to perform better in real-time boundaries. Furthermore
another critical constituent of the controllers was found to be
an operating system. A manufacturing environment uses
machines that require motion controls which are hard real-time
applications. Tasks like writing an application software are non

real-time which can also be handled by a soft real-time system.
Most front end operating systems for the controllers developed
use Microsoft Windows NT/XP operating systems while both
QNX and VxWorks real-time operating systems have enjoyed
more success at a lower level implementation where deadline
constraints cannot be violated. In some instances a real-time
extension to the existing non-real-time operating system was
used in order to conform to the requirements.

III. CHARACTERISTICS OF REAL-TIME CONTROLLERS

According to the Institute of Electronics and Electrical
Engineering (IEEE) Portable Operating System Interface for
Computer Environments (POSIX) Standard 1003.1b , “A real-
time system is one in which the correctness of the result not
only depends on the logical correctness of the calculation but
also upon the time at which the result is made available” [4].
Therefore time is critical for successful implementation of real-
time systems. Real-time capabilities can be classified into two
main categories namely hard or soft. Hard real-time applies to
situations where deadline constraints can not be violated and if
this is not met the system can exhibit undesirable behavior.
Motion control is one of the tasks which are classified under
this category. On the other hand soft real-time tasks do not
require strict time constraints.

Real-time operating systems (RTOS) are normally used to
implement real-time systems [5]. RTOS have the ability to
schedule tasks, meet deadlines, quickly recover from errors,
fast switching between tasks and most importantly they are
extensible. Further advantages include reduction in sizes and
overheads. The presence of characteristics like multi-
threadedness, preemptability, threads priority, predictable
thread synchronization mechanisms, priority inheritance and
predefined latencies (predictable).

IV. CONTROLLER ARCHITECTURE

A. Software architecture

Careful analysis of software implementation for the
controller is required to ensure that the implementation adheres
to the open and flexible environment required. So the problem
solving involves utilising some of the tried and tested
approaches used in the design of software for an open
architecture. Proper structuring of the software through use of
structures and architectural styles where a system can be
decomposed into subsystems is the key to achieving a
successful implementation of software.

A good architectural style ensures a well coordinated,
synchronised and properly functioning system. A combination
of styles normally creates a more robust system. Key

identifying characteristics of include flow of data within a
system, mode of transmission and good synchronicity. Each
architectural style has its own advantages and disadvantages
but for this particular project data abstraction and object
oriented style is the focus in software implementation. This
style is characterised by encapsulation of data and its primitive
operations into abstract data called objects [3]. The ability of
an object to hide its representation from the clients makes it
possible to change the implementation without affecting the
client. The bundling of a set of accessing routines with the data
they manipulate enables programmers to decompose problems
into a collection of interacting agents.

In spite of favourable properties the object-oriented style
posses some problems especially with interaction. The object
must first establish the identity of another object it wants to
interact with [6]. In the event that identity of an object changes
it is required that the updates are passed on to the objects that
invoke it. However mixing this style with other will ensure
more robustness at the end of the implementation. Other styles
include pipes-and-filters, layered, time-triggered, reactive,
process networks, publish and subscribe, client server, process
control and finite state machine.

B. Hardware Architecture

The implementation of hardware is one of the delicate matters
to handle in ensuring a real time environment. Despite the use
of the hardware that is real time compliant it is imperative to
arrange the hardware in such a way that there are minimal
communication errors and delays. This involves use of a
hardware architecture that will be used in positioning the
hardware modules of the system including sensors,
microcontrollers and processors.

The proposed controller will use a hierarchical architecture
where each axis will have its own servo controller and a
supervisory controller which is likely to be a Wafer-Luke will
be responsible for monitoring the entire system. The
distributed nature and the multi-structure of this architecture
will enhance reconfigurability. Even though the decentralized
architecture seems to be more reconfigurable than the
hierarchical architecture, its performance is highly likely to be
affected by communication nodes and the decision was made
to stick to a fail safe hierarchical architecture.

V. KINEMATICS AND DYNAMICS ANALYSIS OF A
GENERAL 5-AXES RMT

Nowadays most machine tools are made of at least 5 axes
commonly three translational degrees of freedom (DOF) along
the X, Y and Z axes and two rotational DOF. Any of the axes
or a combination of axes can be chosen to accommodate either
a tool holder or a workpiece and the different configurations of
the machine tool can be drawn from that aspect.

 Figure 1: An example of a machine tool

The Denavit-Hartenberg representation, a 4x4 homogenous
transformation matrix is used to represent the kinematics
relationship between links [7]. A coordinate system is attached
to each link as illustrated in fig. The representations for a
rotary joint is



















−
−

=−

1000

cossin0

sinsincoscossin

cossinsinsincoscos

1

iii

iiiiii

iiiiiii

i
i

d

a

a

A
αα

θαθαθ
θθαθαθ

, (1)

while the first two rows of the 4th column are replaced by 0’s
for the linear joint. θi and di are joint parameters for the ith
rotary and linear joints respectively.

In order to obtain the orientation of one link in relation to the
other which is normally referred to as direct kinematics, a
direct multiplication of transformation matrices will be done as
follows;












=








=

= −

101000

...........

00

1
2

1
1

00

iiiiii

i
i

i

pRpzyx

AAAT

 (2)

where 0Ri and 0pi is the orientation matrix and the position
vector of ith link from the base/original link respectively. Even
though the kinematics can be used to describe the motion of
the links, they do not take into consideration the forces that
cause the motion. Therefore further analysis of the dynamics of

the system was undertaken. The control torque is computed
from

)(),()()()(qcqqhtqqDt ++=
•••

τ , (3)

where q represents either one of the joint parameters θi and di
while h(q,q) and c(q) are the Coriolis and gravity loading
vectors respectively. D(q) is an nxn (where n represent the
number of D.O.F) and is given by







∑ +=
=

n

i
w

T
iii

T
wv

T
vi qJqRIqRqJqJqJmqD

iiii
1

00)}()()()()()({)(. (4)

with mi being the mass of link i. J is the Jacobian matrix that
determines the velocity relationships. It is calculated by
































 ×

=
−

−

−
−

0

)(
1

1

1
1

i

i

i
i

i

i
z

z

pz

qJ . (5)

The upper part of equation 5 is used if the joint is rotational
while the lower part is meant for a linear joint. In order to
achieve steady end effector motion along any coordinate axis,
it is imperative to combine and run motions of various joint
motors simultaneously at different time varying rates (Fu et al).
This type of control is called Resolved Motion Rate Control
(RMRC) with the equation of motion

)()]()()[()(111 txqJAqJqJAtq TT
•

−−−
•

= (6)

derived from a non-linear

)]([)(tqftx = . (7)

VI. CONTROLLER IMPLEMENATION

The control functions are going to be implemented in software,
therefore a good RTOS is essential. Real-time (RT) Linux will
be used as the RTOS. In addition to being an open source
platform, RT-Linux has short scheduling and interrupt
latencies [1]. It was shown to have a worst case scheduling
latency of 25 µsec on a 300Hz and 128 MB Pentium II
machine while the PC’s earmarked for the project have the
processor speed of more than 1 GHz and are equipped with at
least a 1GB of RAM.

 Figure 2: An example of the implementation [1]

As initially indicated the hard real-tasks will be directly
implemented on RT-Linux. Other tasks will be implemented
on the normal Linux operating system. It has been found out
that a lot of manufactures use Microsoft windows based
operating systems. One of the goals of the project was to create
a controller that could be ported to existing systems without
having to make major changes, hence it is necessary to create
an interface for allowing using of windows based front end
OS.

 The hardware implementation would adopt the hierarchical
architecture which promotes reconfigurability. Also proper
positioning of sensors would lower the communications delays
while at the same time enhancing real-time properties.

A communication network which will be responsible for
providing reliable and temporally predictable message passing
[6] between nodes will be adopted. The broadcast and bus
topologies are currently the most common as they provide
simultaneous arrival of signals at different tasks and are cost
effective. At lower level Serial Real-time Communication
system (SERCOS), a digital interface for communication
between industrial controls and input/output (I/O) devices
would be further investigated for possible implementation.
Moreover the ability of SERCOS to coexist with other
protocols like Ethernet makes it more suitable for
implementation. Process Field Bus (PROFIBUS) is another
communication interface which is normally used to operate
sensors and actuators will also be investigated. Moreover
Controller Area Network (CAN) bus, a computer network
protocol would be explored.

A separate project is being carried on to create a library of the
components of machine tool so as to provide the necessary
equipment for generating different machine tool. The resultant
control system should be able analyse a CAD model of the
generated machine tool and perform the dynamics analyses. A

suitable control law will be selected for any particular
configuration of the machine tool. Fig shows the desired
procedures for the motion control implementation.

 Figure 3: Motion control [8]

The end user should just have a detailed graphical user
interface (GUI) illustrating the actions of the machine tool. Fig
is an example of the GUI.

VII. CONCLUSION

The need for a manufacturing system that can be quickly
changed both at hardware and software level to adapt to rapidly
changing markets intensified the need for modular machine
tools and open architecture controllers.

The paper presented the steps that are going to be followed
in developing an open architecture controller that will be used

for controlling different machine tools or different
configurations of machines. Although a number of similar
project have been undertaken they have fallen short in terms of
openness of the controller and in meeting the real-time
requirements. It is expected that at the end, a controller that is
capable of handling kinematics and dynamics configurations
will be produced. It is expected that the architecture of the
controller will be open to new activities within the
manufacturing environment and it will be flexible enough to
quickly adjust to varying production requirements.

The proposed controllers will be first modelled using the
above mentioned tools and tested on virtual platform. Upon
successful implementation on a virtual platform it would be
tested on a real testbed which is still to be developed.

ACKNOWLEDGMENT

I would like to thank both my supervisors Dr Nkgatho Tlale
and Chris Kumile for their guidance. I would like to
acknowledge the both Council of Scientific and Industrial
Research and Advanced Manufacturing Technology Strategy
(AMTS) in providing financial support for undertaking the
project.

REFERENCES

[1] S.Kommareddy, Y. Kazuo, K.Yoshihito , “PC-based open architecture
servo controller for CNC machining”, Proceeding of the Second Real-
Time Linux Workshop, Orlando, USA, 20-27 November 2000.

[2] J. Nasca, “Comparison of three different open architecture controllers”-
Proceedings of International Federation of Automatic Control(IFAC)-
MIM, Prague, Czech Republic, pp. 134-138, 2-4 August 2001.

[3] R. Atta-Konadu, “Design and implementation of a modular controller for
robotic machines”, Saskatoon-Doctorate Thesis, University of
Saskatchewan,, 2006.

[4] M. Barabanov, “A Linux-based Real-Time Operating System”, Masters
dissertation, New Mexico Institute of Mining and Technology, 1 June
1997.

[5] A. Gambier, 2004, Real-time Control Systems: A Tutorial. Control
Conference, 5th Asian, Volume 2, , pp 1024-1031, 20-23 July 2004.

[6] D Chen, “Architecture for Systematic Development of Mechatronic
Software Systems”- Royal Institute of Technology (KTH), Stockholm,
Sweden, Masters Thesis 2001.

[7] K.S.Fu, R. C Gonzalez, C.S.G Lee, “ROBOTICS Control, Sensing,
Vision, and Intelligence, McGraw-Hill Book Co, Singapore, 1987.

[8] K. Erkorkmaz, Y. Altintas, C-H Yeung, “Virtual Computer Numerical

Control System”, CIRP annals, vol 55, no 1, pp 399-402, Elsevier, 2006.

[9] S-H. Suh, Y. Seo, S-M. Lee, T-H. Choi, G-S. Jeong, D-Y. Kim,

“Modelling and Implementation of Internet-Based Virtual Machine
Tool”, International Journal of Advanced Manufacturing Technology, vol
21, pp 516-522, Springer-Verlag, 2003.

 Figure 4: A graphical user interface [9]

