Relating wood pulp properties to handsheet porosity and mechanical strength

S. Maharaj^{1,3}, J. Wesley-Smith² and T. Bush³

¹School of Biological and Conservation Sciences, University of KwaZulu-Natal, Durban, 4041 ²Electron Microscope Unit, University of KwaZulu-Natal, Durban, 4041 ³CSIR, Forestry and Forest Products Research Centre, P.O. Box 17001, Congella, 4013

Background

Variation in pulp mills•Need to predict quality of end-product

Processing

Chemical pulping

Lignin

Goal of chemical pulping process is to dissolve middle lamellae and to separate fibres for paper production (Middle lamellae – mostly lignin)

Processing

Logs

Wood chips

Pulp fibres

Refining

Refining (beating)

- Mechanical energy imparted to 'soften' (collapse) fibres
- PFI mill (laboratory use)

- Paper vs. hand-sheets
 - Orientation of fibres:
 - Aligned \rightarrow paper
 - Random → hand-sheet

Collapsibility and inter-fibre bonding

SEM

Tear

- Fibre level: pull-out vs.
 breaking/rupture
 - •Fibre pull-out: greater energy = higher tear strength

•Fibre breakage / rupture: less energy = lower tear strength

Tear

- Fibre level: pull-out vs.
 breaking/rupture
 - Fibre pull-out: greater energy = higher tear strength
 - Fibre breakage/rupture: less energy = lower tear strength
- Cell wall thickness
 - Resistance to tear

Objectives

• To investigate the response of *Eucalyptus nitens* pulp samples to different levels of beating

- Measure properties of pulped fibres that previously were not considered in depth
 - At individual fibre level: e.g. zero-span strength

 At hand-sheet level: e.g. inter-fibre bonding (porosity), fibre pull-out / breakage

Material used

Unbeaten *Eucalyptus nitens* pulp samples with varying levels of tear strength

Assessing failure surfaces

Two methods are being investigated

- Flat-bed scanner method

Flat-bed scanner method

 The failed / torn surfaces were scanned

Image analysis

- Segmentation
- Quantification

Results: Flat-bed scanner method

0 rpm

High level of fibre pull-out visible

3000 rpm

N E S

Medium level of fibre pull-out visible

5000 rpm

Low level of fibre pull-out visible

Results: SEM

Zero-span tensile measurements

Porosity

- Compactness of the fibres in the hand-sheet
- Measuring voids within the structure

0 rpm

5000 rpm

Results: Porosity

Conclusions

- Flat bed scanning method favoured over SEM for measurement of fibre pull out along failure surfaces
 - Fibre pull-out decreases with increased beating for all samples
- Zero span revealed differences between pulps
 - Greater replication required
- Porosity: valuable tool to assess paper structure
 - Link to collapsibility and inter-fibre bonding

Conclusions II

- These techniques, and others soon to be applied / developed (e.g. collapsibility), allow the response of fibres to processing conditions to be better understood
 - Enabling better management of resources entering the pulp mill

Acknowledgements

- Eucalyptus Co-operative
 - CSIR, Mondi and Sappi

• UKZN

Thank you

http://ffp.csir.co.za 201508185@ukzn.ac.za

