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Abstract—Omni-directional mobile platforms have the ability
to move instantaneously in any direction from any configuration.
As such, it is important to have a mathematical model of
the platform, especially if the platform is to be used as an
autonomous vehicle. Autonomous behaviour requires that the
mobile robot choose the optimum vehicle motion in different
situations for object/collision avoidance and task achievement.
This paper develops and verifies a mathematical model of a
mobile robot platform that implements mecanum wheels to
achieve omni-directionality. The mathematical model will be
used to achieve optimum autonomous control of the developed
mobile robot as an office service robot. Omni-directional mobile
platforms have improved performance in congested environments
and narrow aisles, such as those found in factory workshops,
offices, warehouses, hospitals, etc.

Index Terms—Automated guided vehicle; mecanum wheels;
omni-directionality; kinematics modelling; dynamics modelling

I. INTRODUCTION

Automated guided vehicles (AGVs)/ mobile platforms are
used extensively in reconfigurable manufacturing systems
(RMS) for materials handling [1]. Omni-directionality is the
ability of a mobile platform to move instantaneously in any
direction from any configuration. The mobile platform used in
this project implements mecanum wheels, which are special
wheel designs that are based on a concept that achieves traction
in one direction and allows passive motion in another. This
allows greater flexibility in congested environments [2]. For
certain motions of the mobile platform, mecanum wheels allow
the mobile platform to change its direction of motion without
changing its orientation. Design of the mecanum wheel can be
found in Dickerson and Lapin [3]. The centralized controller
design of a mecanum wheel AGV was addressed by [3],
while Tlale [4] addressed its distributed controller design. The
overall motion of the mecanum wheel can be thought of as the
resultant motion of the screw when turned, with the threads
being rollers and only one or two threads making contact with
ground at only one point along the length of the thread.

Mecanum wheels consist of a number of rollers (eight
rollers in our case) around the circumference of the wheel
hub. The rollers are orientated at some angle, α, from the
axis of rotation of the wheel. In our case α = 45◦. Rollers,
in turn, can rotate about their own axis. When the mecanum
wheel is rotating, at most two rollers and least one roller are/is

in contact with the ground. Only a small surface of the roller
makes contact with the ground [5]. The area making contact
with the ground transverses from one side of the roller to
the other side, depending on the direction of the rotation of
the mecanum wheel. Traction is obtained along the direction
of α depending on the rotational direction of the mecanum
wheel, which influences the movement of the direction of the
area making contact with the ground (refer Fig. 4). From this
description, the effective rotational velocity of the mecanum
wheel is determined as:

θ̇ = nθ̇m sinα (1)

where θ̇m is the rotational velocity of the DC motor that is
driving the mecanum wheel and n is the gear ratio of the DC
motor driving the mecanum wheel.

The rotational velocity of each wheel can be found from
encoder pulses of each wheel as follows:

θ̇ = C
∆m
∆T

(2)

where θ̇ is the rotational velocity of the mecanum wheel,
C is a constant that is dependant on the number of pulses
per encoder revolution, the radius of the mecanum wheels and
the gear ratio of the DC motors used, ∆m is the change in
the number of encoder pulses for wheel and ∆T is the time
interval of sampling encoder pulses.

The effectiveness of the motor, e, in converting the driving
motor?s rotational velocity into useful velocity, using the
mecanum wheel, can be defined as:

e =
θ̇

nθ̇m
= sinα (3)

This indicates that when rollers are mounted parallel to the
axis of rotation of the mecanum wheel, negligible motion will
be achieved as the rollers will be producing only wheel slip.
When the rollers are mounted perpendicular to the axis of
rotation of the mecanum wheel, maximum motion will be
produced. Whenever the relationship in (1) does not hold, slip
is being experienced. Slip is mainly caused by rollers rotation
around their shafts while the wheel is rotating. Slip is defined
by the following relationship:

s =
dr
d

=
dr

rnθ̇∆T sinα
(4)



Fig. 1. Mecanum wheel design with centrally mounted rollers which can
rotate about their own axis to reduce friction [5]

Fig. 2. Mobile test platform

where dr is the real displacement of the mobile platform
in a measured time interval ∆T , r is the mean outer radius
of the mecanum wheel, and d is the displacement, in the
measured time interval, of the mecanum wheel as measured by
the inertial sensors of mobile platform measurement system.

In this project, the improved mecanum wheel design, that
used rollers which were held in the middle, was implemented.
The advantage of this design is that the wheels produced less
friction while driving on general surfaces. With free rotating
rollers any combinations of forward, sideways and reverse
movement are possible with less friction [9]. The developed
mobile platform was developed for indoor applications, espe-
cially for office automation e.g. mobile platform for delivery
of coffee, mail, etc. in an office environment. Fig. 1, 2 and
3 show the mecanum wheel design and the developed mobile
robot.

II. EXPERIMENTAL PLATFORM

Four mecanum wheels were used for the mobile platform
in this project. The direction and magnitude of the rotational
speed of each wheel was independently controlled. By using
the same magnitude of rotational speeds of wheels at the

Fig. 3. Typical force motion analysis for mecanum wheeled mobile platform

same time during the operation of the mobile platform, a
maximum of eighty-one combinations of wheels (four wheels:
1,2, 3 and 4) and directions of rotational velocity of wheels
(three directions of rotation: stationery (0), clockwise (+θ) and
counter-clockwise (-θ). Using different rotational directions
of the wheels introduced moments on the mobile platform,
which tended to make the mobile platform rotate controllably/
uncontrollably. This paper models the motion of a mecanum
wheel mobile platform with the aim of implementing an
autonomous omni-directional mobile platform in an office
environment.

To control the resultant direction of the motion of the mo-
bile platform, different relative rotational speeds of different
mecanum wheels were used. For example, to move the robot
to the left, the right wheels were rotated against each other
outwardly; while the left wheels were rotated against each
other inwardly (refer Fig. 3). Any desired orientation of the
mobile robot could be achieved using the same technique.

When the mobile platform is moving on surfaces having
very low friction, such as surfaces covered with oil, low
friction plastics, etc, a lot of slip is encountered and the
mobile platform cannot be controlled effectively. It sometimes
becomes dangerous for the mobile platform to operate in such
conditions. It is necessary to detect slip that occurs during
such conditions. Moreover, surfaces such as concrete, which
have a high coefficient of friction induce high wear on the
wheels. So these surfaces are not conducive for operation of
the mobile platform.

The developed mobile platform uses a sensor measurement
system which is used to verify the mathematical model. The
sensor measurement system consists of the following sensors:

• each wheel is fitted with wheel encoder for measuring
rotation of the wheel, velocity and acceleration of each
wheel

• a 3D gyrometer system in order to measure rotational
motion in each axis

• a 3D accelerometer system in order to measure the
resultant translational motion in each axis.

III. MATHEMATICAL MODELLING

In the model that is developed below it is assumed that the
mobile platform’s frame is rigid and that all the points on
the vehicle rotate about the instantaneous centre of rotation.
Shimada et. al. [6], Tahboub [7] and Viboonchaicheep et. al [8]
developed mathematical models for omni-directional mobile
platforms for position control. The model developed in this
paper is focused on autonomous control of mecanum wheeled
mobile platform.

A. Dynamics Modelling

Fig. 4 shows the forces acting on a single roller instanta-
neously in contact with the surface under the mobile platform.
FTi is the force developed on the roller due to the motor
torque Ti at the circumference of the mecanum wheel i. The



Fig. 4. View of forces acting on the roller in contact with the ground

developed torque can be expressed as:

Ti = rFTi
= rµdFif + (Iw + µdd)θ̈i

(5)

where θ̈ is rotational acceleration of the mecanum wheel i,
µd is the coefficient of dynamic friction (between wheel and
ground), µdd is the coefficient of viscous friction (between
the motor shaft and its bearings), Fif is the frictional force
proportional to the weight of the mobile platform and Iw is
the inertia constant of the wheel about its mass centre. FTi is
determined from the DC motor voltage and the current drawn
by the motor. The developed force FTi is divided into the
roller ineffective slip force, Si, and the effective drive force,
Fi. The sum of all the effective forces developed at all the
wheels creates the motion of the mobile platform. This sum
can be shown to be (ignoring frictional forces for now):

4∑
i=1

Fi = FTi sinα (6)

while each slip force developed at each wheel is defined by
the following equation:

Si = FTi cosα (7)

Let (x, y, z) be reference stationary coordinates axis, while
(x′, y′, z′) is body-attached coordinates axis at the geometrical
centre of the mobile platform as indicated in Fig. 4 and 5. The
components of the effective force, Fi, in the body stationery
coordinate axis (x′, y′, z′) are:

Fi = Fix′i′+ Fiy′j′ (8)

where i′ and j′ are unit vectors in the directions x′ and y′
respectively. The force Fi is co-axial with the roller instanta-
neously in contact with the surface under the mobile platform.
The sum of the components of the forces in the x′-axis which
cause motion of the mobile platform can be shown to be:∑4

i=1 Fix′ =
∑4
i=1 Fi cosα

=
∑4
i=1(−1)i(SIG(θi))KiFT i sinα cosα

(9)

Fig. 5. Mecanum wheeled mobile platform and its coordinates

while the sum of the components in the y′-axis can be shown
to be:

4∑
i=1

Fiy′ =
4∑
i=1

Fi sinα =
4∑
i=1

(SIG(θi))KiFT i(sinα)2 (10)

where i is the wheel number, SIG(θi) is the sign representing
the rotational direction of wheel i as determined by the right-
hand rule (clockwise = +, and counter-clockwise = -), Ki is the
wheel constant dependant on the number of rollers per wheel
and how tight the rollers are on the wheel’s hub, θ̇i is rotational
velocity of wheel i. The direction of the resultant force from
all the wheels is the same as the direction of the resultant
driving velocity on the mobile platform. Using the stationary
reference frame (x, y, z) and Newton’s second law of motion,
then the sum of forces causing motion of the mobile platform
parallel to the x-axis is (now adding frictional forces):

mẍ = sinϕ
4∑
i=1

Fix′ + cosϕ
4∑
i=1

F−
4∑
i=1

Fifx (11)

which can be expanded to:

mẍ =
4∑
i=1

{ (
(−1)i(SIG(θi))KiFTi sinα cosα sinϕ

)
+
(
(SIG(θi))KiFTi(sinα)2 cosϕ

)
− Fifx

}
(12)

where m is the total mass of the mobile platform, ẍ is
component of the mobile platform’s acceleration in the x-
axis, θi is the angular rotation made by wheel i, Fifx is the
frictional force developed on wheel i in the x-direction and α
is the angle that the rollers make with the shaft of wheel i.
Similarly, the sum of the components of the effective forces
that is developed on the mobile platform parallel to the y-axis
is:

mÿ =
4∑
i=1

{ (
(−1)i(SIG(θi))KiFTi sinα cosα cosϕ

)
+
(
(SIG(θi))KiFTi(sinα)2 sinϕ

)
− Fifx

}
(13)

where ÿ is the component of the vehicle’s acceleration in
direction of the y-axis of the stationary reference coordinate
system (x, y, z).

The frictional forces developed on the mobile platform can
be seen as the sum of the frictional forces on each wheel.
The frictional forces on each wheel are dependent on the
position of the mass centre relative to the geometric centre



Fig. 6. View of the geometric centre and theoretical position of mass centre

of the mobile platform and the material used on the floor.
If the mass centre coincides with the geometric centre, the
frictional forces will be equal on each wheel and add up to
Fif . Referring to Fig. 6 the frictional forces developed can be
shown to be:

Fif = µddm

(
y − ei
y

)(
x− di
x

)
)

(14)

where y is the distance from the front wheels to the back
wheels, or the wheel base, and x is the distance from the
left-hand wheels to the right-hand wheels, or the track of
the vehicle, ei is the offset distance of the mass centre from
the centre of wheel i in the y′ direction and di is the offset
distance of the mass centre from the centre of wheel i in
the x′ direction. Both e and d always have positive values,
otherwise the mass centre falls outside the wheelbase of the
vehicle and the vehicle will be unstable. The torque developed
on the mobile platform to make its orientation change is:

T =
∑4
i=1 ai |(Fi − Fif )| cos ξili

= Iϕ̈ (15)

where ai is a constant depending on the wheel number and
ai = -1 for i = 1 and 4, and ai = 1 for i = 2 and 3, T is the
torque developed on the vehicle that changes the posture of the
vehicle, I is the mass inertia of the vehicle in the xy-plane, ϕ̈
is the angular acceleration of the vehicle in the xy-plane which
is measured by gyroscope, Fi is determined by (8), ξi is the
angle that the line from the geometric centre of the vehicle
to the centre of wheel i makes with rollers of that wheel (it
is greater than 90◦ for rectangular wheel set-ups where y

x >

1, 90◦ for a square setup where y
x = 1 and less than 90◦ for

rectangular wheel set-ups where y
x < 1), li is the distance

from the mass centre to the centre of wheel i on the xy-plane
which is defined as:

li =

√
xi

2 + yi
2

2
(16)

This equation is only true for rotations about the geometrical
mass-centre. For other rotations refer to the next section.
Equation (15) does not hold for linear resultant motions where
the orientation of the mobile platform does not change.

B. Kinematics Modelling

The velocity developed at each wheel of the mobile plat-
form, can be defined as follows in the body-attached coordi-
nate axis (x′, y′, z′):

vi = SIG(θi)Kirθ̇i sinα (17)

Its direction is in the same direction as the angular orientation
of the rollers, α. The sum of effective velocities in the x′
direction can be show to be:∑4

i=1 vix′ =
∑4
i=1 vi cosα

=
∑4
i=1(−1)iSIG(θi)Kirθ̇i sinα cosα

(18)
while the sum of the components in the y′ direction can be
determined by:∑4

i=1 viy′ =
∑4
i=1 vi sinα

=
∑4
i=1(−1)iSIG(θi)Kirθ̇i(sinα)2

(19)

The resultant velocity is then defined by:

v =
4∑
i=1

vix′i′+
4∑
i=1

viy′j′ (20)

In the global reference coordinates (x, y, z), the velocity of
the mobile platform is defined by:

vx = sinϕ
4∑
i=1

vix′ + cosϕ
4∑
i=1

viy′ (21)

and

vy = cosϕ
4∑
i=1

vix′ + sinϕ
4∑
i=1

viy′ (22)

And the direction of the resultant motion, β, in the stationery
coordinate axis (x, y, z) is defined by:

β = arctan
(

vy
vx

)
(23)

Due to the geometry of the mecanum wheel platform β can
be in one of 8 directions, using compass directions for ease
of explanation this means that β can be N, NE, E, SE, S,
SW, W, NW. The posture of the vehicle is determined by the
angle ϕ which is measured relative to the x-axis. ϕ can only
be changed with rotational motion, this is handled in the next
section.

IV. TURNING MOTIONS WITH A MECANUM WHEEL
PLATFORM

During turning motions, it becomes important to determine
the radius of turn of a motion. There are three cases where the
vehicle can achieve pure turning motions; where all the four
wheels are used, where only three wheels are used, and where
only two wheels are used (refer to Fig. 7 to 9, respectively).
Theoretically, when only one wheel is used, posture of the
vehicle will change. In practice, this is not achieved because
of the low driving force developed by one wheel and the
relatively large friction produced by the other wheels.



Fig. 7. Rotational motion using all four wheels

A. Four wheel rotation

Rotational motion using all wheels is shown in Fig. 7. When
all the wheels have resulting moments that have the same
direction about the geometrical centre of the mobile platform;
either a clockwise or counter-clockwise motion about the mass
centre is achieved. If one wheel produces an opposite moment
to the other three, then rotation around a centre outside the
vehicle is produced. If two wheels produce opposite moments
we return to a linear motion case, except for the two cases
where no motion is exhibited. In the pure rotation case around
the geometric centre, the rotational velocity ϕ can be shown
to be:

ϕ̇ =
vi
li

(24)

The rotational velocity of each wheel around the geometric
centre is the same, the torque contributions of each wheel are
given in (5). For this case there is no motion of the vehicles
geometric centre in the global xy-plane.

B. Three wheel rotation

Fig. 8 shows the forces working to rotate/pivot the mobile
platform around a single stationary wheel (wheel 3 in this
case). Wheel 1 has a resultant velocity very close to the
direction of the drive motion of the mecanum wheel. Wheels
2 and 4 have motions that are in the x and y directions
respectively. Their resultant motions must be tangential to the
circle about which the mobile platform is rotating. Consider
Fig. 8, in this case θ̇3 = 0. If the vehicle is rotating at an
angular velocity ϕ̇ around wheel 3 each point on the vehicle,
including wheels 1,2 and 4 must also rotate at ϕ̇ hence:

ϕ̇ = v1 sin(α+ξ−90)
R1

= v2x′
R2

= v4y′
R4

(25)

where Ri is the distance of wheel i from the centre of rotation
and in this case, R1 =

√
x2 + y2 , R2 = y , R4 = x as

illustrated in Fig. 8. It can be shown that (25) will apply to
other similar configurations with one stationary wheel. In this

Fig. 8. Rotational motion using driving three wheels

Fig. 9. Rotational motion using two driving wheels

case there is relative motion of the geometric centre in the
global xy-plane given by:

v = ϕ̇R (26)

Where R = R1
2 is the distance between the geometric centre

and the centre of rotation. This gives:

ẋ = ϕ̇R cosϕ (27)
ẏ = ϕ̇R sinϕ (28)

C. Two wheel rotation

When turning using only two driving wheels the centre
of rotation is determined by the geometry of the non-driven
wheels, as they are effectively fixed wheels. As shown in
Fig. 9, wheels 1 and 2 are driven with the same rotational
direction; wheels 3 and 4 are not driven, however they are
free to roll on the roller in contact with the floor. This rolling
movement is limited to one line and is tangential to the circle
around which the mobile platform is rotating. Wheels 1 and
2 must provide torque for the rotational motion; the force
supplied is concentric to the motion of the rollers of wheels
3 and 4. The rollers on wheels 1 and 2 allow them to follow
a tangent around the circle at a wider arc. This holds true for
any two adjacent driving wheels and it allows rotation around
points in front, behind or to either side of the mobile platform.
The following equations can be applied to the case illustrated



in Fig. 9, but they can be extended to other cases as explained
later, the rotational velocity ϕ can be shown to be:

ϕ̇ = v1
R1

= v2
R2

(29)

where R1 and R2 are given by

R1 = R2 =

√(
x

2

)2

+
(
y +

x

2
tan(α)

)2

(30)

R =
y

2
+
x

2
tan(α) (31)

for the case where ±θ̇1 = θ̇2, θ̇3 = θ̇4 = 0. When ±θ̇3 = θ̇4,
θ̇1 = θ̇2 = 0 use R3 and R2 in (29).

When rotation occurs either side of the platform the fol-
lowing wheel rotational velocities are applied, ±θ̇1 = θ̇4,
θ̇2 = θ̇3 = 0 for rotation about a point to the left of the
vehicle in Fig. 9 and ±θ̇2 = θ̇3, θ̇1 = θ̇4 = 0 for rotation
about a point to the right. For the first case the radii change
as follows

R1 = R4 =

√(
y

2

)2

+
(
x+

y

2
tan(90− α)

)2

(32)

R =
x

2
+
y

2
tan(90− α) (33)

in the second case use R2 and R3 in (32).
(27) and (28) hold for all the above cases when the correct

radii are applied.

V. RESULTS AND CONCLUSION

The mobile platform’s different motions were achieved by
a combination of different driven wheels. With four mecanum
wheels, 81 different wheel motion combinations could be
achieved. For rotational motion, as can be expected, the
heading of the mobile platform was changed, however for
straight line motions it was possible for the platform to move
in any of the predefined directions without having to change
it’s heading. This is important if the mobile platform is going
to be successfully deployed in office environments. However
some of these combinations produced motions that were not
useful, others produced motions that were not predictable due
to factors like: slippage due to uneven floor and inconsistent
friction on the wheels, wheels that are not aligned with the
frame of the vehicle, motors that produce uneven torques, etc.
The modelling did not address the behaviour of the mobile
platform when using a variation of different speeds on the
wheels, that is seen as future work.

The tests performed resulted in 51 functional motions that
can be used to manipulate a mecanum wheeled platform, the
remaining 30 motions are non-functional motions i.e. they
result in no motion of the platform. Non-functional motions
results when all the forces and moments produced by all the
mecanum wheels are acting opposite each other in such a way
that they cancel each others effect. The developed mathe-
matical models were verified using the mobile platform’s
integrated motion sensor system.

TABLE I
WHEEL ROTATIONS FOR TRANSLATIONAL MOTION

Wheel Number 1 2 3 4

Direction
North + + + +

+ + 0 0
0 0 + +

South - - - -
- - 0 0
0 0 - -

East - + - +
- 0 0 +
0 + - 0

West + - + -
+ 0 0 -
0 - + 0

North-east 0 + 0 +

South west 0 - 0 -

Northwest + 0 + 0

South-east - 0 - 0

APPENDIX

Table I the rotational directions required for the basic
translational motions, for further information on rotational
and non-functional motions please contact the authors. The
wheels are numbered simply 1-4, refer to Fig. 7 for the
convention used for numbering the wheels. Once again for
clarity translational directions will be described as points of
the compass.
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