High-resolution, short-range, in-mine geophysical techniques for the delineation of South African orebodies

The CSIR Research and Innovation Conference

Natural Resources and the Environment

Michael van Schoor

Senior Research Geophysicist

28 February 2006

Agenda

- Introduction to geophysics
 What does a geophysicist do?
 (An analogy)
- Gold and platinum mining in South Africa
 An overview – why, where, how.
- Geological problems
 Potholes (platinum)
 Reef slopes and terraces (gold)
- Geophysical techniques
 Ground penetrating radar (GPR)
 Borehole radar
 Electrical resistance tomography
 (ERT)

- Case studies
 Waterval Mine (GPR)
 Mponeng Gold Mine (Borehole Radar)
 Western Platinum Mine (ERT)
- Conclusion
- Future research
- Acknowledgements

Slide 2 © CSIR 2006 www.csir.co.za

Introduction to geophysics

An analogy...

Like any applied science it starts with a problem...

that requires an accurate assessment...

A quantitative assessment of the problem is required to help define the most appropriate course of action

 "A geophysicist does to the earth what a radiologist does to the human body"

 Some of the techniques we use are adapted versions of the medical equivalent – e.g. electrical resistance tomography (ERT) is based on medical impedance tomography

Gold and platinum mining in South Africa

An overview

Gold and platinum mining in South Africa Economic impact

- South Africa produces approximately 75% of world's platinum and 14.5% of world's gold
- The bulk of the above Pt and Au is extracted from only two geological occurrences, the Bushveld Complex (Pt) and the Witwatersrand Basin (Au)
- Significant reserves and resources remain to be extracted
- Orebodies are relatively easy to mine because of their planar geometry

Gold and platinum mining in South Africa Typical mining layout

Gold and platinum mining in South Africa Bushveld Complex (Pt)

Gold and platinum mining in South Africa Witwatersrand Basin (Au)

- On a regional scale, the planar reefs are remarkably continuous and fairly straightforward to map ahead of mining
- On a mine-scale, disruptive geological features often distort or displace the economic horizon, thereby complicating mining:

www.csir.co.za

☐ Geological faults
Rolls
Terraces
☐ Dykes
Potholes
☐ Iron-rich ultramafic pegmatite (IRUP) bodies

Bushveld Complex - potholes

Bushveld Complex - potholes

Witwatersrand Basin – slopes and terraces

Rock engineering / safety issues

Geological problems Impact

- Distorts / displaces the economic horizon
- Uneven grade distribution
- Poor ground conditions
- Compromises safety
- Hampers production

Geophysical techniques

Ground penetrating radar (GPR)

Borehole Radar

Electrical resistance tomography (ERT)

Ground penetrating radar (GPR) Concept

www.csir.co.za

Ground penetrating radar (GPR) Typical output

Ground penetrating radar (GPR)

Commercial equipment

www.csir.co.za

Borehole radar *Concept*

Slide 24 © CSIR 2006 www.csir.co.za

Borehole radar

CSIR's Aardwolf system

Slide 25 © CSIR 2006 www.csir.co.za

Electrical resistance tomography

Concept

Electrical resistance tomography *In-mine ERT system*

Case studies

GPR – Waterval Platinum Mine

Borehole Radar – Mponeng Gold Mine

ERT – Western Platinum Mine

Ground penetrating radar (GPR) Waterval Platinum Mine

Slide 29 © CSIR 2006 www.csir.co.za

Ground penetrating radar (GPR)

Waterval Platinum Mine

Slide 30 © CSIR 2006 www.csir.co.za

Borehole radar Mponeng Gold Mine

Borehole radar Mponeng Gold Mine

Borehole radar *Mponeng Gold Mine*

Electrical resistance tomography

Western Platinum Mine

Electrical resistance tomography

Western Platinum Mine

Slide 35

Integrated geophysical ("toolbox") approach

	GPR	Borehole Radar	ERT
Maximum Range	~ 8 m (500 MHz)	~ 50 m (100 MHz)	100-200 m
Resolution	Few centimetres	Few tens of centimetres	Few metres
Applications	Mapping continuity and topography of marker horizons and parting planes in roof Identification of hazardous structures e.g. joints (i.e., mainly for rock engineering purposes)	Mapping reef continuity and topography at exploration phase Following-up ERT anomalies to obtain info of third dimension (depth)	Mapping of potholes, IRUPs in unmined blocks Mapping of grade variations

Slide 36 © CSIR 2006 www.csir.co.za

Conclusions

Conclusions

- High-resolution geophysical techniques can be used to predict reef topography ahead of mining
- Choice of techniques allows mine to use an integrated geophysical assessment approach
- Routine application of geophysics can result in significant savings
 - Reducing the amount of conventional exploration drilling
 - Selective extraction of higher grade areas
- In-mine geophysics can make a valuable contribution to safety
 - Identifying hazardous roof conditions
 - Optimum placement of roof bolts

Slide 38 © CSIR 2006 www.csir.co.za

Future research

Magnetic resonance sounding (MRS)
Induced polarisation (IP)

Future research

- The use of the magnetic resonance sounding (MRS) technique to detect hazardous water and gas occurrences ahead of mining developments.
- Supplementing existing in-mine ERT technique with the induced polarisation (IP) technique to improve target discrimination and resolution.

Acknowledgements

Acknowledgements

- PlatMine Collaborative Research Programme
- AngloGold Ashanti Ltd.
- Mponeng Gold Mine
- Co-authors and colleagues:
 - Petro du Pisani
 - Declan Vogt
 - Mpho Nkwana
 - Stepens Letlotla
 - Johann Haarhoff
 - Reinhard Bilgeri
 - Karlo Walker
 - Liam Candy

