Design and Synthesis of a Heterocyclic Compound Collection for Probing the Spatial Charactistics of ATP Binding Sites

Presented at the CSIR Conference Centre

CSIR Biosciences

C.P. Kenyon, P.M. Matlaba, **C.J. Parkinson**, A.L. Rousseau and C.W. van der Westhuyzen

February 28, 2006

The kinases

The nature of the ATP site

A basis for selectivity

Types of potential guest molecules

Methodology for preparation

Slide 2 © CSIR 2006 www.csir.co.za

The Kinases

Proteins which transfer phosphoryl residues

Utilise ATP as phosphate source

All have an ATP site

Why are kinases attractive targets?

Basic Structural Characteristics of the ATP Site

Typical ATP binding site

Slide 4

Pharmaceutical example: Interactions of SB203580 in the p38 MAP Kinase

Rational Basis of Design

Slide 6 © CSIR 2006 www.csir.co.za

Scaffold Selection

Purines

Imidazopyridines

Spatial Comparison of Scaffolds

Pyrimidines and Purines

Synthesis of Pyrimidines and Purines

Slide 11

© CSIR 2006

www.csir.co.za

our future through science

Imidazopyridines

The Classical Approach

Diversity Orientated Approach

Aldehyde	Isocyanide			
	**************************************		~	
СНО	NH NH 72%	NH NH 60%	NH NH NH NH NH	NH NH 78%
СНО	NH NH S4%	NH NH S7%	NH NH NH 20%	NH NH S9%
Осно	N, NH 25%	N N N N N N N N N N N N N N N N N N N	N O N O N O N O N O N O N O N O N O N O	NH NH 73%
н,со сно	N OCH ₃ HN 48%	22%	N OCH ₃	N — OCH ₃ HN — 42%

Slide 15 © CSIR 2006 www.csir.co.za

The Way Ahead

Explore the untapped dimension Kinase and ATP –ase studies

Thanks To.....

CSIR Thematic Programmes

Department of Science and Technology

