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ABSTRACT 

The Light Falling Weight Deflectometer (LWD) has recently become available in South 
Africa as a portable, light weight, user friendly version of the well established Falling 
Weight Deflectometer (FWD). This device uses very similar technology to the FWD device 
to most closely simulate the loading rate and area of a single moving wheel. However, with 
its reduced maximum applied force and load pulse duration, the LWD has a shallower 
depth of influence than that of the FWD. It is, therefore, ideal for single layer structural 
evaluation during construction to provide better engineering parameters for quality 
assurance and quality control (QA/QC) of constructed granular layers and lightly cemented 
layers than merely conventional density measurements only. Various correlations with 
other non-destructive structural evaluation devices have been done elsewhere in the world 
indicating the potential of the LWD as a tool to assist in decision-making related to 
structural integrity of individual road pavement layers for a wide range of materials. Limited 
correlation studies between the FWD and LWD in SA have also confirmed this 
observation. This paper presents findings from a study on correlation between the LWD 
and FWD test results for sand treated with emulsion (STE) on an experimental 
construction site in Mozambique.   

1. INTRODUCTION 

Since its introduction to SA in the mid 1980s (Coetzee et al, 1989 and Horak et al, 1989), 
falling weight deflectometer (FWD) has become a invaluable non-destructive measuring 
tool used for structural evaluation of road and airport pavements. A considerable effort 
worldwide has gone into the development of back-calculation software to determine elastic 
moduli of road pavement layers from the measured deflection bowls (Horak, 1988). 
Furthermore, the FWD has also been used to investigate the application of various 
deflection bowl parameters, as defined in Table 1, in semi-empirical mechanistic 
relationships for pavement structural evaluations (Horak, 1987). Through the initial work on 
back-analysis procedures and semi-empirical mechanistic procedures, other researchers 
(Rohde and van Wijk,, 1996, Joubert, 1993; Horak, 1988, Maree and Jooste, 1999; Maree 
and Bellekens, 1991 and Horak et al, 1992) have greatly enhanced the use of deflection 
bowl analysis in the SA mechanistic design procedure.  



  

Table 1 Deflection Bowl Parameters (Horak et al, 1989) 
Parameter Formula Structural indicator 

1 .Maximum 
deflection 

Do or Yo as measured Do gives an indication of 
all structural layers with 
about 70% contribution 
by the subgrade 

2. Radius of 
Curvature (RoC) 

 
RoC= (200)2/[2Do (Do/D200)-1] 

RoC gives an indication 
of the structural 
condition of the 
surfacing and base 
condition 

3.Base Layer 
Index (BLI) 

 
BLI=Do-D300 

BLI gives an indication 
of primarily the base 
layer structural condition

4.Middle Layer 
Index (MLI) 

 
MLI=D300-D600 

MLI gives an indication 
of the subbase and 
probably selected layer 
structural condition 

5. Lower Layer 
Index (LLI) 

 
LLI=D600-D900 

LLI gives an indication 
of the lower structural 
layers like the selected 
and the subgrade layers 

6.Spreadability, S S={[(Do +D1 +D2+D3)/5]100}/D0 
Where D1, D2, D3 spaced at 
300mm 

Supposed to reflect the 
structural response of 
the whole pavement 
structure, but with weak 
correlations 

7. Area, A A=6[1+2(D1/Do) +2(D2/D0) + 
D3/Do] 

The same as above 

8.Shape factors F1=(Do-D2)/D1 
F2=(D1-D3)/D2 

The F2 shape factor 
seemed to give better 
correlations with 
subgrade moduli while  
F1 gave weak 
correlations 

9. Slope of 
Deflection 

SD= tan-1(Do-D600)/600 Weak correlations 
observed 

The introduction of the light falling weight (LWD) in South Africa (Horak and Khumalo, 
2006) led to the question about its correlations with the FWD, as well as other useful 
instruments normally used in pavement and material evaluations. The LWD is a portable 
scaled down version of the FWD, which can be operated by one person. A known weight 
(10kg, 15kg or 20kg) is dropped by a release mechanism at various drop heights to 
impose various contact pressures through a calibrated system of rubber buffers to the 
loading plate and simulate a moving single wheel load on pavement surface. The LWD 
device measures both the force and the deflections with a velocity transducer. The centre 
deflection is measured and two more readings further away from the load centre can be 
measured with additional geophones (normally spaced at 300mm). The LWD automatically 
measures and records the deflection bowl and has software which estimates an elastic 
stiffness calculated  similar to the one used to calculate the surface modulus (Hoffmann et 
al, 2003 and Ullidtz, 1987) of a layered medium assuming a constant loading on an elastic 

  



  

half-space with uniform Poisson’s ratio.  

Horak and Khumalo (2006) facilitated the introduction of the first LWD in SA by reporting a 
pilot correlation study between the FWD and the LWD. This initial study was of limited 
scope, but helped to verify the extensive development and testing that was done overseas. 
The pilot correlation study focussed on the possible use of the deflection bowl parameters 
from LWD tests in a similar fashion to that used and developed for the FWD in benchmark 
analyses procedures described by Horak and Emery (2006) and Horak (2007 and 2008). 
Calculation of the surface modulus is standard output generated by both the FWD and the 
LWD. The moduli values determined from the FWD and LWD test results were correlated 
as well as the relevant deflection bowl parameters.  

The lighter weight and shallower depth of influence of the LWD have indicated from the 
start that this device may be a particularly valuable tool in the evaluation of road pavement 
layers during construction. In 2005 and 2006, the first LWD was used intensively, on a road 
construction site in Mozambique, where sand treated with emulsion (STE) was constructed 
on Berea red type sand sub-base and subgrade (van Wijk and Carvahlo, 2002 and 
Hartman et al, 2005). The LWD test results from this site were then correlated with other 
non-destructive measuring instruments. In the following section, correlations between the 
FWD and the LWD results are reported.  

2. CORRELATIONS BETWEEN FWD AND LWD  

2.1  Background to previous correlation studies 
A number of correlation studies have been done in the past to determine the relationship 
between the FWD and the LWD.  Because these studies were done on a variety of 
material types and pavement structures, there is some variance in their correlation. For 
example Livenh and Goldberg (2001) suggested that the LWD stiffness moduli are about 
0.3 to 0.4 times the conventional FWD surface moduli.  

Fleming et al. (2000) also conducted field tests to correlate moduli determined with three 
main types of LWD available on the market with that of the FWD. Their results showed that 
the resilient surface modulus, determined with the FWD (EFWD) correlated well with 
moduli obtained from the LWD. However, they found that the correlation coefficients are 
LWD instrument specific and should first be established before use with confidence. 
Fleming (2001) reported that a number of factors influence the measured stiffness of the 
LWD including differences in mass, transducer type and software analysis (which records 
the maximum deflection as that at the time of the peak force). 

Nazzal (2003) found that the best model to predict the FWD back-calculated resilient 
surface moduli, EFWD  (in MPa) from the LWD surface modulus, ELWD (in MPa) is: 

EFWD= 0.97*ELWD , with R2 = 0.94, significance level < 99.9% and standard error = 3.31 

Nazzal (2003) found that his correlations agreed well with those of Fleming (2000) for a 
variety of material types. According to Rahimzadeh (2004) the relationship between FWD 
and LWD was found to be material type and thickness dependent. The FWD is regarded 
as the most appropriate device for setting the standard, because not only is the loading 
most representative of real traffic loading, but it can also be used for assessment of all 
pavement layers as construction proceeds.  Either the FWD or the LWD can be used for 
measurement of stiffness as long as the same plate rigidity factor is assumed (π/2 for a 
flexible plate). If the LWD default setting (rigid plate, rigidity factor of 2) is assumed, then a 
correction factor must be applied, such that ELWD = 1.273 EFWD. 

  



  

It is also interesting to note that Ping et al (2002) correlated triaxial tests with FWD tests on 
subgrade materials. They  referred to the fact that “AASHTO Design Guide (AASHTO, 
1986 and 1993) found that FWD back-calculated moduli are approximately two to three 
times higher than the laboratory”  (triaxial) determined moduli for subgrades”  (mostly 
clayey material). In their own study they found that the elastic modulus determined with 
back-calculation methods (EFWD) has a good correlation with triaxial resilient modulus (MR);  

EFWD = 1.6539 MR  with R2 =0.3.  

This implies that elastic modulus determined with an LWD (ELWD) could in fact be 
approximately three times higher than laboratory determined triaxial value and is clearly 
material type and quality dependent. 

2.2 Correlation studies on Sand Treated with Emulsion (STE) 
The first LWD in SA was used to perform extensive correlation tests with a number of non-
destructive measuring technologies on experimental sections of STE in Mozambique 
(Hartman et al, 2005). Various thickness of STE (75mm and 100mm) were constructed by 
labour intensive and machine intensive techniques to emulate the good performance of hot 
sand asphalt constructed in Mozambique prior to 1970s.  

The test set-up of the LWD can be changed by varying the diameter of the loading plate 
(200mm or 300mm), drop weight (10kg to 20kg) as well as the drop height. In this 
correlation study the loading plate diameter, drop height and drop weight were maintained 
at 200mm, 850mm 10kg, respectively. This resulted in an average contact pressure of 
313kPa. The standard FWD set up was used to produce 566kPa contact pressure (drop 
height 850mm, 300mm diameter loading plate with 40kN drop weight). In Table 1 the 
deflection bowl parameters normally associated with measured FWD deflection bowls are 
summarised with an indication of structural strength.   

The best correlations between the LWD and FWD parameters using regression analysis 
for the test results obtained from the STE sections are shown in Table 2 .  The functions 
varied from power, linear and logarithmic to see which type gives the best fit based on the 
best regression correlation value of R2. A benchmark RAG system, similar to the one 
mentioned in the introduction, was used to rate the regressions correlations. The red 
colour was used for  R2 values 0 to 0.5, amber for R2 values 0.51 to 0.8 and green R2 
values 0.81 to 1.   

  



  

Table 2 Correlation results between LWD and FWD on STE pavement 
Regression R2 Best fit

LWD FWD Equation type
Ymax y = 0.3617x0.9831 0.62 Power
BLI  y = 1.6178x0.8236 0.61 Power
MLI y = 2.4502x0.8889 0.57 Power
LLI y = 10.198x0.7359 0.31 Power

Ymax y = 0.1586x0.9281 0.82 Power
BLI y = 1.1044x0.6839 0.62 Power
MLI y = 0.6674x0.9169 0.90 Power
LLI y = 1.1297x + 1.963 0.85 Linear

Ymax y = 0.2353x0.7421 0.67 Power
BLI y = 1.3779x0.5086 0.44 Power
MLI y = 0.9111x0.6901 0.65 Power
LLI y = 0.8732x0.8742 0.82 Power

Ymax y = -351.1Ln(x) + 2373.4 0.51 Logarithmic
BLI y = -305.86Ln(x) + 1904.4 0.54 Logarithmic
MLI y = -303.97Ln(x) + 1626.2 0.43 Logarithmic
LLI y = -190.01Ln(x) + 904.54 0.13 Logarithmic

Ymax y = 0.1645x1.045 0.46 Power
BLI y = 0.609x0.9258 0.51 Power
MLI y = 1.4986x0.9078 0.39 Power
LLI y = 10.176x0.6305 0.15 Power

Ymax y = 0.0269x1.1092 0.77 Power
BLI y = 0.221x0.8555 0.64 Power
MLI y = 0.1266x1.1316 0.90 Power
LLI y = 0.3735x1.1301 0.71 Power

Ymax y = 0.0004x1.0184 0.56 Power
BLI y = 0.0017x0.8747 0.58 Power
MLI y = 0.003x0.9149 0.51 Power
LLI y = 0.0159x0.7022 0.24 Power

Ymax y = 1.3338x0.1138 0.01 Power
BLI y = 0.8259x0.2114 0.05 Power
MLI y = -0.0032x + 3.2909 0.01 Linear
LLI y = -0.0262x + 4.1189 0.08 Linear

F1

RoC

BLI

MLI

SD

Parameters

D0

D300

D600

 

The LWD has geophones only up to 600mm from the centre point of loading and, 
therefore, deflection bowl parameters calculated from LWD measurements are restricted to 
those shown in Table 2. It is important to note that deflection at the centre of the loading 
plate (Do) does not have good correlation for LWD and the FWD. This is clearly due to the 
difference in contact pressure and the shallow depth of influence of the lighter LWD weight 
and low drop height of the LWD.  

It is also significant that the deflection at 300mm (D300 ) of the LWD has the best 
correlations with the FWD set of deflection bowl parameters. It is also significant that MLI 
(LWD) also had better correlations with the same parameter determined with the FWD. 
This was also found by Horak and Khumalo (2006) on a light granular base pavement.  

As shown previously by Horak and Khumalo (2006), there were also weak correlations 
between the LWD and the FWD determined RoC and BLI on this STE pavement structure. 
The deflection bowl parameters F1 and SD (see in Table 1) have very poor correlations as 
shown in Table 2. The results shown reflect the 10kg LWD setup as specified earlier, the 
R2 improves as we move from 10kg to 20kg LWD setup although the results follow the 
same trend here described. 

  



  

3. CORRELATIONS BETWEEN CIT, RCCD AND LWD ON STE PAVEMENTS 

One of the envisaged applications of the LWD is for compaction control. This potential was 
reported by Horak and Khumalo (2006). For that reason, correlations with other non-
destructive testing equipment have also been investigated by other researchers 
elsewhere. The equipment investigated include the Dynamic Cone Penetrometer (DCP), 
the Clegg Impact Tester (CIT) and the PLT (Thompson et al, 2008). This work focussed on 
the development and use of roller-integrated continuous compaction control and intelligent 
compaction control. It was found that subgrade stability measurements from these in situ 
testing devices followed the roller measured stiffness accurately. A correlation study by 
Siddiki et al. (2008) concentrated on using the DCP as the main evaluation tool for 
problematic compaction control of bottom ash embankment construction. It was found that 
initial criterion developed for this specific material was very good for the quality control with 
the DCP. 

In the construction monitoring of the STE in Mozambique, CIT and Rapid Construction 
Control Device (RCCD) measurements were performed, which enabled the evaluation of 
these non destructive testing devices as potential construction evaluation tools. The CIT 
consists of a drop weight instrumented with an accelerometer in a confined thin-walled 
metallic cylinder acting as guide tube. The basic principle that governs the functionality of 
the CIT is that the deceleration of a dropped body is directly related to the stiffness and 
shear resistance offered by the dropped mass strikes (Guthrie and Rees, 2008).  The 
accelerometer mounted on the CIT weight measures the peak deceleration of the weight 
as it strikes the aggregate surface. A Clegg Impact Value (CIV) is measured where one 
CIV is equivalent to 10 times the gravitational acceleration. Four successive drops of the 
hammer at the same location constitute one test, and normally completed within 30 
seconds. This test is included in the American Society of Testing Materials (ASTM) D5874, 
Standard Test Method for Determination of the Clegg Impact Value (CIV) of Soils (Guthrie 
and Rees, 2008). The light CIT using either a 2.5lb or 5lb weight dropped through 
12inches were used on the STE experimental section. 

The RCCD is a scaled down version of the DCP. The penetration energy of the cone 
shaped point is a calibrated air gun spring which is loaded by pulling it into position. Three 
successive shots are then fired into a measuring hole to give an average penetration 
value. The RCCD has already been correlated with the CBR and DCP tests (de Beer et al 
1994). The fact that much shallower penetrations are obtained with the RCCD than with 
the DCP means that this instrument is ideal for layer compaction control. It is easier to 
work with than the DCP and one operator can do a set of readings within 30 seconds. 

In Table 3, the correlations established between the CIT and the RCCD with the FWD bowl 
parameters are shown for the specific STE material. As in the case with the correlation 
between FWD and LWD done before, the same colour code for the regression coefficients 
(R2) was used. It is clear that there were no good correlations between the CIV and FWD 
and also RCCD penetration and the FWD. In general the CIV had better correlation 
coefficients than that of the RCCD. This is to be expected as the CIV relies also on a 
dropped weight for measurements. The RCCD measures the in situ shear resistance 
characteristics while the LWD and CIV measure elastic properties of materials. The fact 
that there is emulsion in the STE material influences also the RCCD value and, therefore, 
this lack of good correlation should be viewed as non-indicative of other granular 
materials.  

  



  

Table 3 Correlation results between CIT, RCCD and FWD on STE pavements 
Regression R2 Best fit

Devices FWD Equation type
Ymax y = 58.744e-0.0007x 0.47 Exponential
BLI y = 55.666e-0.001x 0.53 Exponential
MLI y = -8.8662Ln(x) + 83.392 0.26 Logarithmic
LLI y = 75.889x-0.1631 0.12 Power

Ymax y = 11.45e0.0003x 0.07 Exponential
BLI y = 12.015e0.0003x 0.05 Exponential
MLI y = 9.9987x0.0584 0.02 Power
LLI y = 7.4113x0.1519 0.11 Power

CIV

RCCD

Parameters

 
Note: The table above reflects the comparison study between CIT and RCCD with FWD bowling parameters. 

4. CONCLUSIONS AND RECOMMENDATIONS 

The LWD has a shallow depth of influence due to the lighter weight being dropped by hand 
as compared to the FWD. The LWD clearly has the potential to be used as a construction 
control device of granular and soil layers. Previous studies showed that there are good 
correlations between elastic moduli determined with the LWD and the FWD. Correlations 
between laboratory’s determined resilient moduli and elastic moduli determined with the 
FWD have also been established in the past. However, it is clear that such correlations are 
material type and pavement structure dependent.  

Previous limited studies with the LWD have shown that surface elastic moduli determined 
with the LWD have material specific correlations with that of surface elastic moduli 
determined with the well known FWD. That study also showed that the use of deflection 
bowl parameters determined with the LWD for benchmarking or relative comparison also 
has potential for construction control purposes. Therefore, the study on STE focused on 
correlations between the LWD deflection bowl parameters with that of the FWD, the 
penetration rate of the RCCD, or DCP and the CIV values of the CIT. These are all non 
destructive measuring technologies which can clearly enhance the normal density focused 
layer construction control.  

The good correlations established for the STE between the FWD and the LWD deflection 
bowl parameters showed that benchmarking with the deflection bowl parameters would be 
possible for such material types in future. The study between LWD deflection bowl 
parameters and the CIT or RCCD did not produce good correlations. It is, therefore, 
suggested that the LWD always be used in combination with density measurements or 
RCCD and the CIT.  
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