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Abstract: - An efficient method of integration for far field calculations is derived. The method applies to the 
integrals arising from calculation of far field pattern with higher-order polynomial basis functions and
moment method. The integral under consideration is a product of a power and exponential functions. 
Depending on the electrical length of the integration path and the required accuracy, either integration by 
parts or small parameter expansion is applied, in a recursive manner. The speed performance of a Matlab
implementation indicates that the presented method is favorable compared to the commercial software 
“WIPL-D” used as a reference. 

Key-Words: - antenna radiation patterns, moment methods, numerical analysis. 

1 Introduction 
There are cases when modeling of even simple 
antennas and scatterers may take a relatively long 
computing time, e.g. when optimizing the geometry 
with respect to radiation parameters. This often 
happens due to the need to calculate a radiation 
pattern or radar cross section (RCS) for many 
excitations or simply at a large number of points. 
Calculation of a radiation pattern typically involves 
a summation of partial electric fields produced by 
individual current components [1]. Each partial 
electric field is an integral of the Green’s function
and the respective current (basis function). It is easy 
to deduce that the computational complexity of this
task scales as O(N⋅M), where N is the number of 
unknowns (directly related to basis functions) and 
M is the number of angular points, at which the 
radiation pattern is to be calculated. 
The process of solving the system and obtaining 
unknown currents requires O(N⋅logN) to O(N3) 
operations [2]. Thus, when the impedance matrix 
size is not large (say, under 1000 unknowns), most 
of the total time used for simulation is often 
consumed by integrations and summations involved 
in the far field estimation.  
In the field of ultra wide bandwidth (UWB)/short 
pulse (SP) arrays, the synthesis techniques [3], [4], 
[5], often require computation of radiated fields 
over multiple radiators and over many steering 
directions. 

Evaluation of the far field is often considered a 
trivial task. This is the case where (a) the basis 
function is a pulse or a piecewise linear function, or 
a piecewise sinusoidal basis function [1], and (b) the 
Green’s function is a free space Green’s function or 
may be expanded into a superposition of such [6]. 
The piecewise sinusoidal functions permit exact 
analytical integration. The general expressions for
an integral of exponent and power function may be 
found for instance in [7]. For electrically very short 
segments, the expressions may be reduced to a 
central point rule [1]. For somewhat longer 
segments, as the integrand has no singularity, a 
simple numerical quadrature may be readily used as 
done by many authors [1], [8].  
Traditionally, the integration for power basis 
functions, including those mentioned above, is 
performed either by a direct analytical integration or 
numerically [1], [8], [9]. However, such an 
approach is usually limited to a specific basis 
function and may, subject to accuracy and speed, be
restricted in the electrical size of the wires. As it 
will be shown in this paper, the high powers of 
polynomial basis functions quickly give rise to large 
errors due to limited computer accuracy 
In this paper, a different analytical approach has 
been applied for the integration involving higher-
order power basis functions on thin wire segments. 
The resulting closed-form expressions, obtained by 
integration by parts, were found to suffer from a 
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rapid loss of numerical accuracy for electrically 
short segments. This problem has been addressed by 
utilizing a series expansion at low frequencies. The 
obtained formulae were analyzed from the point of 
view of numerical accuracy. Further, the error 
estimating expressions for low and higher 
frequencies were combined to give the point of 
optimum to separate the regions of applicability of
the series and integration by parts expressions, as
well as to give an estimate for the maximum error 
due to the developed combined approach.  
To enhance performance, the recursive properties 
found in the expressions have been utilized and the
resulting algorithm implemented in Matlab [12].  
Comparison with the output from a commercial 
program WIPL-D [10] has shown high efficiency of 
this algorithm. 

2 Derivations 

2.1. The Function Under Consideration 
Computing the far field from the polynomial-
approximated current on thin-wire antennas and 
scatterers [8], [10], [11] leads to integrals of the 
form, 

( ) 2

1

zu i z
i z

F z e dzξξ = ∫  (1) 

where cosr zj u uξ β α′= � �
. This integral represents 

the normalized electrical field produced by a 
straight wire segment. The geometry of the wire 
segment is to be modeled by a truncated cone with 
opening angle α  and axis matching z axis of a 

segment’s local coordinate system. The factor iz  in 
the integrand is a term of a higher-order 
power/polynomial basis function. The exponent in 
the integrand represents the fast-changing factor of 
the free-space Green’s function, expanded 
asymptotically, in the Fraunhofer region. The 
integration is done from the beginning  1z  of the 

cone to its end 2z , along the cone axis. The wire 

(cone axis’) unit vector is denoted as zu
�

, and the 

unit vector to the observation point is referred to as 

ru ′
�

. The other notations used are: i  is the order of 

power basis function, and β  is the propagation 
constant. To highlight the physical meaning, the 
product of the unit vectors can be expressed as 
cosine of the angle between them: cosr zu u θ′ =� �

.

With this in mind, the function will also be referred 

to as ( )( )u
iF θ ξ .

2.2. Example of Numerical Instability 
For a uniform current distribution (i=0), the integral 
(1) may be written as 
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Both closed forms for this integral (with exponents
and sinuses) are numerically unstable (as 0

0 ) at 

angle θ  equal 90 degrees and also for conical wires 
degenerated into disks (when the length of cone is 
reduced to zero). The exponential form of the 
expression is also prone to errors due to subtraction
of closely valued exponents. This happens when 

( )2 1 cos 0r zz z u uβ α′− ≈� �
, for example (a) for 

electrically short wires, (b) for values of angle θ
close to 90 degrees, and (c) for the cones that are
close in shape to disks. The accuracy in the result is 
lost completely when the first, linear, term in the
expansion of exponent 

( 1 , 1ze z zξ ξ ξ≈ + + <<… ) becomes smaller 

than the uncertainty of the floating point number 

representation 0

2
ε  used in computations. This may 

be written as the inequality: 0

2z εξ ≤ . The scenario 

where the accuracy is lost is equivalent to taking 
into consideration only the static field, i.e. eξz≈1,
and neglecting the radiating terms.  
It is possible to estimate the error due to the limited 
accuracy of floating point number representation. 

The inequality may be re-written as 0

2
1

z

ε
ξ≤ .

Considering the left- and right-hand sides equal, and
taking the unity as a relative error of 1, the 
fractional inaccuracy due to subtraction of closely-
valued terms 

0Fδ  may be evaluated as  

     0

0

1
22 , 1F z

zε
ξδ ξ≤ ≪        (2) 

This expression quantifies the numerical instability 
due to subtraction of exponents with close powers. 

2.3. Lower and Higher Frequency Formulae 
In the situation described in the previous section, it 
is convenient to expand both exponents into a 
Maclaurin series with respect to the parameter ξ :  

( ) ( ) ( )2 21
0 2 1 2 12 , 1uF z z z zξ ξ ξ≅ − + − + <<… .

Such procedure may also be repeated for higher-
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order power functions. This is however a somewhat 
laborious task.  
A simpler method to calculate the integral when the
parameter ξ  is small, and for arbitrary 0i ≥ , is to 
expand the exponent in the integrand into a 
Maclaurin series and integrate the resulting 
combined series analytically, as shown in (3). 
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 (3) 

It is useful to note by writing the next, ( 1i + )th, term 

( ) ( ) ( )2 2 3 31 1 1
1 2 1 2 12 1! 3

u i i i i
i i iF z z z zξ ξ+ + + +
+ + += − + − +…

that some parts of u
iF  may be reused in computing 

1
u

iF + . When computing several terms of a 

polynomial, the re-usage enables a partially 
recursive process and may therefore save some 
computational efforts. 
At higher frequencies the electrical length of the 
integration interval may be too long to apply the 
expression (3). Then one may integrate (1) by parts.
The resulting expressions shown in (4) may also be 
used in a recursive manner. 
As shown later in the paper, the accuracy of results 
produced by the expansion (3) worsens for larger 
values of parameter ξ . On the other hand, the 
accuracy of formula (4) is improving with growth in
ξ . Therefore, using (3) for small ξ  and (5) for 

large ξ  may be expected to give the best accuracy. 
The respective domains may then be separated at a 
break point. It is assumed that  such a point exists. 
The coordinate of this break point, ξ0, will be 
identified later in the paper. 
Summarizing the above-mentioned, it is possible to 
write a procedure for calculating the value of the 

function ( )u
iF ξ  for all the powers of a polynomial 

over a specified wire segment as 
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These expressions allow partially recursive process
of calculating the radiation integrals with 
hierarchical power basis functions.  
Now it is left to evaluate the value of 0ξ , giving an 

optimum with respect to the best achievable 
accuracy. This requires error estimates for the series 
expansion, as well as for the exact expressions 
obtained by integration by parts. 

2.4. Error Estimation for Lower Frequencies 
The accuracy of the approximation (5) is defined by
the number of terms left in the truncated series. The 
series is not slowly converging (convergence is 
better than one of sine or cosine functions) and this 
promises to give advantage in both speed and 
accuracy for the wire segments that have a short 
electrical length, as compared against the direct 
integration by parts. This feature is particularly 
important for curved structures geometrically 
approximated with a large number of small straight 
wire segments.   
Considering a truncated series approximation (5) of

order m  of the function ( )u
iF ξ  in (1), the 

fractional accuracy of (5) may be evaluated by the 

ratio of its ( )1
th

n+  term to the first one:  

( )
( )

1 11 1
2 1! 1

1 11
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F i i
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z z
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ξ
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+ +
+

−
=

−
.

To simplify further discussions, consider 

2 1,z L z L= = − , where L  is the half-length of the 

wire segment. The terms of the series (5) with even
powers are zero, and only the odd-powered terms 
would be considered. The formula for estimating the
fractional accuracy of expression (5) then reduces to 

11
! 1i

nSnL i
F n i n Lδ ξ+

+ +=  (6) 

2.5. Error Estimation for Higher Frequencies 
Derivation of an error estimate for the exact formula 
(4) is done in an iterative manner. For a zero-order 
power basis function, the absolute error in the exact 

expression for 0
uF  may be evaluated as 1ε

ξ .

Continuing with the other terms (e.g. 1 1
2

Lε ε
ξξ +  for 

the next function, 1
uF ), the absolute error for the 

function u
iF  with arbitrary index 0,1,2,i = …  may 

be written as  
( ) ( )( )2

1 1

1 12! !! 1 !
i

i i

L Lu L
i iF i L i eξ ξ ξε ε

ξ ξ
ξ+ +∆ ≤ + + + + ≅… .

The value of 1ε  may be found from the previously 
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found estimate for the inaccuracy of 0
uF : 

1
0

0

1
22u LF

εε
ξξ

= ,

so that 0 0 01 1 1
02 2 22 2 2 4u

L LF Lε ε ε
ξ ξε ξ ξ= ≤ = . Then 

the fractional inaccuracy for the terms with odd i
may be estimated as  

( )( )
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From this expression it is easy to see that the errors 
may accumulate very quickly, as the degree of 
polynomial (i ) increases. This is very different 
from the behavior of the truncated series 
approximation, which changes much slower as there 
is no factorial dependency on the degree of 
polynomial. 
It may also be noted that it is possible to derive the 
expressions for errors due to the non-recursive 
closed analytical form of the expression (1). It has 
the same form as the expression (7). As such, it 
possesses the same poor properties when applied to 
integration of high order polynomial basis functions 
on short intervals. 
The both error functions, (6) and (7), are depicted in 
Fig. 1. The change in power i from 0 to 6 does not 
change the error of the truncated series 
approximation (6) much, at the same time producing 
dramatic effect in the error function (7) resultant
from the integration by parts (4). From the point of 
view of the best accuracy that should be possible to
achieve by combining the functions (4) and (5), the
figure illustrates existence of an optimum value of

0ξ  for each pair of i and n. Considering an example 

with i=0 and n=1,  a better accuracy may be 
obtained via the truncated series until approximately 

8
0 2.1 10ξ −= ⋅ . After that point either a higher 

degree truncated series i, or the exact expression (4) 
should be used. 

2.6. Finding a Break Point 
Setting the derived error estimates for the series (6) 
and integration by parts (7) equal to one another 
gives an equation (where the exponent is 
approximated with its first term only, unity):  

( ) ( ) ( ) 1011
! 1 2 1 !

2
n ii

n i n L i L
εξ ξ − −+

+ + = + .

This leads to an estimate for an optimum position to
separate the domains for applying either the exact 
formula or truncated series approximation, shown in

the expression (8): 

   ( ) ( )( )
1

( 1 )0

0 2 1
1 2 ! 1 ! 1

n in
in iL

εξ + +

+= + +    (8) 

This expression is numerically expensive. It is 
possible to reduce the computational costs by pre-
tabulating the function of two arguments, n and i.
With a careful selection of tabulated values, this 
approach can still lead to nearly optimal in terms of 
accuracy results. 

3 A Note On Computing the Far Field 
Series 
The total electrical field at a point is formally 
calculated as a sum of fields produced by each wire
segment. The field due to a single wire segment is a 
sum of components due to hierarchical basis 
functions. To compute this double series more 
accurately, it is better to interchange the order of 
summation, so that the field components 
corresponding to the same power i  for all of the 
wire segments would be added up in the inner loop: 

wires i i wires

⇒∑∑ ∑∑
It may be noted, though, that rearranging the 
summation this way may lead to a drop in speed of 

Figure 1. Relative inaccuracies in 
calculating integrated-by-parts functions 
and their truncated series approximations 
versus the electrical length of wire segment. 
Thick lines correspond to the function 

( )u

i
F ξ  with value of power i=0,2,4 and 6. 

Thin lines correspond to the truncated 
Maclaurin series approximation of degree 
n=1,2,3,4 and 5. These lines are either solid 
(i=0) or dashed (i=6). A gray strip at the 
bottom of the graph denotes the computer 
uncertainty level for double precision (i.e. 
εεεε0=2-53≈≈≈≈1.1⋅⋅⋅⋅10-16). 
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summation cased by a lower efficiency of usage of 
cache present in most of the currently available 
computer systems. This note however is valid only 
where the amount information related to the 
geometry of wire requires an amount of memory 
that is substantially larger than the size of cache.

4 Results 
Typically, the achievable accuracy for radiation 
pattern measurements done in an anechoic chamber 
is around 40dB, which corresponds to the relative 
inaccuracy in the electrical field magnitude of 10-2.
From the plots in Fig. 1, it is easy to see that the 
exact function (4) resulting from integration by 
parts is incapable of this accurate reproduction of
the far field for short wire segments when high-
order polynomials are used to characterize the 
current. For this situation, an adaptive algorithm for 
computing the functions (4) and (5) has been 
developed, implemented in Matlab [12], and tested 
with Maple [14].  
The testing was done by comparing the numerical 
calculations produced within Matlab against the 
results of closed-form analytical calculations 
performed in Maple. Matlab uses double precision 
number representation that gives up to 16 
significant figures. Maple was set up to provide 
reference results with over 100 significant digits.
The testing has confirmed accuracy of the combined 
approach. 
For a low number of wire segments and high 
number of points in far field, the performance of the 
calculations done within Matlab [12] (without any 
compilation) was found to be only 20% slower than 
the speed of the commercially available WIPL-D. 
This confirms the efficiency of the proposed 
algorithm. Taking into consideration (a) the speed 
improvement potential from code optimization and 
compilation [13], (b) the fact that program WIPL-D 
[10] does all calculations with single precision, and
(c) that Matlab uses a slower double precision, it is 
expected that the efficiency of the proposed 
algorithm is superior to WIPL-D’s.  
As a final remark, it may be noted that the best 
achievable accuracy decays as the degree of 
polynomial is increased. At the break point, the 
accuracy of results cannot be improved using the 
present approach. However, for practically usable 
(up to about 9) powers referred to [11], the available 
accuracy still exceeds the measurement errors by a 
substantial margin.  

5 Conclusion 
The expressions for estimating far field due to 
higher-order polynomial basis functions within the 
thin wire approximation in the method of moments 
have been developed.  
The calculations have been branched. At lower 
frequencies, a Maclaurin series expansion has been 
applied. At higher frequencies, a recursive 
expression based on the integration by parts has 
been utilized. Formulas for evaluating errors in the 
resulting far field estimates due to numerical round-
off effects have been developed for both higher and
lower frequency branches. An accuracy-optimum 
boundary separating the use of higher- and lower- 
frequency formulae has also been found. 
An algorithm utilizing the recursive properties of 
the two approaches has been developed and 
implemented in Matlab. The accuracy of the results 
has been validated against analytical computations 
done in Maple with virtually unlimited accuracy.  
A comparison of Matlab code against commercial 
electromagnetic modeling software WIPL-D has 
demonstrated the high performance and good 
potential for the proposed approach. 
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