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Fig. 4 Lffect of D4b on vortex positions at station 3 at @ = 25 deg
and 3 = 10 deg.
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Fig. 5§ Effect of D4b at & = 35 deg and B = 10 deg.

causes @ small increase in €, at small 8 compared with the
baseline. Correspondingly, there is a small increase in-the C,
gradient about zero 8. An inspection of Fig. 2 shows a small
increase in the wing rock amplitude at this condition.

Figurce 4 shows the laser cross sections at @ = 25 deg, and
B = 10 deg. At this condition, the divider has a noticeable
effect on vortex position asymumetry. The right (windward)
vortex is closer to the surface compared with the baseline,
whereas the left (leeward) vortex is farther away. The flow
visualization result agrees with the rolling moment result where
the rolling moment at sideslip is increased by the divider.

At a == 35 deg, shown in Fig. 3b, the rolling moment at
sideslip is reduced by the divider. The laser cross sections at
e = 35 deg and B = [0 deg, shown in Fig. 5, demonstrate
the reason for the reduction in rolling moment. The break-
down of the windward vortex has propagated to a more for-
ward position for the wing with the divider. The leeward
vortex is displaced upward from the surface and seemingly
weaker. An inspection of Fig. 2 shows a complete elimination
of wing rock under this situation. Hence, the results indicate
the divider decreases the static roll stability at high angles of
attack. but increases the dynamic roll stability. Eventually,
this leads to the suppression of wing rock.
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IV. Summary and Conclusions

The effects of a flow divider placed on the leeward side of
an 80-deg sharp-edged delta wing were studied. Effects of
divider geometry, sizes, and placement were investigated. With
a divider in the appropriate positions, wing rock is suppressed
for angles of attack above 30 deg. At the lower range of the
o, where the wing is naturally susceptible to wing rock, how-
ever, the divider can actually promote wing rock. These op-
posing cffects on wing rock would prevent the fixed divider
concept to be used for wing rock suppression.

Measurements indicate that the divider increases the rolling
moment at sideslip condition for the angle-of-attack range
where wing rock is promoted by the divider. Flow visuali-
zation shows that this is duc to an increase in the vortex
position asymmetry. The static stability is increased moder-
ately, but the dynamic stability is reduced correspondingly.
The divider therefore enhances the tendency for wing rock.
At higher angles of attack where wing rock is suppressed by
the divider. the rolling moment at sideslip is reduced by the
divider. Flow visualization shows that this is due to the pro-
motion of breakdown of the windward vortex. This in-turn
leads to a decrease in the static stability and an increase in
the damping. Wing rock is thercfore suppressed.
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¢ - semispan of Lifting surface clement
frexpl—ws)/(r® + s3)¥ ds, integral
relating acceleration and velocity
potential

KN, K, kcmcl I‘unctions r(al,/ar) and
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M flustmun \Lmh number

0 singularity strength, defined in Eq. (1)

q = Jocal acceleration potential doublet strength,
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1. T = direction cosine functions

L freestream velocity
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X, = reference x coordinate of sending panel

Yy Voo Iy L()()Idlnd[(,s of receiving point in a sending
punel coordinate system

& ¢ = coordimates of sending point in a sending
panel coordinate system

& = perturbation velocity potential, normalized
by U

w = ungular frequency

w, = wave number iw/U

Introduction

P ANEL methods for unsteady supersonic flow that use

the acceleration potential formulation require the in-
tegration of the supersonic kernel functions. The cxpression
for the nonplanar Kernel function given by Harder and
Rodden! has a nonintegrable singularity along the inter-
section of the forward Mach cone of the receiving point
with the sending panel. Cunningham? showed that this sin-
gularity disappeared if the differentiation of the velocity
potential was performed after integration over the sending
punel. However, the intersection of the forward Mach cone
of a receiving point with the leading or trailing edge of a
sending panel still gives rise to a troublesome singularity.
It is shown here how this singularity can be integrated using
normal quadrature. thus allowing zero-order discontinuities
in the pressure distribution.

Theory

The acceleration potential doublet is a convenient singu-
Jarity to usc in unsteady flow because there exists a simple
relationship between the doublet strength and load on lifting
surfaces, and the integration needed to calculate induced ve-
locities and pressures is limited to the physical panel, i.e.,
excluding the wake. The expressions for the influence cocf-
ficients can be simplified by assuming that the doubletstrength
varies harmonically with &:

g(&. ) = O expl—awlé — x)] (1)

With this doublet strength distribution, the expresston for the
velocity potential induced by an acceleration potential doublet
panel of unit strength (¢ = 1) is

ol v Ve penan o oag
b = expl - w(xy = )] [ J v oy fdn o (2)
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where € = ¢ + bnyand & — ¢ + dr define the panel leading
and tratling cdees. respectively. This expression is appli-
cable l all of the sending panel heg within the forward Mach
cone of the receiving point. In the case of a lifting surface
pancl being cut by the Mach cone. the induced potential is
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expressed as an integral from the leading edge o the e
cone:

exp (¥ — N R T \
b = [ 3 S )} f J - S;'*\ dedn (2
‘\77 Sy Juoby 1 : / -

The spanwise integration limits can be either an cdpe o
the paml or the intersection of the forward Mach cone of ([,
receiving point with the leading edge of the sending pane.,
The expression for the influence coefficient is found lw\ dif
ferentiating the expression for ¢ with respect (o the nornl
ol the receiving clement. The kernel and direction cosine
functions are introduced and the chordwise infegration vari.
able is changed to x

vor) de dy

_expl- ol = D[ e
e U, f Kol

"
8

v
+ J ’_J’ ]” K.(x,r)ydv = BrK(Br.r) dn}' (4

i

where x, = (a + bm). Both K, and K, are singular
at the lower lmnt of chordwise integration. The singularity
of K, is integrable, but not the smf!uhlrlly of K,. The sin-
gularity of K, in the integrand of the second spanwise in-
tegral cancels the chordwise integrated singularity of K. at
X = Br. At spanwise integration limits defined by the in-
tersection of the Mach cone with the leading edge, 1, goes
to Br, and the integrand of the second sp(m\\ixc mtegral
goes (o infinity. To resolve this singularity, K, is divided
Into a part K| whichis zero at x = Br, and a part K’ which
is singular at v = Br. (These are the same expressions as
given in Ref. 1)

Kilv.r. M, [ J\' xp( —w, \) ‘ )
| “) Lo sy P ()
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_K’[(.x,f, r) is added to the integrand of the second spanwise
mntegral and the spanwise integral of KY(x,. r subtracted
separately:

D
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The term BrK(x,. r) BrKj(Br.

) can be expressed as

[, R
B ) = BrKiBron = | et
3

S (A
This yields an expression for D, in which the chordwise in-

tegrals have, after a change of integration variable to R. com-
pletely regular integrands:

R
v = = 7 = = =R ()
, N
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where R, Vg = BY The first two spanwisc integrals
can he solud by normal quadrature or curve fitting followed
by analytical mtummon as is done in the subsonic doublet
luttice method. The last spanwise integral can be written
is

CTBR YK (. r)
Sy R,,)’

dn (1)

where the numerator is a regular function. The problem
with evaluating this integral is that r can become small at
n = v il 2y 08 simall, and R, can become zero at the end
points of the integration interval. In cascs of interest these
two conditions do not occur at the same value of 7. there-
forz. the integration interval can be divided so that different
techniques can be used depending on which one of r and
Ry is smaller. Where r is smaller, a polynomial approxi-
mation is made to r times the mtcnmnd and the resulting
integral of a polynomial divided by r is solved analytically.
The analytical integration is simplified by changing the in-
teg ation variable to v

l TSB(1r? K \(x,,. r)
e B d n

,
byt by A+ by 4+ by + b
AR TR b by, (12)
KN Vv + z- .
where vy = vy = g, and y, = y, ~ 7, Over those parts of

the integration interval where R, is smaller, the integral is
cast in the form

e f()
—=d 13
] R, " (13)
where f(n) = TBR,K (x,. r)r s a regular function. The

mtegration variable is Lh(mgcd to u, given by

!
u(m) = J X, dn (1d)

G
(_dn, Ry,

The integral (13) can then be written as

1,

l’(7/y)
L R, n = [’ Flim()] du (16)

Jutn
whicheun be evaluated using normal quadrature. R, can read-
y be expressed as the square root of « quadratic in »:

Ry = NVam® + am + a, (17)
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For a panel leading edge defined by £ = « + by, the
coefficients are

s = b~ B
ap = =2b(xy - oa) + 2/;{\-L, (18)
a, = (x, — a) — B (v, + )
The integral in L2q. (14) can be solved analytically with the
result
NVam toa,
u(n) = —————————r if ., =0
a,
; ! N
uln) = —= w2VaNam® ¥ a7 + a,
a,
+ 2a-m + a) if a,>0 (19)
-1 [ 2am +a "
u(n) = —====in ! <#) if a, =20
Vo=, NVay — dasa,,

The inverse relationship n(u) is given by

R

au)
BN

= — it a, = 0
() .

Jasa, — [a, + exp(Vau)]?

nlu) = da, exp(Vasu)

f a,>0 and u < u,
la, — exp(Vau)] — daa,
da, exp(Vasi)

if a,>0 and u > u,

n(u) =

Vai — dasa, sin( =\ —a.u) — a,

n(u) = S

if a,<0
where

wNai — dasa,
iy = T (21)
Vi,

Conclusions

It has been shown how the integrals resulting from a zero-
order discontinuous pressure distribution can be arranged in
such a way that they can be solved by either normal quad-
rature or curve fitting followed by analytical integration. This
ability slmplm«_s the pancl method for LII]\ILJ(JV supersonic
flow and is essential to model the discontinuities that occur
in reality, e.g.. at supersonic leading or trailing edges and
control surface hinge lines.
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