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Capturability in a Two-Target ‘‘Game of Two Cars”’

Wayne M. Getz* and Meir Pachtert
National Research Institute for Mathematical Sciences of the CSIR, Pretoria, South Africa

The regions of capturability and draw are derived for a two-target pursuit-evasion differential game of two
cars. Specifically, using geometric arguments, complete barrier surfaces are constructed that emanate from the
boundaries of the usable parts of the targets of the faster and slower players. The targets are, respectively, a
sector of a disk and a complete disk. The barrier surface emanating from the latter target provides a solution to
the one-target game of two cars, while the regions of capturability in the two-target game of two cars are inferred

from the combined effect of both barrier surfaces.

Nomenclature

f =right-hand side of the kinematic differential
equations

n =normal to the barrier surface

r =weapon system range

R =minimum turning radius

R? =Euclidian plane

S! =one-dimensional thorus

8 = barrier surface

t =time

=target set (terminal manifold)

=control variable

=speed

x,»  =position of the player in the plane

T =~

@ =half-squint angle of the weapon system
B =maneuverability ratio =w,R,/w,R,

¥ =speed ratio =w,/w;,

0 =heading

T =time

Subscripts

1,2 =player 1 and player 2, respectively
x,y,0 =partial derivative with respect to x,y, or 8

I. Introduction

HE literature on two-player qualitative differential games

(games of kind) has focused to a large extent on one-
target differential games of the pursuit-evasion kind, the
game of two cars! being a typical example. Admittedly, this
formulation is an appealing model if we consider, say, a
missile chasing a plane. However, upon considering a
dogfight between two planes, ships, or other craft that are
both armed and capable of destroying their opponents, it is
apparent that the evader, after having employed a suitable
evasion tactic (for example, a tight turn), can find himself in
the position of a pursuer (i.e., he may find the pursuing craft
in front of his guns). In view of these considerations we in-
troduce two-target pursuit-evasion differential games (of
kind) of the ‘“‘game of two cars’’ type where either player
may, depending on the configuration of the players, be the
pursuer or the evader. Each target set (T, and T,). is now
indicative of the weapon-systems kill (i.e., capturability)
capability of the respective player.
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Two-target differential games were introduced in Ref. 2
(see also, Ref. 3). Regions of capturability in the two-target
pursuit-evasion differential game of two cars have been
obtained in Ref. 4 for target sets in front of each aircraft
consisting of a line segment aligned with the velocity vector of
the aircraft and problem parameters: a speed ratio of 3/4,
maneuverability ratio of 1/3, the weapon system range of the
first aircraft is twice its minimum turning radius and the range
of the weapon system of the second aircraft is unbounded. In
Ref. 5 the target sets T, and T, are such that the game ter-
minates when either aircraft is directly in front of the other
with the heading difference limited to at most 30 and 40 deg,
respectively, and with the problem parameters: a speed ratio
of 1/2 and a maneuverability ratio of 10/11. In Ref. 6 the
target of player 1 is a fan shaped zone in front of 1 while the
mirror image of this region below the x axis is taken as T,
i.e., the winning region of player 2 is rigidly attached to player
1 in the realistic state space. Furthermore, in Ref. 6, for
problem parameters: a speed ratio of v2/2 and a
maneuverability ratio of 1/2, the region of capturability of
player 1 is obtained when player 1 acts as the pursuer and
player 2 is the evader. In addition, the region of capturability
(in fact reachability) for player 2 is obtained upon letting
player 2 act as the pursuer under the assumption that player 1
does not maneuver.

In the present paper we consider the two-target game of two
cars with a fan-shaped target set T, for player 1 and a circular
target set for player 2, and parameter values: a speed ratio of
1/2 and a maneuverability ratio of 1. The reader is also
referred to Sec. II where the target sets are described in a
concise manner. '

In this respect the present paper is a sequel to Ref. 7 where
the corresponding homicidal chauffeur version (the minimum
turning radius of player 2 is zero so that the reduced space is
two dimensional) of the two-target game of two cars has been
analyzed.

Instead of employing the value function approach of Isaacs
(Hamilton-Jacobi partial differential equation and related
costate functions) we have focused our approach on the
geometric construction of the complete barrier surfaces (in the
reduced state space) which emanate from the boundary of the
usable parts of the targets 7, and T,.

These barrier surfaces are constructed employing
(geometrical) invariance arguments, as elaborated on in Ref.
8, and include the dispersal lines on the barrier surfaces and
the curves that delimit these surfaces. The solution to the two-
target two-car game of kind is then arrived at by discarding
the appropriate part of one of the T, surfaces beyond the
curve along which the two barrier surfaces intersect, as a
result of which the state space is partitioned into regions from
which either both players, only one of them, or neither can
force a win. Consequently the pursuer/evader roles for
players 1 and 2 are determined in these regions.
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Specifically, following a statement of the problem in Sec.
I, in Sec. III we outline the general geometric method of
construction of the barrier surfaces introduced in Ref. 8. In
Sec. IV we present the barrier surface that emanates from the
target set T,, while in Sec. V we present the barrier surface
that emanates from the target set T,. The latter case provides
a solution to the pursuit-evasion differential game of two cars
from the point of view of player 2; namely, player 2 with the
target set T, is the pursuer and player 1 is the evader. Fur-
thermore, since T, is circular and player 2 is slower than
player 1, the barrier presented in Sec. V provides a solution to
the research problem posed by Isaacs! of pursuit-evasion in
the game of two cars where the pursuer is slower than the
evader.

The barrier presented in Sec. IV does not, however, provide
a solution to a one-target game of two cars (player 1 is the
pursuer, endowed with a target set T, and player 2 is the
evader) since the boundary condition for the barrier surface is
not the natural boundary condition but is imposed by the
geometry of the two-target game.

Finally in Sec. VI we combine the barriers presented in
Secs. IV and V to provide the game-of-kind (capturability)
solution to the two-target pursuit-evasion differential game of
two cars (dogfight) just posed.

II. Mathematical Modeling

We consider the following model for a dogfight in the
plane, the model being an extension of that evolved for the
pursuit-evasion differential game of two cars.! Two points,
i.e., “players,” 1 and 2, whose positions at any instant are
given by (x,, ¥;) and (x,,y,), move in a plane at constant
speed w; in the direction 0, where 6, is an angle measured
from the positive ¥; axis in a clockwise direction, i=1,2,

The maneuverability of the players is determined by their
minimum turning radii R 1 and R,, respectively, and they steer
by selecting at each instant the value of the curvature of their
trajectories by choosing an appropriate value of the controls
;€[ —1,1] and ue[-1,1j, respectively, which curvature
then determines their actual instantaneous turning radius.

Suppose that the weapon system of player 1 has a range r,
and a half-squint-angle o 1 and the weapon system of player 2
has an all-aspect range of r, (i.e., player 2 has a swivelling
gun). Let T; denote the (closed) set of state space points for
which the weapons of player i, i=1,2, are effective.

The objective of each player is to force his (uncooperative)
opponent into his target, while at the same time he avoids
entering his opponent’s target. Formally we say that player 1
scores a win if there exist #/ >0 and 7>0 such that (x, (),
Y2(t)) €T, for t€t’',t' +7) and (x,(£),y,;(t))¢T, on any
open subinterval of [0,z + 7); similarly for player 2.

Thus a player can always capture his opponent in the in-
terior of his target, but can capture him on the boundary of
his target only if his opponent is there for a nonzero period of
time. This two-target game of two cars is illustrated in Fig. 1
and is a special case (T, is circular) of the more general
setting presented in Ref. 7.

PLAYER | y PLAYER 2

I omUp= +)
TaJ’

Fig.1 The two-target pursuit-evasion game in the plane.
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By fixing the origin of the coordinate system (x, Yy) at the
position occupied by player 1, aligning the y axis with the
direction of motion of player 1, and considering the relative
motion of players 1 and 2, the state space of the game is
reduced to R2 x S!: the state vector (x,y,0)* designates the
position (x,y) of player 2 in the plane and the angle 4 is the
velocity vector of player 2 measured clockwise from the
positive y axis (the direction in which player 2 is
heading). When the equations of motion have been trans-
formed to dimensionless form [i.e., when /R ~x,
Y[R, ~y, ry/R;—r,, r2/R;~r,, w,/R,~t and yEW /W,
B= (1/7)R,/R,1, they become

dx

3 = Y +osin x(0) =x,
d

d%‘) =xu, — 1 ++ycosf y(0)=y,
dé u

a:—u,+§2 6(0) =6,

(t=0, lu,l =1, lu,l <1y

M

and the parameters of the specified capture sets then imply the

cylindrical target sets

T;={(x0.0) X’ +y?<r?, 90deg
—a;=arctan(y/x) <90 deg+a,, y=0) )
and
T ={(xy.0) Ix? +y2<r3) €)
In this notation the target sets were
Ti={(x50) Ix=0, 0<y=<r;}  (i=1,2)
T, ={(xy0) Ix=0, y=0, —30 deg <630 deg])
T,={(xy,9) lx=ytanb, y<0, —40 deg=<6=<40deg)
and
T =1(x2.0) Ix* +y? < %, 60 deg <arctan(y/x) <120 deg,
y=v2/80}
L={(xy.0)Ix2+y2 <1, 60 deg<arctan(—y/x) <120 deg,
y=—v2/80}

in Refs. 4-6, respectively.

Note that now (in the reduced state space) the target T, is
attached to the origin instead of the point (x,y), i.e., when
the point (x,y) reaches the boundary of the target set 7T,,
player 1 comes into the range of the weapons of player 2. The
object of player / is thus to get the point (x,y) into T; without
passing through his opponent’s target. The game in this
reduced state space is illustrated in Fig. 2, and the targets, T,
i=1,2, as they appear in the reduced state space are illustrated
in Fig. 3.

III. Construction of Barrier Surfaces—An Outline

The targets T, and T, as they would appear in R? x [0,27]
(note that =0 and §=2r are identified and that the actual
state space is R?xS’) are illustrated in Fig. 3, and the
boundary of their usable parts' (BUP) on the target surfaces
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Fig. 2 The game illustrated in Fig. 1in the reduced state space.

Fig.3 The targets 7; and T, in R? X [0,2x].

can be evaluated to obtain
Boundary of usable part of T,

x,(80)=1/2 ¥o(0,)=V3/2 @)

Boundary of usable part of 7,
Xo(0,) =(2—cosby) /N5 ~4 cosb,
Y4(0,) =sinb,/V5 —4 cosb, (6))

The boundary of the usable part of T, is in our case im-
posed by T,. If, however, the radius of T, were less than
unity, then part or all of the natural boundary of the usable
part of T, would emerge and in these regions would be given
by

Xo(0,) = [sin(8,—30deg)+11/4
Vo (8p) = [sin(0,—30 deg)+ 11V3/4 )

The barrier surface is a semipermeable surface! that emanates
from the boundary of the usable part of the target set (T, or
T,). Indeed, a semipermeable surface § is a surface on which
the saddle-point condition

max min (n,f) =0 (i#j;, i,j=12) M

lujl s1lujl <1

holds, where n is a vector normal to the surface 8, f denotes
the right-hand side of Eq. (1) and (n,f) the inner product of
the vectors n and f. If 8 is described by a function y(x,0) then
clementary difgercmial geoAmctry tells us that n=(—y,, 1,
—yg) (here y, =3y/0x, y,=38y/d8) and Eq. (7), for the case
i=1, j=2, implies that (see Ref. 8) § must satisfy the partial
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differential equation
(x+yy,+yg)u; —yeu, —y,(sind) /2 + (cosf) /2~1=0 (8)

where

u,=sign(x+yy,+yg) u,=sign(y,) ¢))
The Egs. (9) indicate that we must consider the controls
lu;1 =1, i=1,2 in which case either u;=u,==x1 or u;=
—u,= 1. The case u, = + 1 with u, =0 is also important, as
it is used to construct the universal curve which separates
regions in which u; =u, and u, = —u,.

For given u; and u, the equations of motion Eq. (1) are
then linear and have the following solutions:

Foru,=—u,

x(6,0,) = [xo(oo) _ L]cos(0;0”>

U,

6+0 -
+[2+cos0—cos( -;")]/Zu,+yo(00)sin(0 200)

0a=[ L —sy00]sn(?2)

u,;
0+6 -
+[sin( 3 0)—sinﬂo]/2u1+y0(00)cos(0 200)
(10)
Foru,=u,

[yu, —(sinfy) /217 + [xu; — 1+ (cosh,) /212 =C(8,) (11)

where C(0,) is evaluated from the left-hand side of Eq. (11)
atx=x,(0,), y=y,(8,).

For u,=0
x(8,8,) = [x,(0,) —1/u;]cos(6—8,)
+ 12— (0-8,)sin01/2u; +y,(6,)sin (6—8,)
(0,80) = [1/u; —x,(8y) 1sin(6—8;)
— (8—6p)cos(8) /2u; +y4(8,)cos(0—0,) (12)

By construction, the characteristics® of a surface 8 satisfying
Eq. (8) and emanating from the BUP are solutions to Eq. (1)
and therefore satisfy Eqs. (10-12). In Ref. 8 it is shown in
detail how the surface 8, satisfying Eqs. (8) and (9) and
emanating from the BUP can be constructed using Eqs. (10-
12). Basically, from the BUP of the target, surfaces are
constructed using Eqgs. (10) and (11) with nominal extreme
values for #, and u, (viz., 4, = £1, i=1,2). Only these parts
of the surfaces compatible with Eqs. (9) that are geometrically
significant (e.g., external to target) are retained. The result is
two bounded surfaces which are unconnected away from the
target but can be patched together by inserting a universal
curve (UC) at the point of connection between the two sur-
faces on the target and using the UC as the new boundary
condition from which new surfaces satisfying Eqs. (8) and (9)
can be generated; the UC is given by Eqs. (12). The result is a
surface made up of four parts, connected in sequence, viz: 1)
u; =u, and the surface emanates from the BUP; 2) u, =u,
and the surface emanates from the UC; 3) u, = —u, and the
surface emanates from the UC; and 4) u;=—u, and the
surface emanates from the BUP. Note that in all four cases
the value of &, is the same and is either +1or —1 depending
on whether the surface emanates from T or T, respectively.
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The barrier surface is delimited by the right-hand sides of
the equations in Eqgs. (9) taking on the value 0.

In fact, at this stage it must be verified whether it is not
possible to continue the surface §, beyond this point, with
u;=—1 [and the right-hand side of the first of Egs. (9)
thereafter assuming non-positive values], thus producing the
situation depicted in Fig. 3, cases 5-7, in Ref. 4. It turns out,
however, that for our specific problem parameters this is
indeed not the case. The reader is also referred to Sec. 3 of
Ref. 7, where this point is further elaborated on.

In addition, the barrier surface is periodic, with period 27
(recall that our reduced state space is R? X S7). Therefore the
section of the barrier beyond 2« overlaps with the barrier in
the region 6>0 and the line of intersection gives rise to the
dispersal curve. In addition, the left- and right-hand barriers
are related by y (x,0) =y (—x,2r~0).

Finally, the reader is also referred to Ref. 8 where a detailed
method is given for constructing the barrier in the pursuit-
evasion differential game of two cars.

We also remark here that, although strictly speaking Eq. (@)
is a necessary condition, the reader can readily convince
himself (see also Ref. 7) that this is immaterial as far as the
construction of the barrier surface is concerned.

IV. Barrier Surface Emanating from T,

The barrier surface in the pursuit-evasion differential game
of two cars when player 1, endowed with the target set T, is
the pursuer and player 2 is the evader, is constructed along the
lines of Sec. II. The barrier is open and player 1 has full state
space capturability. The barrier surface emanates from the T,
BUP [recall that the BUP of T,, given in Eq. (4), is imposed
by T, and is not the natural boundary condition Eq. (6)] and
eventually folds under itself as projected on the (x,0) plane in
Fig. 4. The four parts described in Sec. I1I are also indicated.
The three trajectories emanating from B in Fig. 4 with
u;=+1and u,= —~1,0,+1 pass over the envelope (ly, | =)
at G, H, and J, respectively, and terminate at F, N and M,
respectively. Actually both sets of criteria given by the Eqgs.
(9) are used to terminate the surface, thus yielding the barrier
boundary. Indeed, the barrier is terminated at Yo =0 by the
lines AL and CD and by x+ Y¥, +ys=0o0n the line DEFNKL;
on the portion EFNK of this line the barrier terminates after it
has already turned back toward the plane (x=0,y,8). In
addition, since the barrier surface is periodic with period 27
we superimpose on Fig. 4 a version of Fig. 4, translated by 2,
thus obtaining the dispersal curve, as the line of intersection
of two surface sheets, which line emanates from 0 and 360
deg. Hence the cross sections (in the (x,y) plane—see Fig. 5)
taken at 30, 60, 90 and 120 deg also contain the cross sections
taken at 390, 420, 450 and 480 deg and the latter cross sections
of the surface are shown in the former cross sections in Fig. §
by means of broken lines.

These parts (beyond the dispersal curve) play a role in
determining the complete (open) barrier surface which is
needed to construct the region in which a swerve maneuver is
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employed by player 1 in order to effect capture of player 2.
Indeed, from points below and close to the barrier surface
player 1 will play 4, = —1 when x>0 and u,=+1whenx<0
thereby moving away from player 2 until a switching surface
is reached and the strategy of player 1 is reversed. This
switching surface is joined on to the end line of the barrier
surface, but its actual form will depend on the particular game
of degree being considered, e.g., minimum time to capture.
The capturability (game-of-kind) solution is thus a
prerequisite to finding a solution to any game of degree whose
solution then consists of deriving the appropriate switching
surfaces. The swerve maneuver is discussed in detail in Ref. 7
in the special case where player 2 has infinite maneuverability,
i.e., R, =0 (see also, Fig. 6).

V. Pursuit-Evasion Game: Player 2 Pursuer
and Player 1 Evader

The barrier surface in the pursuit-evasion differential game
of two cars when player 2, endowed with the target set T,,is
the pursuer and player 1 is the evader, is constructed along
lines similar to those of Sec. IIl. The barrier is closed, and
player 2 can capture in the region enclosed between the barrier
surface and the target set T,; in the rest of the state space
player 1 can escape. Specifically, the barrier surface emanates
from the T, BUP and eventually the right-hand and left-hand
sides of the barrier surfaces meet, along the line MN as
projected on the (y,0) plane in Fig. 7.

Furthermore, in Fig. 7 parts of the barrier beyond the
dispersal curve are not indicated since the barrier is closed
(i.e., the left- and right-hand barriers meet—see the cross
sections in Fig. 8) and these parts play no role in demarcating
the region of capturability.

This situation contrasts with that of Fig. 4 (see also Sec. I1I)
where the parts of the barrier beyond the dispersal curve are
illustrated, as in this case the left- and right-hand barriers do
not meet, and these parts play a role in determining the’
complete barrier surface. Thus, the barrier associated with T,
is perfectly matched by the dispersal lines emanating from 60

- and 420 deg (see Fig. 7).

Figures 7 and 8 provide a detailed illustration of the closed
barrier in the pursuit-evasion game of two cars, when the
slower player (player 2) is the pursuer and the faster player
(player 1) is the evader. The reader is referred to Ref. 1, p.
244, where pursuit by a slower player is posed as a research
problem. The solution here has been facilitated by fixing the
coordinate axes with respect to the faster player instead of the
pursuer. Hence when the results of Fig. 8 are used, the pur-
suer must transform back to a set of coordinates attached to

his position.

V1. Two-Target Pursuit-Evasion Game
The results of Secs. IV and V are combined to yield the
regions of capturability for either player. Indeed, the cross
sections in Fig. 5 provide a complete solution to the problem

UNIVERSAL CURVE (U =1, Up=0)
H
S AJECTORY U| = ~Up =i
3 ENVELOPE AR N TRAJECTORY Uy ==z
e N =3
TRAJECTORY /;’*yy“ys:O N Fig. 4 Projection of the barrier surface from
Up=Up =1 /7 \\\ G T, onto the (x,6) plane.
ar /M \\\
¥ =0 % DISPERSAL ™)
CURVE N
K N\ E
L Il /m /& S
Il /&DisPERSAL ST T B2
CURVE & 3 Yg:0
pfp—mzzocooo s - 7 ¢ LINE ALONG WHICH THE BARRIER IS MET
THE BARRIER FROM T, (see fig.
BOUNDARY OF THE USABLE PART OF T, . BY THE ! 9

1 H 1
0° 60° i20° 180° 240° 300° 360° 420° 480° 540°

8
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Fig. 6 Solution to the homicidal chauffeur version of the two-target
game of two cars presented in Fig. 7 (player 2 has infinite
maneuverability).

Y TRAJECTORY
Up=Uz= =1

UNIVERSAL CURVE (U =~1,Up=0)

BARRIERS MEET

TRAJECTORY U; =Uz=-1

TARGET T, (see fig.7)

DISPERSAL
CURVEl

i L
(0° 60° 120° 180° 240°

L
ywo" 420° 8

BOUNDARY OF THE USABLE
-t PART OF T2

Fig. 7 Projection of the barrier surface from 7, in the absence of 7,
onto the (y,0) plane.

of capturability in the two-target pursuit-evasion differential
game of two cars (dogfight).

Specifically, the interior of the two regions (x>0 and x<0)
bounded in cross section (see Fig. 5) by the lines 4,B, BA,,
A,A, represents the set of all initial points from which player
2 can force a win, while all points exterior to these regions and
excluding 7', and the actual barrier surfaces are points from
which player 1 can force a win. The points on the barrier
surface which emanate from 7', namely the segments A, B in
Fig. 5 (or the region between the BUP and the broken line in
Figs. 4 and 7), are initial conditions which result in a draw (a
simultaneous win for both players); the exception is the region
PBQP (see Fig. 4) on the barrier surface, but not containing
the points between P and Q, which is a region of win for
player 1. This follows from Eq. (6) and the definition of a win
in Sec. I. In the same way, the points on the barrier surface
which emanate from T’,, namely the segments A4,B in Fig. 5,
are initial conditions which result in a win for player 2, since
player 1 only grazes the second player’s target set.

For the sake of comparison we present in Fig. 6 the regions
of capturability in the corresponding two-target homicidal
chauffeur (R, =0) version of this game.” It is evident that the

LINE ALONG WHICH RIGHT AND LEFT HAND

LINE ALONG WHICH THE
BARRIER 1S TRUNCATED
BY THE BARRIER FROM

DISPERSAL CURVE
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TERMINATING' AT 300°

VAR
N

8:=180°
Fig. 8 Cross sections of barrier surface emanating from 7.

T, barrier in the homicidal.chauffeur game (Fig. 6) is more
extensive than the barrier cross sections in the game of two
cars (Fig. 5) (especially for certain relative headings), thus
demarcating a larger swerve region there; the player 2 region
of capturability in the two-target homicidal chauffeur game
(in Fig. 6) is, as would be expected, larger than its counterpart
in the game of two cars (see Fig. 5).
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VII. Concluding Remarks

We have constructed the regions of win for either player
(and draw) in a two-target pursuit-evasion differential game
of two cars where the target set for the faster player is a sector
of a disk and the target set for the slower player is a complete
disk. By employing geometric arguments, we have con-
structed the complete barrier surfaces in two separate one-
target pursuit-evasion games of two. cars (thus obtaining,
among other things, the region of capturability in a one-target
pursuit-evasion game of two cars when the slower player,
endowed with a circular target set, is the pursuer) and we then
combined these results in order to obtain the regions of
capturability in our two-target game of two cars. Although
the results are worked out and presented for a specific set of
problem parameters, the general procedure is clear.
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