
Migrating to a Real-Time Distributed Parallel Simulator Architecture
Bernardt Duvenhage and

Derrick G Kourie (Role of Masters degree supervisor)
Espresso Group, University of Pretoria

bduvenhage@csir.co.za and dkourie@cs.up.ac.za

Keywords: peer-to-peer, parallel simulation, discrete time
step simulation, publish-subscribe, high real-time frame-rate

Abstract
A legacy non-distributed logical time simulator is migrated
to a distributed architecture to parallelise execution. The ex-
isting Discrete Time System Specification (DTSS) modelling
formalism is retained to simplify the reuse of existing mod-
els. This decision, however means that the high simulation
frame rate of 100Hz used in the legacy system has to be re-
tained in the distributed one—a known difficulty for existing
distribution technologies due to inter-process communication
latency.

A specialised publish-subscribe simulation model is used
for the new simulator architecture. The simulation model, in-
cluding the process synchronisation, is implemented using a
low latency peer-to-peer TCP messaging protocol. The TCP
send and receive buffers and TCP’s Nagle algorithm are also
tweaked to ensure low latency communication. Gigabit Eth-
ernet is used at the hardware layer. A parallelised execution
speed-up of four to five times is reached with six to eight ma-
chines at a simulation frame rate of 100Hz.

1. INTRODUCTION
The South-African National Defence Force’s (SANDF’s)

need for decision support and concurrent tactical doctrine
development within a Ground Based Air Defence System
(GBADS) acquisition program offered an ideal opportunity
to establish an indigenous and credible modelling and simu-
lation capability within the South-African defence acquisition
environment [1][2]. The broad requirement of the capability
is to simulate a GBADS battery of existing and still to be ac-
quired (possibly still under development) equipment and their
related human operators at a system of systems level within
a realistic Synthetic Environment (SE). During the concept
and definition phases of the acquisition life cycle [3] the ca-
pability was successfully provided by a non-distributed sim-
ulator and its architectural predecessors [4]. A selection of
the models were derived from high fidelity engineering mod-
els, some by OEMs, and developed within a 100Hz logical
Discrete Time System Specification (DTSS) [5] that simpli-
fied the time and causality management. The non-distributed
simulator evolved within this 100Hz logical time DTSS mod-
elling formalism and was implemented to run As Fast As Pos-

sible (AFAP).
Real-time simulation execution became a prioritised re-

quirement during the development phase of the acquisition
life cycle due to the realised impact of realistic human-
simulation interaction when doing tactical doctrine develop-
ment. Human interaction would happen through an Operator
In the Loop (OIL) console with the possibility to record the
operator’s actions to be re-used in statistical simulation runs
when and as required. To support the real-time requirement it
was decided to parallelise the simulator across multiple Com-
mercial Off the Shelf (COTS) PC nodes connected with Gi-
gabit Ethernet.

For simplicity in the economical reusability of all the ex-
isting models it was also decided to retain the 100Hz logical
time and DTSS modelling formalism. To achieve real-time
execution, the parallelised logical time DTSS simulator is run
AFAP, but the execution is throttled to not exceed real-time.
To guarantee causal message delivery for the discrete time
execution though, severe real-time constraints is placed on
the minimum required inter-node communication latency as
each simulation frame is a mere 10ms. The next section intro-
duces existing distributed and parallel simulator technologies
and their applicability to a 100Hz DTSS modelling formal-
ism. The following sections then pose a research question on
a new simulator architecture and develop the proposed archi-
tecture to inform the research question through analysis. The
paper finds resolution in the flexibility and performance anal-
ysis of the new architecture and a concluding assessment of
the architecture’s suitability as a distributed parallel, high res-
olution logical time, DTSS simulator.

Within the Mathematical and Computational Modelling
(MCM) Research Group of the Defence, Peace, Safety and
Security (DPSS) operating unit of the South-African Council
for Scientific and Industrial Research (CSIR) the main author
had the responsibility of developing the new distributed par-
allel simulation architecture. This architecture is under inves-
tigation as part of an MSc project in Computer Science with
the co-author (role of the Masters degree supervisor) from
The University of Pretoria.

2. EXISTING DISTRIBUTED AND PARAL-
LEL SIMULATOR TECHNOLOGIES

This section introduces existing distributed and parallel
simulator technologies and their applicability to a 100Hz log-



ical time DTSS modelling formalism. Specifically technolo-
gies suitable for deployment on a distributed COTS PC in-
frastructure are discussed.

Looking at the literature, the most popular and thoroughly
analysed, distributed simulation technologies within the mil-
itary domain [6] seem to be Distributed Interactive Simula-
tion (DIS) and the High Level Architecture (HLA), which im-
plement Discrete Event System Specifications (DEVS) rather
than a DTSS. The HLA is a generalisation and extension of
DIS and the Aggregate Level Simulation Protocol (ALSP),
both of which evolved from the Simulator Networking (SIM-
NET) project. SIMNET is, according to Page and Smith [6],
the first meaningful attempt to interoperate military simula-
tors within the United States’ Department of Defence.

DTSS may however be embedded [5] within DEVS. Ogata,
et al. [7] tested the real-time performance of DIS and different
versions of the RTI-NG HLA Run-Time Infrastructure (RTI).
Their real-time vehicle model simulation within a 3D graphi-
cal environment reached a frame rate ceiling of around 30Hz
with both DIS and HLA implementations.

The HLA’s real-time performance, for both RTI-NG and
DMSO RTI implementations, is also studied by Jolibois, et al
[8] in the context of a beyond visual range air to air combat
simulation. The performance is shown to be less than ideal
for 10Hz and higher simulation frame rates. This is due to
message latency, object time advance latency and message
deliveries leaking into adjacent simulation time steps.

Fujimoto and Hoare [9] investigated an alternative for
the current versions of the HLA RTIs that can achieve
latencies that are suitable for high simulation frame
rates, but these are based on a low latency Gigabit
Myrinet [http://www.myricom.com/myrinet/overview/] hard-
ware layer and specialised RTIs. When Fujimoto and Hoare
analysed the latency for DMSO RTI1.3 over an Ethernet TCP
and UDP implementation it was found to be in the order of
10ms, which is too large to sustain a 100Hz simulation frame
rate. They also found that the DMSO RTI supports a time
advance frequency of more than 2000 per second between
two nodes, but for three and more nodes the time advance
frequency unfortunately dropped sharply to values as low as
10Hz with even only a few objects per node.

Watrous, et al. [10] explain that in the HLA, and in fact in
any distributed algorithm, a time management scheme, such
as the logical time DTSS modelling formalism, which re-
quires contributions from all other nodes are relatively ex-
pensive. For this reason the HLA allows federates (simula-
tion components) to employ their own unconstrained time
management to avoid the time synchronisation overhead. In
such an unconstrained case each model will synchronise itself
against its simulator’s wall clock without explicit synchroni-
sation with other models, or between simulators, but at the
risk of loosing message causality.

A recent distributed parallel simulator architecture is the
Aurora master/worker architecture [11]. According to Park
and Fujimoto the goal of Aurora is to harness available com-
putation time from a large number of machines rather than
strictly achieving high speed-ups on dedicated hardware. Au-
rora is unique among its class of distributed parallel architec-
tures in the fact that it is aimed at parallel discrete event sim-
ulation (PDES) and, for example, includes simulation time
management. It is unfortunately, like HLA, not well suited to
tightly coupled high resolution discrete time simulations.

From the indicated examples it is clear that using exist-
ing distributed and parallel technologies such as HLA or DIS
for implementation of a logical time DTS parallel simulator
might introduce technical risks in getting the frame rate to
or beyond 100Hz while still ensuring message causality. It is
worth noting that this is purely due to HLA, DIS and similar
architectures not being designed for high resolution logical
time communicating parallel processes. These architectures,
in particular HLA, seem rather to be aimed at providing sim-
ulation development efficiency, economical interoperability
and geographical distribution, typically implementing a Dis-
crete Event System Specification (DEVS) modelling formal-
ism [5].

An important architecture driver is that of simulator in-
teroperability. It is not a present or foreseeable priority [4]
within this specific acquisition environment and is not a na-
tional imperative at this stage. According to Straßburger[12]
these factors further decrease the drive behind and thus via-
bility of the use of interoperability standards.

3. RESEARCH QUESTION
Can a peer-to-peer publish-subscribe simulator architec-

ture implement a logical time DTSS modelling formalism to
support a four to five times parallelised 100Hz closed loop
simulation?

The research question firstly enquires whether or not a
publish-subscribe simulation model can provide the required
flexibility to support the simulation capability. Secondly it en-
quires whether or not a TCP message passing implementation
of the simulation model and simulation synchronisation can
maintain real-time execution of the 100Hz logical time DTSS
at increased levels of parallelisation.

The publish-subscribe paradigm is chosen for its simplic-
ity and familiarity. The TCP message passing implementa-
tion is chosen for TCPs stream based and reliable nature and
the fact that COTS PCs with Gigabit Ethernet Network Inter-
face Cards (NICs) and a commercial switch will be used at
the physical and data-link layers. Initial TCP messaging tests
[13] also revealed that a Gigabit TCP connection could quite
possibly support the required low message latencies.



Figure 1. Layered Peer-to-Peer Simulator Architecture

4. THE PUBLISH-SUBSCRIBE DIS-
TRIBUTED PARALLEL SIMULATOR
ARCHITECTURE

The discussion on the new publish-subscribe simulator ar-
chitecture is structured around the layered architecture of the
simulator (shown in Figure 1), which includes a publish sub-
scribe simulation layer, a message passing implementation of
the simulation model and at the bottom layer a low latency
TCP messaging protocol for Gigabit Ethernet.

The attraction of the layered architecture was the separa-
tion of concerns, in terms of design, between the simulation
model and the distributed execution thereof. An additional ad-
vantage is of course the ability to change the implementation
of the bottom layers without affecting the top layer simulation
application.

4.1. Publish-Subscribe Simulation Model
The top layer simulation model encompasses a couple of

aspects, which include the simulation time management, the
system specification modelling formalism, the object commu-
nication framework and the synthetic environment services.

As mentioned, the pre-existing models have been im-
plemented within a conservative logical time management
scheme and a DTSS modelling formalism. It was decided to
keep these aspects unchanged to simplify the reuse of the ex-
isting models. The object communication framework that is
under investigation for the simulation model is a specialised
publish-subscribe framework to be discussed next. Discus-
sions on the synthetic environment services will then follow.

4.1.1. The Publish-Subscribe Object Communication
Framework

The publish-subscribe paradigm is well known to anyone
that has ever needed to organise to get information, for ex-
ample a magazine, on his or her topic of interest on a regular
basis. Each magazine within your topic (category) of inter-
est has a title and a regular interval at which the categori-
cal information is made available (published). You, the sub-
scriber, may request that the information be delivered to your

doorstep in the form of, say, a weekly or a monthly magazine
issue.

The publish-subscribe simulation framework is a direct
analogy to the magazine example. An instance of a simula-
tion model (an object) may express its desire to receive infor-
mation within a certain category of interest, e.g. aircraft posi-
tions, by adding the category (and title name, if known) to its
Subscription Wish List. An object may also express its will-
ingness to share information within a certain category, such
as its own position, by adding a title (name and category) to
its Owned Title List. A subscribing object has no guarantee
that any object will share information under the title category
or name in which it is interested. Similarly a publisher object
has no guarantee that any other objects will be interested in
the information that it is willing to share. At simulation start-
up each object’s owned title list is made known to the rest of
the simulation. The titles are then processed against the ob-
jects’ wish list subscriptions. Each title matching a wish list
subscription generates a subscription which is sent back to
the title owner to be added to the title’s subscriber list.

At simulation run-time each object will go through regular
increment, publish and gather cycles. Within the DTSS mod-
elling formalism an object is incremented every n’th discrete
time simulation frame where n is the object’s trigger frame.
Each wish list subscription, and thus each subscriber in a ti-
tle’s subscriber list, is also associated with a trigger frame.
During a simulation frame, each subscriber of each owned ti-
tle will be visited and an issue sent to the subscriber if it is the
subscription’s trigger frame. An important publish rule that is
required to ensure consistent issues is that the contents of a
title issue may only be updated during the publisher’s incre-
ment cycle.

Objects may at simulation run-time express their wish to
share a new category of information or a new title within an
existing category. This is done by submitting a run-time ti-
tle to the communication framework. Similarly objects may
express interest in categories (or titles within categories) of
information at run-time by submitting a late subscription

An object has an issue pigeon hole for each of its wish
list subscriptions. When an issue is received (gather phase) it
is placed in the appropriate pigeon hole. A pigeon hole may
have subscription history turned off or on. If history is off then
a newer version of an issue replaces all old issues that may
remain in the pigeon hole. If history is turned on then issues
will be added to the pigeon hole in chronological order. The
object may then read issues and manually delete them as re-
quired during increment cycles. Turning history on for a spe-
cific wish list subscription is typically required when a sub-
scriber doesn’t want to miss any important updates (events)
for that subscription. Having history off allows the subscriber
to always have access to the current issue without the over-
head of always caching and processing a subscription’s recent



history.

4.1.2. The Synthetic Environment Services
The two types of simulation services supported are, firstly,

low level services that are built into the simulation model and,
secondly, high level services that run on top of the simulation
model as simulation objects. The only low level service cur-
rently implemented is that of delayed issues. An issue may
be given a future delivery time by either the publisher, or the
subscriber upon delivery. Such an issue would be delivered
to the subscriber immediately, but once there it resides in a
delayed issue list until the time of delivery arrives at which
point the issue is put into the appropriate pigeon hole of the
subscriber. Delayed issues are handy if transmission delays
of messages within the SE are to be modelled. In the cur-
rent simulator the issue delays of tactical communication sub-
scriptions are, when required, calculated by a radio and cable
network model.

High level synthetic environment services subscribe to the
objects’ state titles and then apply environmental tools such
as Line Of Sight (LOS) and terrain engines to give each ob-
ject individual feedback on its height, which objects it can
see, etc. To accomplish the personalised feedback a service
advertises what is called a differentiated title. Each time a
subscription is made to a differentiated title the simulator au-
tomatically creates a personalised title and subscription for
the subscriber. The service may then use the created titles to
publish to individual objects.

A service need not always publish data back to the simula-
tion, though. Logging, for example, is a high level service that
accumulates object states and other information. The logging
service may then apply user configured data analysers to the
accumulated data and log the results to disk.

4.2. Peer-to-Peer Message Passing and Node
Synchronisation

The publish-subscribe communication framework and the
simulator synchronisation is implemented with a peer-to-peer
message passing architecture. A peer-to-peer architecture is
specifically preferred above a client-server architecture to
avoid the double latency that exists when communicating via
a server to a third machine. The messaging implementation
of the publish-subscribe communication framework is pre-
sented, followed by the implementation of the simulation syn-
chronisation.

4.2.1. Messaging Implementation of Publish-
Subscribe

The publish-subscribe framework naturally translates to a
messaging architecture containing only three message types.
A title may be advertised as a title message containing all
the title and publisher details. A wish list subscription may

Figure 2. Peer-to-Peer Message Passing and Simulation
Synchronisation

similarly be a message containing the details of the wish list
subscription and the subscriber. The third message type is an
issue message that contains the subscriber’s node-number de-
livery address, the targeted wish list subscription pigeon hole
and the actual issue payload. The messaging implementation
has a local/global filter (see Figure 1) that will loop a node’s
self addressed messages back to be cached for the next simu-
lation frame without passing anything down to the TCP layer.

4.2.2. Peer-to-Peer Node Synchronisation
The peer-to-peer synchronisation scheme is shown in Fig-

ure 2. Each simulation frame has three consecutive execu-
tion phases. Within the first phase, which is the increment
phase, all the objects are put through their increment-publish
cycles. The published issues are not messaged directly, but
are grouped per destination node and cached until the sec-
ond, so called publish, phase. The cached issue groups may
now be sent to their respective destination nodes. The pub-
lish phase must be followed by a time-stamped end-of-frame
message to each peer node to signify that all the issues for the
current simulation frame have been sent. The end-of-frame
messages perform a similar function as Chandy-Misra null
messages [14] for dead-lock avoidance and time management
in DEVS implementations. A simulator node will wait in the
gather phase until it has received and processed an end-of-



frame message from each of the other simulator nodes after
which it starts with the increment phase of the next simulation
frame.

4.3. TCP Message Passing Implementation
The TCP messaging implementation consists of two com-

ponents. The first of which is an address translation from
destination node number to destination IP and port before
any message can be sent via TCP. This translation is pre-
configured and fixed for each distribution configuration.

The second component is a two-tiered approach to lower-
ing TCP message latency. The first tier is to ensure that as
much as possible of the TCP send and receive overhead hap-
pens in parallel to the node execution. This is accomplished
by increasing TCP’s send and receive buffers to an adequate
size such that the buffers have enough space for two simu-
lation frames worth of data. This ensures that all TCP sends
are non-blocking. It also facilitates CPU time, from a second
CPU or hyper-thread or that’s not used by the simulation, to
be used to transport as much data as possible from the nodes’
send buffers across TCP to their receive buffers for quick re-
trieval when needed.

The second tier takes control of the TCP message send
times. TCP’s Nagle algorithm tries to optimise bandwidth us-
age by conglomerating sent messages in the send buffer until
it is large enough to fill a TCP packet or until a certain time-
out is reached. The unfortunate side effect of the Nagle algo-
rithm is that control over message latencies is lost. To give
control over the message latency back to the simulator the
Nagle algorithm is disabled.

5. ANALYSIS AND RESULTS
The two aspects of the simulator architecture to be anal-

ysed in support of the research question are, firstly, the sim-
ulator’s applicability to a 100Hz DTSS modelling formalism
and, secondly, the flexibility of the publish-subscribe simula-
tion model and its suitability for a system of systems tactical
and SE simulation.

5.1. Experimental Setup
The simulator nodes are similar Pentium 4 3.2GHz ma-

chines with 2GB of dual-channel RAM each and WindowsXP
SP2. The network infrastructure is, as mentioned, Gigabit
Ethernet with a D-Link DGS-3324SR managed switch. Each
node has an Intel D945PAW mother board with an on-board
Intel Pro/1000 PM Gigabit Ethernet network card.

The simulator nodes will be populated with instances of a
“test” model. The test model has a fixed processing require-
ment of 1ms per 10ms simulation frame and an owned title
with a fixed issue size of 512 bytes. Furthermore each in-
stance of the test model subscribes to every other instance,

Figure 3. Total Object Performance of 100Hz Peer-to-Peer
Simulator

creating the worst case communication scenario of a fully
connected communication graph.

5.2. Applicability of the Peer-to-Peer Simula-
tor to a 100Hz DTSS Modelling Formal-
ism

The proposed architecture’s real-time performance is anal-
ysed over distributions of one to six simulator nodes on the
target infrastructure. With each node configuration the num-
ber of objects per node will be limited to achieve a real-
time frame-rate. Finally a simple predictive model for the dis-
tributed performance behaviour is derived from the analysis
data and used to do a first order estimate of the simulator’s
scalability to seven and more nodes. Accurate evaluation over
more nodes should however be part of the future work section
to verify the speculation about the simulator’s scalability.

The performance result that is recorded is the maximum
number of objects per node (see Figure 3) such that the sim-
ulation can still reach real-time. If the total number of ob-
jects are increased above the “Total Objects” graph, the per-
formance will drop below real-time. Conversely, if the total
number of objects are decreased below the “Total Objects”
graph, the performance will grow beyond real-time. Both the
total number of objects and the performance speed-up graphs
are derived from the measured objects-per-node graph (Fig-
ure 3 and Figure 4).

Quantifying the measured communication overhead it
seems that each time a simulator node is added, the num-
ber of model instances per node must be decreased by an
average of 0.5 to maintain real-time which is a 0.5% over-
head of the 10ms simulation frame. The explanation of these
results is quite likely not a simple task, see the Section 7.
on future work, as it may be dependent on multiple factors
such as message structure and grouping. However, assuming
for the purpose of first order performance predictions, that
the results do indeed indicate a linear distribution overhead



Figure 4. Real-Time Performance Speed-Up of 100Hz Peer-
to-Peer Simulator

of 5% for each simulator node added, such a linear overhead
would most probably be in the receive loop of each simulation
frame. Amdahl’s Law [www.wikipedia.org] specifies that the
speed-up attainable by parallel execution is limited by the se-
quential components of the system which in this case is a sin-
gle NIC and thus a single, though full-duplex, communication
channel per simulator node.

A linear performance might seem counter intuitive to what
is expected of an n node and fully connected peer-to-peer
structure where the total number of connections grows by n2.
The linear nature does however make sense if one remembers
that the processing is done by n nodes resulting in a process-
ing time of n2

c.n which is proportional to n and therefore linear.
In other words, each node must receive data from each of the
other nodes in turn, limiting the potential parallelisation.

The first order objects-per-node performance for seven and
more nodes is estimated by linearly extrapolating the mea-
sured objects-per-node curve (Figure 3) under the previous
assumption. The spikiness of the performance graphs is due
to the granularity of the objects which, in general, leaves a
fragmented processing slot (idle time) on each node. The lin-
ear extrapolation provides an estimate for the scalability of
the simulator, but as the number of nodes increases to beyond
10 the total number of objects eventually start to decrease
which implies that the communication bandwidth will also
decrease again. Around this point it is expected that the lin-
ear nature of the objects-per-node curve might change which
requires, as mentioned, analysis over more nodes to draw ac-
curate scalability conclusions beyond 10 nodes.

5.3. Suitability and Flexibility of the Publish-
Subscribe Simulation Model

The flexibility of the publish-subscribe simulation model
and its suitability for a DTSS system of systems tactical and
SE simulation is analysed to resolve the first part of the re-
search question. The publish-subscribe simulation model is

Table 1. Successful Application Domains of the Peer-to-
Peer Publish-Subscribe Simulator Architecture

Application
Domain

Description

GBADS Ground Based Air Defence System Per-
formance Analysis

MobADS Mobile Air Defence System Performance
Analysis

Navy
SBADS

Concept Demonstrator for Developing
Tactical Doctrine for Naval Air Defence
Scenarios

Sensor Webs
(Awarenet)

Concept Demonstrator for value of ad-
ditional coastal surveillance in creat-
ing situational awareness when patrolling
South-Africa’s fishing zones

shown to be suitable for the implementation of a DTSS mod-
elling formalism and the simulator synchronisation to be free
of deadlock which is sometimes a problem for distributed
simulators. Finally the measure of flexibility of the simulation
model is defined and demonstrated as the range of application
domains within which the simulator have been successful.

The publish-subscribe simulation model sets up virtual
communication channels between the objects. These channels
provide a way for a subscriber to sample the publisher’s state
periodically as required within the DTSS modelling formal-
ism [5]. This is accomplished by the subscriber periodically
receiving the current issue of a certain title of the publisher.

The end of frame notifications are a special case of the
Chandy-Misra null messages [14] with a fixed look ahead
equal to the discrete time step. The simulation model may
thus, according to Chandy-Misra, be shown to be dead-
lock free. An advantage of the DTSS implementation of
null messages is that the number of null messages is lim-
ited to only one per simulator node per simulation frame.
This improves on the typical null-message overhead within
DEVS implementations which may generate excessive null-
messages [15].

The flexibility of the simulation model is defined as the
range of application domains, (see Table 1), within which
this publish-subscribe simulation model and parallel peer-to-
peer simulator have been successful. Each of these applica-
tion domains has been validated against reality by running
experiments that analyse various aspects of the system of sys-
tems. For each experiment the systems’ simulated emergent
behaviour is compared against the pre-defined expected be-
haviour and motivated, or corrected, by subject matter experts
or from what is already known of the system. A list of exter-
nal systems successfully integrated with the simulator may be
found in Table 2.



Table 2. External Systems Successfully integrated with the
Peer-to-Peer Publish-Subscribe Simulator Architecture

External
System

Description

Simulation
Viewers

Integration with 2D and 3D online and of-
fline visual analysis tools

OIL Con-
soles

Integration with mock-up OIL consoles
for realistic real-time operator-equipment
interaction

Hardware
In the Loop
(HIL) Track-
ing Sensor

Integration with a Mechanised Optical
and Radar Tracker (MecORT) for real
sensor input when doing system analysis
and validation

HIL Air Pic-
ture Sources

Integration with civilian and military air
pictures supported by run-time simulated
aircraft generation

Flight Simu-
lator

Integration with a flight simulator for
inclusion of realistic reactive pilot be-
haviour when doing system analysis.

6. CONCLUSION
The new 100Hz logical time DTSS publish-subscribe peer-

to-peer simulator architecture achieves a measured speed in-
crease, due to execution parallelisation, of above 4.5 when
distributed over six simulator nodes. This equates to a dis-
tribution efficiency of 75%. The wide success of the appli-
cation of the simulator architecture is used to motivate the
publish-subscribe simulation model’s suitability as a general
purpose DTSS simulation model. The authors therefore con-
clude that the peer-to-peer publish-subscribe simulator is suit-
able to support the real-time execution of the 100Hz logical
time DTSS simulation requirement.

The simulator’s 100Hz logical time performance is also ex-
plained and modelled in a simple way which provides a first
order estimate on the scalability of the parallelisation. The
simulator is estimated to reach a parallelisation ceiling at a
speed increase of approximately 5.5 which is achieved when
distributed over 10 simulator nodes. This equates to a distri-
bution efficiency of 55%. The scalability of such a high reso-
lution logical time parallel simulator thus seems to be limited
to applications requiring low to medium levels of paralleli-
sation. The limiting factor for the parallelisation is, as men-
tioned, the sequential nature of the network communication.

The DTSS modelling formalism does seem to pose a tech-
nical difficulty in implementing large scale parallelisation
of high resolution logical time simulations. In hind sight it
seems like a good idea to rather develop a hybrid DTSS-
DEVS modelling formalism, that has a DEVS layer envelop-
ing the DTSS layer, to further migrate this specific simulation
capability towards supporting large scale parallelisation. The

two layer approach allows the existing DTSS models to be
grouped and aggregated into systems level models for exam-
ple, which may then be better suited to a DEVS modelling
formalism. The DEVS layer then communicates only what is
required and its parallelisation is not constrained by the un-
derlying DTSS layer’s logical time resolution.

7. FUTURE WORK
The reason for retaining the DTSS modelling formalism

was for ease of reuse of existing discrete time models. In
other words the authors believe that developing this parallel
distributed simulator was more viable than, for example, mi-
grating the entire modelling formalism to DEVS. This is a
valid position for the currently required simulation capabil-
ity, but future work to increase the scalability and usability of
the simulator should include:

• Further investigation and a proper explanation of the
scalability behaviour which might reveal ways of im-
proving that behaviour,

• investigation into the different timings and groupings for
execute-send cycles, possibly interleaving send with ex-
ecute in a different way,

• investigation into using lower overhead UDP message
passing, because in a dedicated and lightly loaded
switched Gigabit Ethernet scenario it is known [16] that
UDP packet losses occur very seldom, and

• investigation into the possible migration of the system
specification modelling formalism to a hybrid DEVS-
DTSS modelling formalism.

8. ACKNOWLEDGEMENTS
The authors would like to thank both the Armaments Cor-

poration (Armscor) of South-Africa and the CSIR for sup-
porting this research. Additionally the authors thank Anita
Louis (CSIR) and Arno Duvenhage (CSIR) for their valuable
review comments.

REFERENCES
[1] Johannes Lodewikus Pretorius. Feasibility considera-

tions for a tailored simulation based acquisition (sba)
approach. Master’s thesis, University of Pretoria, 2003.

[2] Jacques Baird and Cobus Nel. The evolution of m&s
as part of smart acquisition using the sandf gbads pro-
gramme as an example. In Proceedings of the 12th
European Air Defence Symposium, volume 3694, pages
173–182, 2005.



[3] Shahen Naidoo and Cobus Nel. Modelling and simula-
tion of a ground based air defence system and associ-
ated tactical doctrine as part of acquisition support. In
Proceedings of the 2006 Fall Simulation Interoperabil-
ity Workshop, 2006.

[4] Willem H. le Roux. Implementing a low cost distributed
architecture for real-time behavioural modelling and
simulation. In Proceedings of the 2006 European Simu-
lation Interoperability Workshop, 2006.

[5] Bernard P. Zeigler. Theory of Modelling and Simulation.
Academic Press, 2000.

[6] Ernest H. Page and Roger Smith. Introduction to mili-
tary training simulation: A guide for discrete event sim-
ulationists. In Proceedings of the 1998 Winter Simula-
tion Conference, 1998.

[7] Michihiko Ogata, Akira Higashide, Mike Cammarano,
and Toshinao Takagi. Rti performance in the distributed
real-time vehicle model simulation in a 3-d graphical
environment. In Proceedings of the 2001 European Sim-
ulation Interoperability Workshop, 2001.

[8] Stephane Jolibois, Thierry Joubert, and Herve Went-
zler. New hla based technologies and methods for an
advanced air to air combat simulation. In Proceedings
of the 2003 European Simulation Interoperability Work-
shop, 2003.

[9] Richard Fujimoto and Peter Hoare. Hla rti performance
in high speed lan environments. In Proceedings of the
1998 Fall Simulation Interoperability Workshop, 1998.

[10] Ben Watrous, Len Granowetter, and Douglas Wood. Hla
federation performance: What really matters? In Pro-
ceedings of the 2006 Fall Simulation Interoperability
Workshop, 2006.

[11] Alfred Park and Richard M. Fujimoto. Aurora: An ap-
proach to high throughput parallel simulation. In Pro-
ceedings of the 20th Workshop on Principles of Ad-
vanced and Distributed Simulation, 2006.

[12] Steffen Straßburger. Advances in Simulation. SCS Pub-
lishing House, 2000.

[13] Bernardt Duvenhage and Herman W. le Roux. Tcp
simulation architecture investigation. Technical report,
Council for Scientific and Industrial Research, 2004.

[14] K. Chandy and Jayadev Misra. Distrubuted simulation:
A case study in design and verification of distributed
programs. In IEEE Transactions on Software Engineer-
ing, volume SE-5, 2003.

[15] Richard M. Fujimoto. Parallel and distributed simula-
tion. In Proceedings of the 1999 Winter Simulation Con-
ference, 1999.

[16] Behrouz A. Forouzan. TCP/IP Protocol Suite. McGraw-
Hill, Inc., New York, NY, USA, 2002.

Biography
Bernardt Duvenhage obtained his B.Sc (Honour) degree

in Computer Science from the University of Pretoria in 2005
and is currently pursuing a Masters Degree. While part of the
Mathematical and Computational Modelling Research Group
of the Council for Scientific and Industrial Research (CSIR)
in South Africa, he played a key role in developing the
group’s distributed simulator architecture; the simulation’s
terrain and LOS services; and the 3D visualisation and
analysis tool of the synthetic environment. He is currently
employed in the Optronic Sensor Systems Competency Area
of a division within the CSIR. He intends further research in
virtual environment simulation and visualisation.

Derrick Kourie lectures in the Computer Science depart-
ment at Pretoria University. While his academic roots are
in operations research, his current interests include, but are
not limited to software engineering and algorithm develop-
ment. He is student adviser to some 20 postgraduate students
working in these and related areas. He is editor of the South
African Computer Journal and serves on various national and
international academic committees.


	Introduction
	Existing Distributed and Parallel Simulator Technologies
	Research Question
	The Publish-Subscribe Distributed Parallel Simulator Architecture
	Publish-Subscribe Simulation Model
	The Publish-Subscribe Object Communication Framework
	The Synthetic Environment Services

	Peer-to-Peer Message Passing and Node Synchronisation
	Messaging Implementation of Publish-Subscribe
	Peer-to-Peer Node Synchronisation

	TCP Message Passing Implementation

	Analysis and Results
	Experimental Setup
	Applicability of the Peer-to-Peer Simulator to a 100Hz DTSS Modelling Formalism
	Suitability and Flexibility of the Publish-Subscribe Simulation Model

	Conclusion
	Future Work
	Acknowledgements

