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Abstract

We investigate a conventional resonator configuration, using only spherical curvature optical elements, for the generation of Bessel–
Gauss beams. This is achieved through the deployment of a suitable amplitude filter at a Fourier plane create by careful selection of the
geometric cavity parameters, such as mirror curvatures and resonator length. We analyze the loss behaviour of the odd and even modes,
and show that the lowest Bessel–Gauss mode does not necessarily have the lowest loss.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Bessel beams (BBs) represent a class of so-called diffrac-
tion free solutions to the Helmholtz equation, and have
been studied extensively since the seminal work of Durnin
et al. in the late 1980s [1–3]. Of more practical relevance are
Bessel–Gauss beams (BGBs), which are spatially-infinite
BBs confined by a Gaussian envelope in the transverse spa-
tial plane, making them spatially finite. These beams are
easily generated external to the laser cavity by illuminating
an axicon with a Gaussian beam, and offer a good approx-
imation to the properties of true BBs. A recent review of
BBs and BGBs as well as their applications can be found
in [4].

Intra-cavity generation of BGBs has been successfully
shown through various techniques using non-conventional
elements. In [5] a new method was proposed for BB gener-
ation by means of a confocal resonator with an annular
active medium, and an estimation of the size of the
‘‘diffraction-free” zone was presented. Axicon-based reso-
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nators were independently proposed by Rogel-Salazar
et al. [6] and Khilo et al. [7]. The axicon-based resonator
supporting Bessel modes in [7] was composed of two plane
mirrors with an axicon placed close to one of them, and it
was shown that if the axicon adjacent mirror was concave,
then BGBs were produced. Analytical expressions relating
parameters of the resonator and characteristics of its
modes were obtained and analyzed. The resonator scheme
was implemented in an experiment to confirm the possibil-
ity of the generation of zero-order Bessel beams. Unstable
resonators for BB generation were proposed in [8] and the
use of intra-cavity phase conjugating mirrors for BGB gen-
eration was shown in [9]. More recently axicon-based BGB
resonators with concave output couplers were considered
[10] using both geometrical and wave optics approaches,
while unstable axicon-based BB resonators with convex
output couplers were presented in [11]. In both cases spe-
cial attention was directed to the dependence of the output
transverse profiles, the losses, and the modal frequency
changes on the curvature of the output coupler and the
cavity length.

In this paper we present a conventional (i.e., not axicon-
based) confocal resonator configuration for the generation
of BGBs. The mirror parameters are selected so as to form
a Fourier transforming pair; when combined with an
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internal amplitude filter in the form of an annular aperture,
the resonator is capable of supporting BGBs of various
orders. In such a resonator the Gaussian field enveloping
the Bessel field determines the radial modes, while the Bes-
sel field determines the angular modes. These two functions
together give rise to the potential for mode selection based
on variable apertures inside the cavity. In Section 2 we
introduce the resonator concept, and consider an analytical
approach to understanding the mode behaviour inside the
resonator. In Section 3 we analyze the resonator using the
round trip Fourier transform, and then confirm the find-
ings rigorously using the Fox–Li method in Section 4.
We comment on the practicality of implementing this con-
cept in Section 5.
2. Bessel–Gauss resonator concept

Bessel and Bessel–Gauss beams have been considered in
detail elsewhere [1–4]. We briefly review the pertinent rela-
tionships to aid readability and clarity of the paper.
Fig. 1. Illustration of the Bessel–Gauss resonator. Mirror M1 is obscured
by a disk of radius d, thereby forming an annular lossless zone in the
region a < r < b. Each mirror has a radius of curvature of 2f and they are
separated by a distance of 2f.
2.1. Bessel–Gauss beams

An ideal BB of order n can be described by [4]:

uBBðr; z;uÞ ¼ A0 expðikzzÞJ nðkrrÞ expðinuÞ; ð1Þ
where Jn is Bessel’s function of order n, kz and kr are the

longitudinal and radial wavevectors with k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

r þ k2
z

q
¼

2p=k, with k the wavelength of the electromagnetic field,
and r, z, and u are the radial, azimuthal and longitudinal
co-ordinates, respectively. In practice a BB requires an infi-
nite amount of energy to be generated, and so Bessel–
Gauss Beams (BGBs) are used as an approximation to
study the properties of BB over a finite extent.

A BGB is a BB described by Eq. (1) but modulated in
amplitude by a Gaussian function, and can be expressed
at its waist plane as

uBGBðr;uÞ ¼ A0J nðkrrÞ exp � r2

w2
0

� �
expðinuÞ; ð2Þ

where w0 is the Gaussian 1/e2 radius at the waist. After
propagating this field a distance z one can easily show that:

uBGBðr; z;uÞ ¼ A0

w0

wðzÞ J n
krr

1þ iz=zR

� �
exp � r2

w2ðzÞ

� �

� exp � 1

w2ðzÞ �
ik

2RðzÞ

� �
r2 þ k2

r z2=k2
� �	 


� expðinuÞ expði/ðzÞÞ ð3Þ

where /(z) = krz � arctan(z/zR) and R(z) = z[1 + (zR/z)2] is
the radius of curvature of the Gaussian wavefront. The
Gaussian 1/e2 beam radius at the distance z is described

by wðzÞ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz=zRÞ2

q
.

The constant zR represents the Rayleigh range of the
Gaussian field, and is an indication of the distance over
which the field may be considered collimated, given by
zR ¼
pw2

0

k
:

Eq. (3) is valid when the starting BGB has a waist at z = 0,
i.e., the wavefront is initially flat. It is equally valid to de-
fine the propagation of the BGB with a starting wavefront
that has some curvature R, for example, by replacing Eq.
(2) by

UBGBðr;uÞ ¼ A0J nðkrrÞ exp � r2

w2
0

� �
expðinuÞ exp

�ikr2

2R

� �
:

ð4Þ
We point this out since the field described by Eq. (4) will

be shown to be one of the modes of the resonator described
in this paper, and its propagation in the resonator will be
studied in detail.

2.2. Fourier transforming resonator

When the geometric parameters of a resonator are cho-
sen appropriately, the spherical curvature mirrors act as a
Fourier transforming pair. In particular, if a stable resona-
tor arrangement is employed with two concave mirrors
having radius of curvature equal to the resonator length
then the oscillating field will be Fourier transformed after
each pass, so that after one complete round trip (two
passes) the field is reproduced. The resonator we propose
for this purpose has identical end mirrors, each of radius
of curvature R = 2f, and separated along the optical axis
by a distance L = 2f. A schematic of this resonator is shown
in Fig. 1. Both mirrors M1 and M2 are of radius b, with M1

having an additional obscuration in the form of a disk of
radius a, creating an annular lossless zone between the disk
edge and the mirror edge. The annular lossless zone is a sig-
nificant factor in this resonator, and deserves further dis-
cussion. It has been shown previously [9] that when an
intra-cavity lens is inserted into a planar–planar resonator
such that the opposite mirrors are separated by one focal
length from the lens (with the lens in the centre of the cav-
ity), then a Fourier-transform relationship between the
modal fields at the mirrors is established. Such a resonator
was found to support Bessel–Gauss modes. It was pointed
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out that the modal discrimination of the resonator would
be expected to be poor unless an annular aperture is
employed at one of the mirrors. The resonator proposed
in this study is analogous to such a cavity, but with spher-
ical mirrors forming a Fourier-transforming pair. We will
show in the sections to follow that the annular aperture size
(a) and the mirror size (b) can be used as a mode selector
where higher order Bessel fields have lower losses than
lower order Bessel fields.

The field at mirror M1 is uniquely defined by the lossless
annular aperture, which if sufficiently narrow (b–a ? 0),
will Fourier transform to a Bessel field. Since mirror M2

is this Fourier transforming plane, the field distribution
at M2 would be the Bessel field. However the resonator
we propose also supports Gaussian modes (we assume
the dimensions of mirror M2 are such that higher order
Hermite–Gauss modes are eliminated) since the mirror cur-
vatures match the curvature (R(z)) of the oscillating Gauss-
ian field. So long as the Gaussian beam width encloses
sufficiently many Bessel zeros, a well-defined annulus with
an approximately Gaussian radial intensity distribution
can be expected at mirror M1, in keeping with the concept
of Bessel–Gauss fields as a superposition of conventional
Gaussian beams with optical axes distributed uniformly
on the surface of a cone [2]. Note that the resonator param-
eters (such as length and mirror curvatures) determine the
Gaussian mode that oscillates, defining the radial modes of
the resonator, while the apertures inside the resonator
determine the angular modes that oscillate, as will be
shown later. Both these modes play an important role in
the analysis to follow.

2.3. Resonant modes

While the above description also serves as a heuristic
argument for BGBs as modes of our resonator, it is instruc-
tive to show this more rigorously. We do so in two ways:
firstly, we have shown numerically that BGBs of various
orders are eigenmodes of this resonator. We pre-empt the
discussion later by pointing out that a Fox–Li analysis of
this resonator, starting from a random noise field, con-
verges to various BGB orders, depending on the parame-
ters of a and b. Fig. 2 shows intensity plots (a–e) of the
zeroth order BGB during propagation through the resona-
tor after the mode has reached a steady-state. The shaded
area in the resonator drawing indicates the region where
the BGB is in existence, with its largest spatial extent at
mirror M2 (position e), finally creating an annular ring at
the opposite mirror (position a). This propagation is what
is expected if the mode is a BGB. From the Fox–Li calcu-
lations one can also extract the phase of the BGB at the
mirror (say mirror M2, for example). This is shown in
Fig. 3, where the numerically calculated phase matches that
of the mirror’s curvature exactly, as expected. Thus we can
conclude that the field at mirror M2 is indeed a BGB, with
a wavefront matching the curvature of the mirror, i.e.,
R = 2f.
Secondly, we follow the approach detailed in [9] to test
more rigorously if a BGB with a spherical wavefront is
an eigenmode of this resonator. We start with a field just
prior to reflection off mirror M2:

u2ðr;uÞ ¼ A0J nðkrrÞ exp � r2

w2
2

� �
expðinuÞ exp

ikr2

4f

� �
; ð5Þ

where w2 is the beam size on mirror M2 and is given by

w2 ¼ 3�
1
4

ffiffiffiffi
8f
k

q
. If the z axis is defined to be z = 0 at mirror

M2, and positive to the left (in the direction of mirror
M1) then the Gaussian mode will propagate symmetrically

about a waist centred at z0 = f with w0 ¼ 3
1
4

ffiffiffiffi
2f
k

q
. We can

determine the complete propagation of the field u2 by using
the Fresnel diffraction integral in the form [12]:

uðq; zÞ ¼ � inþ1ðk=zÞ expðikzÞ

� exp
ik
2z

q2

� �Z 1

0

u2ðrÞJ n
kqr

z

� �

� exp
ik
2z

r2

� �
exp � ik

2f
r2

� �
r dr; ð6Þ

where we have assumed that since the resonator is rotation-
ally symmetric the modes are separable, and where we have
made use of the well known integral representation of the
Bessel functions:Z 2p

0

expðix cos uÞ expðinuÞdu ¼ in2pJ nðxÞ:

The kernel of the integral includes phase modulation by
mirror M2, which we treat as a thin lens of focal length f, fol-
lowed by free space propagation through a distance z. The
field at mirror M1 will then be given by u1(q) = u(q,2f), thus

u1ðqÞ ¼ � inþ1A0ðk=2f Þ expði2kf Þ exp
ik
4f

q2

� �

�
Z 1

0

expð�ðr=w2Þ2ÞJnðkrrÞJ n
kqr
2f

� �

� exp
ik
4f

r2

� �
exp

ik
4f

r2

� �
exp � ik

2f
r2

� �
r dr

¼ �inþ1A0ðk=2f Þ expði2kf Þ exp
ik
4f

q2

� �

�
Z 1

0

expð�ðr=w2Þ2ÞJ nðkrrÞJ n
kqr
2f

� �
r dr:

By making use of the well known relation:Z 1

0

expð�r2x2ÞJ pðaxÞJ pðbxÞxdx

¼ 1

2r2
exp � a2 þ b2

4r2

� �
Ip

ab
2r2

� �
;

one can easily show that the field at mirror M1 is given by

u1ðqÞ

¼ �iA0

w2
2

4f
expði2kf Þ exp � 1

4
w2

2 k2
r þ

k2q2

4f 2

� �� �

� J n
ikkrw2

2

4f
q

� �
exp

ik
4f

q2

� �
: ð7Þ



Fig. 2. The BGB is formed in the shaded region of the resonator, and changes in intensity as it propagates through this volume. Five intensity plots are
shown corresponding to planes (a) through (e) within the resonator for the zeroth Bessel mode (n = 0). The starting mode was calculated using the Fox–Li
algorithm with ten round trips, Fresnel number N = 6 and a ¼ 5

6
b, and then propagated using Eq. (6).

Fig. 3. Mirror phase as calculated from Eq. (7) (solid curve) as compared
to the numerically calculated phase using the Fox–Li algorithm (data
points).

2388 I.A. Litvin, A. Forbes / Optics Communications 281 (2008) 2385–2392
Now we note that the required transfer function for mir-
ror M1 to support this mode can be found from:

tM1 ¼
u�1
u1

¼ exp � ik
2f

q2

� �
;

where we have ignored constant phase terms. But this is
precisely the phase of a spherical mirror of radius of curva-
ture R = 2f, thus indicating again that the various orders of
BGBs are modes of this resonator.

It is worth pointing out here an interesting aspect of this
resonator. Conventionally one would consider the Fourier
transform plane to be at z = f and not z = 2f when using a
mirror of focal length f (or curvature of 2f). However, the
incoming field already has curvature Eq. (5), and thus the
effective focal length of the mirror to a planar phase
BGB field appears as 2f:
uðrÞ ¼ A0J nðkrrÞ exp � r2

w2
2

� �
exp

ikr2

4f

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

BGB

exp � ikr2

2f

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

lensðf Þ

¼ A0J nðkrrÞ exp � r2

w2
2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

planarBGB

exp � ikr2

2ð2f Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

lensð2f Þ

It is for this reason that the resonator mirrors are separated
by a distance of 2f.

The intensity profile at mirror M1 is thus an annular
beam modulated by a Gaussian envelope, while the inten-
sity at mirror M2 is the reconstructed BGB (Fourier trans-
form of the annular field). If mirror M2 is made partially
transmitting, the resonator will emit various orders of
Bessel–Gauss modes. Suitable collimating optics may be
employed to correct the phase of the output beam if so
desired.
3. Fourier optics analysis

We wish to consider the diffraction losses for each BGB
order by applying the Hankel transform in Eq. (6) to prop-
agate the field from mirror M2 to M1, but with the limits of
integration adjusted to [0, b]. The energy of the initial field
is normalized such that the diffraction losses for the BGB
of order n may be written as c = 1 � En where En is the
energy at mirror M1 after one pass. This single pass loss
is representative of the steady state diffraction loss since
the initial field chosen is already close to the stable mode
under investigation. Because the field on mirror M1 is
annular-like for all mode numbers, showing very little dis-
crimination between the modes, increasing or decreasing



Fig. 4. The dependence of diffraction losses on radius b for the various orders of BGBs (even modes as solid curve, odd modes as dashed curve): (a) shows
a general trend for the zeroth and first order mode of decreasing oscillation strength with increasing mirror radius due to the Gaussian envelope dominance
when b� w2. In this plot a = 0.9b, and thus the losses increase with b. A zoomed in area (between the vertical solid lines) is shown in (b), with the out of
phase oscillations of the odd and even modes evident; (c) shows plot (a) but with a fixed in value.

Fig. 5. The diffraction losses, as calculated by the Fourier approach,
showing the zeroth order mode (0) with higher losses than some odd order
modes (shown starting at 1, dashed curve). Calculations done at
b = 1.465 mm corresponding to cross-section A of Fig. 4b.
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the diaphragm radius a (or the mirror radius itself) will
result in either increasing or decreasing losses for every
BB order in a concomitant manner. Conversely, the BGB
on mirror M2 varies greatly with the Bessel function order.
When the size of mirror M2 is chosen so that b coincides
with an intensity trough of the BGB, the diffractions losses
will be minimized. In contrast, when b coincides with an
intensity peak of the BGB, the diffractions losses will be
maximized. This is easily noted if one considers that when
krr is large, Eq. (1) may be approximated as

uBBðr;uÞ ¼ A0

ffiffiffiffiffiffiffiffiffi
2

pkrr

s
cos krr �

2nþ 1

4
p

� �
expðinuÞ; ð8Þ

where we have dropped the piston phase term (exp(ikzz)).
From this asymptotic approximation we observe that the
amplitude of the field will oscillate with a cosine function
for even orders of n, and as a sine function for odd orders
of n, thus the even and odd orders are out of phase. This
results in the diffraction losses of the modes on this mirror
having an oscillatory character. One can also derive from
Eq. (8) simple expressions for the radius b at which a par-
ticular order will have high or low losses:

bHL ¼
p mþ 1

2
nþ 1

4

� �
kr

; ð9aÞ

bLL ¼
p mþ 1

2
nþ 3

4

� �
kr

; ð9bÞ
where bHL and bLL are the values of b for high and low
losses, respectively, m is an integer and n is the order of
the BGB. For example, assume that an integer m = m0 is
chosen such that the J0 function has high losses. Selecting
an integer m1 = m0 � 1 will then ensure that the J1 function
has lower losses than the J0 function. In general, if the inte-
gers in Eqs. (9a) and (9b) are chosen such that m0–mn = 1/
2(n + 1), then the losses in the J0 will be larger than that of
the Jn. Moreover, the decreasing losses for the even modes
imply increasing losses for the odd modes, and vice versa.



2390 I.A. Litvin, A. Forbes / Optics Communications 281 (2008) 2385–2392
In the limit that the enveloping Gaussian becomes much
smaller than the mirror radius b, we expect this oscillatory
behaviour to be suppressed by the zero asymptote of the
Gaussian function, and at this point the radial modes com-
pletely determine the resonator behaviour.

In the analysis to follow the resonator parameters used
for all calculations are: f = 0.35 m, k = 532 nm, and
a = 0.9b. Where other values have been used in calcula-
tions, it is clearly indicated so in the accompanying text.

The oscillatory nature of the diffraction losses for both
odd and even modes, as described qualitatively earlier, is
shown quantitatively in Fig. 4. Fig. 4 shows the conver-
gence of the losses for all orders of odd and even modes
when b� w2, as is the norm in Fabry–Perot type cavities.
The unusual feature of Fig. 4a, that the losses increase with
increasing b, is due to the fact that a is also increasing
according to a = 0.9b. Since an increase in obscuration at
mirror M1 increases losses for all modes, the net effect is
Fig. 6. The zero order mode (0) now has the lowest losses, with a clear
out-of-phase oscillation in the loss for odd (starting at 1, dashed curve)
and even (starting at 0, solid curve) modes. Calculations done at
b = 1.50 mm corresponding to cross-section B of Fig. 4b.

Fig. 8. Examples of the calculated BGBs with their correspondin
to increase the overall loss for each mode. Increasing b with
a fixed in value, as is shown in Fig. 4c, results in an
expected convergence to low loss for all modes. The results
in Fig. 4a and c have been confirmed with a full Fox–Li
analysis. Fig. 4b shows a zoomed-in section of Fig. 4a, with
the section shown as vertical markers in Fig. 4a. The verti-
cal cross-section A in Fig. 4b indicates a mirror radius at
which some odd modes have higher losses than some even
modes, while cross-section B shows the opposite. It is evi-
dent that at some values of b the lowest order BGB does
not have the lowest losses; in general when the even modes
have high losses, the odd modes have lower losses.

This fact is illustrated in Fig. 5 where it is evident that
the BGB of zero order has higher losses than BGBs of
order 1, 3, 5 and 7. By judicious selection of b one can
again ensure that the zeroth order BGB has the lowest
losses, as shown in Fig. 6, where even orders from 0 to 6
have lower losses than the first order BGB.
Fig. 7. The dependence of the diffraction losses per round trip on the
mode number, as calculated using the Fox–Li method. Odd modes are
shown starting at 1 in the dashed curve, while even modes are shown
starting at 0 in the solid curve. The results are in very good agreement with
those shown in Fig. 6.

g Fourier transforms: (a) J1, (b) J5 and (c) J6 Bessel orders.
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We also note from Fig. 5 that the oscillatory nature of
the mode losses is suppressed at high mode numbers
(e.g., beyond 20); this is due to the nature of the oscillations
in the Bessel functions themselves, where the approxima-
tion Eq. (8) becomes valid at radii that increase with the
Bessel order.
4. Fox–Li analysis

To confirm the results of Figs. 5 and 6, we consider a full
wave optics analysis using the Fox–Li method [12]. The cal-
culation was performed with b = 1.50 mm and the results
are shown in Fig. 7. Comparison of Figs. 6 and 7 clearly
shows that the approach of the previous section is in good
agreement with the full wave optics analysis. The oscilla-
tory nature of the losses for the odd and even orders is evi-
dent in both trends, showing excellent qualitative
agreement, while there is very close quantitative agreement
in the calculated losses.

The propagation of the zeroth order BGB is shown in
Fig. 2, while some examples of the resulting steady state
fields and their Fourier transforms are shown in Fig. 8.
The propagation characteristics, as well as the Fourier
transform of the fields confirms that these are indeed
BGBs. The fact that the losses for various orders may be
to some extent controlled in this resonator opens the way
for selection of higher order BGBs.
5. Conclusion

We have analyzed a Fourier transforming type resona-
tor that generates BGBs of various orders as an output.
The losses of these modes have revealed an oscillatory nat-
ure, which suggests that the lowest order BGB may not
necessarily have the lowest loss. This can be understood
in terms of odd and even modes by using the asymptotic
approximation to the Bessel function. The analytical the-
ory indicates that specific resonator conditions would be
necessary to ensure that the lowest loss can be obtained
in the lowest order mode. The general rule for Fabry–Perot
type resonators, which explains that the lower order modes
have lower loss is not necessarily correct in this particular
resonator. The simplified Fourier approach was validated
by a more rigorous Fox–Li analysis which confirmed the
findings.

We also wish to point out some practical implications in
generating BGBs from such a resonator. Firstly, since the
resonator consists of only conventional optical elements
(spherical curvature mirrors and circular apertures) no
special alignment techniques are required. Secondly, due
to the fact that the order of the BGB of lowest loss is
determined only by the diameter of mirror M2, a simple
variable aperture (iris) at the position of mirror M2 should
suffice as a mode selector in much the same way that the
various Hermite–Gauss modes may be selected by suitable
aperture choice. This paper has dealt mostly with loss
aspects of the modes, but the issue of optical gain requires
a mention. As illustrated in Fig. 2, the BGB does not fill
the entire cavity, and is most pronounced near mirror
M2. This suggests that the gain medium in a practical sys-
tem would have to be placed near mirror M2 and have a
larger cross-sectional area and a comparatively short
length. For example, if the laser had a solid state gain
medium, there would be benefit in using a disk-like gain
medium rather than a rod to maximize the mode volume
inside the gain region. It would also be possible to amplify
the field near mirror M1, but this would require an annular
gain region, which while not impossible, may not be easily
implemented in practice.

Finally, the typical aperture dimensions found in this
study would not deter practical implementation of such a
resonator concept.
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