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Characterizing sub-pixel
Landsat ETM+ fire severity on
experimental fires in the
Kruger National Park, South
Africa

T. Landmann’

Burn severity was quantitatively mapped using a unique linear
spectral mixture model to determine sub-pixel abundances of
different ashes and combustion completeness measured on the
corresponding fire-affected pixels in Landsat data. A new burn
severity index was derived that is shown to map three categories of
burn severity on three experimental burn plots in the southern
Kruger National Park, South Africa. Those pixels which corre-
sponded to a greater abundance of white ash were found to be
significantly related to the pre-burn above-ground fuel biomass and
an indicator of burn efficiency. Landsat ETM+ combustion
completeness was most significantly related to the abundance of
post-burn residual, non-photosynthetic fuel biomass. For the same
reflectance change in pre- and post-fire imagery, a greater magni-
tude of fire severity was measured on corresponding ETM + pixels.
This implies that fire severity depends more on the colour of the ash
than on the magnitude of change in reflectance. Burned area
mapping methods that rely on reflectance change in multi-temporal
imagery may not reliably characterize burn effects such as fire
severity and efficiency in semi-arid savannas.

Introduction

Satellite imagery provides accurate information on fires over
large or remote areas where direct characterization of fires
cannot be feasibly measured or observed by resource managers
in the field. Remote-sensing methods use parts of the electro-
magnetic spectrum not visible to the eye to extract a wide range
of fire-related information."*

Fire severity in remote sensing is defined as the degree or
magnitude of vegetation change induced by fire. It is usually
inferred from the date and pattern of mapped burned areas. In
ecological terms, fire severity is the extent of physical, biological
and chemical changes at a site.” This includes the fire effect on
the recovery of individual species and different vegetation
components as well as the downward fire heat flux and its effect
on soil and plant interactions.™

Changes in fire severity result in an altered ecological impact
within a vegetation biome, thus modifying ecosystem composi-
tion and functioning.”” Spatially explicit information on fire
severity is required by reserve or resource managers for moni-
toring the ecological effects of fires and biodiversity patterns.””
The information can be used to assess the current fire situation
of a managed region, and areas that are deviating from the
intended fire policy can be identified.” For instance, resource
managers may require complete and severe fires to suppress a
woody savanna component in favour of a grass sward." Spatial
information on fire severity can also help locate areas that need
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erosion mitigation studies or provide local emission models with
data on the fraction of fuel mass consumed.

Remote-sensing methods that quantitatively map fire severity
in savannas over large, phenologically diverse regions are still
not reliable or readily available for post-fire assessments. In the
lastdecade, ‘image classification” methods used mainly principal
component analyses, vegetation indices, or linear transforma-
tion techniques to map ordinal classes of severity in Landsal
data." " The remote-sensing information was combined with
field data on vegetation and soil heat penetration criteria.™ "

In this paper, a burn severity index (BSI) (unitless) is derived
from multi-temporal sub-pixel combustion completeness (CC)
data and a unique linear mixture model. The spectral endmem-
bers for the unmixing calculation were derived from an Analyti-
cal Spectral Device (ASD) radiometer. Endmembers represent
the purest ‘homogeneous” materials; other materials represent
mixtures of endmembers."” Spectral mixing results are related to
available fuel biomass (based on dry matter weight) calculated
from Landsat Enhanced Thematic Mapper (ETM+) Tasselled
Cap reflectance."” Combustion completeness calculations were
derived from a recent study that found a significant relationship
between Landsat ETM + near-infrared reflectance and CC field
measurements.™ The only other study known to use spectral
mixing models in estimating fire severity at a Landsat sub-pixel
scale is that of Rogan and Franklin® in southern California.

Methods

Data acquisition

Twao Landsat ETM + cloud-free datasets (ETM+ path 168, row
077) captured over Skukuza, Kruger National Park (KNP) on 12
June 2000 and 15 August 2000 were investigated to derive
pre-fire fuel biomass (in units of g m™~), capture the burned area,
and predict CC for each of the Landsat ETM + pixels correspond-
ing to fire. The Landsat data were corrected to at-sensor
reflectance and surface reflection using an atmospheric radia-
tive transfer model, as described by Roy and Landmann."™"”
Surface reflection is needed to make Landsat data comparable to
the at-nadir reflectance of spectral endmembers.

A 9-pixel Landsat ETM+ sampling area was investigated on
cach of three experimental burn plots (EBPs) in the Kambeni
area of the KNP The burn plots are part of a long-term burning
experiment begun in the park in 1954.%

The pixel grids were determined to be homogeneous in their
physiognomic and primary vegetation structure and in their
morphological topography features, based on field work
conducted in August 2000.” The 9-pixel grid was located well
within each plot in order to exclude edge effects.

Above-ground fuel biomass available for burning was calcu-
lated (per pixel) from Landsat ETM+ Tasselled Cap (at-sensor)
reflectance, according to a study conducted on the same EBPs in
2000." The Landsat Tasselled Cap pixel data were selected from
the field corresponding to a 9-pixel filter. The three sample EBI’s
were burnt on the morning of 14 August 2000 under the same
micrometrological conditions; and they were noted to be homo-
geneously burnt.

After the fire, 500 g of pure white ash, 500 g of representative
black ash and over 1 kg of residual non-photosynthetic fuel
biomass (senescent grass, twigs, leaves and bark) samples were
collected. The samples were analysed in the laboratory to deter-
mine their multi-spectral reflectance using an ASD radiometer,
which measures spectral reflectance in the range 0.45-2.2 um at
intervals of 0.01 gm. Spectral endmembers of black ash, white
ash and non-photosynthetic vegetation were derived from
the ASD spectral information and re-sampled to wavelengths
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spectra from 0.41 um to 2.11 pm were simulated
from ASD radiometer measurements (Fig. 1).
Ash spectral curves for different white ash per-
centage abundances were interpolated between
the 100% white ash and the black ash end-
members, as collected in the field. By dividing
the sampled black ash spectra by the white ASD
ash spectral endmember (also called the refer-
ence endmember), the relative abundance of the pure white ash
spectra in black ash was determined as being 9%.* The different
ash spectra can be used to simulate, in theory, ‘grey” ash levels
corresponding to different levels of emitted energy over longer
burning periods, thatis, combustion efficiency. Combustion effi-
ciency is defined as the degree of oxidation of the fuel (propor-
tion of carbon oxidized as CO,).*

Linear spectral unmixing

Linear spectral unmixing was performed using Landsat
ETM+ data for the three Kambeni EBPs. Linear spectral
unmixing assumes that a Landsat fire-affected pixel is a multi-
variate product of several spectral (physically pure) compo-
nents.” This implies that for a given pixel the multi-spectral
signal (X) can be described as the sum of the linear function of
ground-cover proportions from the spectrally pure end-
members matrix (M) and for the pixel component i. The abun-

dance of a material is therefore defined as (1 - x), where
X=ZMf+E (1)

The term [ is the fractional abundance vector of the known
endmember matrix (M). € is the random term used to describe
residual atmospheric or instrument noise. All fractional
abundances are in proportions between zero and one.*

The physical validity of the unmixing result depends critically
on the choice of possible candidate endmembers. The validity
can be assessed by analysing the abundance fraction (f) and the
root mean square error.” Endmembers can also be directly
extracted from the image itself as being ‘pure’ representatives of
a certain landscape feature or pixel component.” Several linear
unmixing trial calculations using different endmember combi-
nations were investigated for their validity. The following
endmembers were selected: non-photosynthetic (or ‘brown’)
vegetation (derived from the ASD measurements), photo-
synthetic (or‘green’) vegetation (extracted from the image itself),
9% white in black ash curve, and 12% white in black ash (or the
‘grey” ash) curve,

Endmember combinations using the soil endmember, together
with the brown vegetation endmember, and the shadow with
the photosynthetic (green) vegetation endmember did not yield
meaningful results. This has been observed previously in other
studies and may be due to spectral similarities between bare soil
surfaces and brown vegetation. Similarly, multiple reflectance
scattering in tree canopies may cause confusion between
photosynthetic leaf biomass and shadow.**

0.9 1.2

Wavelength (pm)

Fig. 1. Spectral ash reflectance curves that simulate different percentage white ash contents in ‘grey’
ash in the range from 0.45 pm te 2.2 ym. The bottom (black) curve corresponds to the reflection of the
black ash as collected in the field and contains 9% white ash. The positions of narrow-band Landsat
ETM+ near-infrared (NIR}, short middle infrared (SMIR) and long middle infrared (LMIR) bands are
marked with broken vertical lines.

Results and discussion

Landsat-estimated pre-fire fuel mass (in units of g m”) is
significantly related to the abundance of grey ash (1 - x) from the
spectral unmixing result (R* = 049, P = 0.001) (Fig. 2). No
relationship was found between black ash abundances and
pre-fire biomass. Since fuel biomass is an important determinant
of fire severity,*" and more severe and efficient fires produce
"2 most pixels relating to Kambeni 5 can be classified
as corresponding to a severe burn.

Landsat ETM+ CC (using ETM+ band 4) was used as a second
independent data source to study the relationship between ash
colour and fire severity. The relationship (R°) between grey ash
abundance and Landsat CC exhibited a value of 0.46 (P < 0.001).
No significant relationship was found for black ash as a function
of CC. The abundance of unburnt brown vegetation from the
unmixing result correlated significantly with Landsat ETM+ CC
(R* = 0.73, P < 0.002) (Fig. 3). This implies that CC is a good mea-
sure for determining the proportion of fuel biomass consumed
by fire and of relative fire impact.

whiter ash,

Fire severity mapping

Fire severity is defined as the degree of change caused by a fire
event." Burn severity can be characterized as the product of the
abundance of the grey ash endmember, M,f , ., from spectral
unmixing and CC of the same area unit or pixel:

BSI = aM_.A;f:] -y X CC,

where BSl is the burn severity index.

The variables in (2) describe different fire severity effects. Grey
ash M, f,_ isrelated to the heat of combustion (in units of k] kg ™)
and pre-fire fuel biomass. CC is a measure of the fraction of
brown fuel biomass that is consumed (that is, the relative fire
impact), irrespective of the heat of combustion and pre-fire fuel
quantity. More intense fires (in units of k] s' m™') usually
produce less whitish ash in flaming combustion.” Conversely,
more efficient fires usually emit heat over longer periods as they
have a prolonged smouldering combustion phase.”

Figure 4 illustrates the magnitude of response of the BSl as a
(non-linear) function of reflection change in pre- and post-fire
imagery for the three EBPs (R* = 0.52, P < 0.001). The shape of
the curve shows that the BSI values depend more on ash colour
(that is, burn efficiency) than on CC, as the latter is essentially
determined by the change in reflection (p), ie. pre-burn, -
post-burn,.

Characterizing fire severity or mapping fire effects using
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Relationships between diffuse
and global solar radiation in
southern Africa

M. Tsubo*' and S. Walker*

Diffuse solar radiation, which is not routinely measured at weather
stations, has been estimated empirically, from global solar
radiation, around the world but not in southern Africa. We report
here empirical relationships describing the components of solar
radiation at eight locations throughout the subcontinent. Data on
diffuse and global solar radiation were collected at weather
stations, at latitudes between 22° and 34°S and at altitudes from
0 to 1725 m, representing various climate zones. A simple linear
equation is proposed relating the ratio of diffuse to global solar
radiation to the ratio of global to extraterrestrial solar radiation for
the subcontinent, including both semi-arid/arid and warm temper-
ate climate zones.

The diffuse solar radiation model

In crop modelling as well as in solar engineering, it may be
necessary to separate global solar radiation into its diffuse and
direct components. The method used to estimate global solar
radiation at the earth’s surface is divided broadly into two
approaches: the Beer’s (Bouguer-Lambert’s) Law model and the
Liu and Jordan (regression) model." The former estimates direct
solar radiation whereas the latter allows diffuse solar radiation to
be calculated. Beer’s Law describes the attenuation of mono-
chromatic radiation through the atmosphere. The transmittance
of direct radiation from the top of the atmosphere to the earth’s
surface is described by an exponential equation involving the
product of the atmospheric extinction coefficient and air mass.
The atmospheric extinction coefficient is subdivided into terms
that describe Rayleigh scattering and Mie scattering and absorp-
tion by ozone, water vapour and other gas coefficients. The
atmospheric extinction coefficient is therefore complex. By con-
trast, the Liu and Jordan model is a simple equation; that is, the
ratio of diffuse to global solar radiation (K) can be estimated from
the clearness index, defined as the ratio of global to extraterres-
trial solar radiation (K,). Researchers have found relationships
between K and K| at several locations on an hourly, a daily or a
monthly basis.** Little information concerning the diffuse Liu
and Jordan model is, however, available for southern Africa and
the southern hemisphere. The objective of this study was, there-
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fore, to investigate relationships between Kand K, on an hourly
basis throughout southern Africa.

Methods

Hourly global and diffuse solar radiation (0.3-2.8 um wave-
length) data for eight southern African weather stations, includ-
ing Windhoek (22°34'S, 17°06'E, 1725 m, Kaéppen climate
classification: Bsh), Pretoria (25°44°S, 28°11°E, 1330 m, Cwb),
Keetmanshoop (267345, 18°07'E, 1066 m, Bwk), Bloemfontein
(29°06'S, 26°18'E, 1351 m, Bsk), Durban (29°58°S, 30°57°E, 8 m,
Cfa), Middelburg (31°29°S5, 25°02°E, 1270 m, Bsk), Cape Town
(33°58'S, 18°36'E, 44 m, Csb) and Port Elizabeth (33°59°S, 25°36°E,
60m, Ctb), were provided by the South African Weather Service.
All radiation measurements were taken using Kipp and Zonen
CM3 or CM5 thermopile pyranometers (Kipp & Zonen, Delft,
The Netherlands). The period of the data sets varied from 24 to
41 years between 1957 and 1997. Daily extraterrestrial solar radi-
ation on a horizontal surface was calculated using the sun—earth
geometry relationship.” Variations in total solar irradiance have
been observed above the atmosphere by satellite.” However, the
11-yearsolaractivity cycle was assumed to have no effect on total
solar irradiance because the accuracy of the satellite measure-
ments (= (1.2 %) is greater than the solar irradiance variations
(£ 0.1 %)." In this study, therefore, a constant value of 1373 W m™
was taken as the solar constant.”

Results and discussion

Previous studies involving diffuse solar radiation models
classified K in terms of K, over various ranges.” " Those classes
are: (i) the low K, class, (i) the middle K, class and (iii) the high K|
class. In general, the ditfuse fraction of solar radiation in the high
K, classis small. By contrast, the diffuse fraction of solar radiation
inthelow K, class is high. These classes serve also to describe sky
conditions and solar angles; that is, the high K, class means clear
sky and/or high solar elevation, whereas the low K| class de-
scribes overcast sky and/or low solar elevation. Various factors
affect the relationship between Kand K. The maximum K, in the
southern hemisphere (0.77-0.82 for Australia) is higher than that
in the northern hemisphere (0.70-0.75)." This difference may be
explained by the enhanced aerosol content of the atmosphere in
the northern hemisphere due to the greater land area and pollu-
tion load.” The relationship may also be dependent on latitude,'
as well as on differences in atmospheric conditions, especially
water content of the atmosphere and cloud type." In our study,
most of the data were distributed over the K, range between 0.2
and 0.8 (the middle class) whereas the other ranges (the low K|
class: 0.0 <K, < 0.2and the high K, class: 0.8 < K, < 1.0) were less
well represented. An average value of K in each K, class was
taken year by year [sample size was the number of years, means
and standard errors of K were also calculated (Table 1)]. Average
K values for the semi-arid/arid climate zone (represented by
Windhoek, Keetmanshoop, Bloemfontein and Middelburg)
were 1.887, 0.348 and 0.136 in the low, middle and high K, classes,
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pre-burn biomass using Landsat ETM+ Tasselled Cap index data
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change in reflectance between images may therefore not be
feasible because fires with the same change in reflectance show
considerable differencesin fire severity. This has implications for
fire mapping methods that quantify fire extent or severity and
rely on the maximum reflectance change between pre- and
post-fire imagery as a surrogate for fire effects.

The BSI levels can further be used to derive continuous BSI
classes. Kambeni 5, for example, can be classified as being
atfected by asevere fire. Kambeni 11 can be classed as amoderate
fire, and most pixels in Kambeni 7 can be classified as corre-
sponding to a low severity burn.
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