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ABSTRACT 
The Peierls stress is the stress required to move a dislocation through a perfect 

crystal lattice. Theoretical estimates show an exponential dependence on the ratio 
of the spacing between gliding planes and the unit slip distance. Nabarro 
corrected an error of a factor of 2 in this exponent in Peierls’s original 
estimate. A revised estimate by Huntington introduced a further factor of 2. 
Three experimental estimates are available, from the Bordoni peaks (which 
agrees with the Huntington theory), from the flow stress at low temperatures 
(which agrees with the P-N (Peierls-Nabarro) theory) and from the rate of 
Harper-Dorn creep (which agrees with the P-N theory). Since the Huntington 
theory is clearly better founded than that of P-N, the agreement of two 
experimental results with P-N is unexpected. The discrepancy is resolved by 
using a recent result by Schoeck. 

1. INTRODUCTION 
In an elastically isotropic crystal of shear modulus p,  the shear stress required to 

move the material on one side of the glide plane rigidly over that on the other side 
was estimated by Frenkel (1929) to be p/27r. Later estimates (for example Seeger 
(1958)) suggested p/30, far higher than the flow stress of a soft single crystal. A 
dislocation should move through an otherwise perfect crystal at the Peierls stress ap. 
Section 2 describes how, after the pioneering calculation by Peierls (1940), two 
distinct families of estimates have developed, which we may call the Peierls- 
Nabarro (P-N) formula and the Huntington (H) formula. It is argued that H, 
which gives a much higher stress than P-N, represents the correct analysis of the 
model on which P-N was based. Section 3 describes experimental estimates of the 
Peierls stress, which fall into three groups. The first is based on an analysis of the 
Bordoni internal friction peaks, and agrees with H. The second is based on the 
assumption that the yield stress of a single crystal at low temperatures should be 
equal or close to ap, and agrees with P-N. The third is based on an analysis of 
Harper-Dorn creep, and also agrees with P-N. It is disturbing that two sets of 
measurements should agree with a theoretical formula whose derivation has been 
shown to be false. 

Section 4 shows that the theoretical formulae and the experimental observations 
can be brought into an orderly pattern. Benoit, Bujard and Gremaud (1987) showed 
that internal stresses could suppress the Peierls stress to zero in the case in which 
dissociated dislocations were gliding on a closed-packed plane. Schoeck (1994), by 
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applying second-order perturbation theory, showed that this reduction would be to a 
small, but finite, value. We point out that this small value is essentially that given by 
P-N, so that the P-N formula is sometimes valid for reasons which were not con- 
sidered in its original derivation. It is argued that the conditions of each type of 
experiment determine whether the P-N or the H formula is appropriate. 

§ 2. THEORETICAL ESTIMATES 

Peierls's original estimate was based on a simple cubic lattice with elastic isotropy 
and Poisson's ratio v. 

The result was 

(T z 20p exp [-47r/( 1 - v)]. (1) 

This value is so small that a detailed discussion of its accuracy would be point- 

Nabarro (1947) corrected an algebraic error in Peierls's calculation, and at the 
less. 

same time neglected some terms in the pre-exponential factor. His result was 

(TPN M 3p exp [-27r/(l - v)]. (2) 

Cottrell (1953) extended the calculation to the case of a rectangular lattice in 
which the distance h between glide planes differs from the unit slip distance b. The 
result is 

where C is given by 

C = h/2(1 - v), (4) 

and it is this result which is generally called the P-N formula. 
In a strict sense, these calculations are not self-consistent. They are based on the 

assumption that the width 2(- of the dislocation core (full width to half height) is 
many interatomic spacings. One of the most favourable cases is that of the motion of 
a dislocation in a close-packed cubic plane, where it is assumed that the dislocation is 
dissociated into two partials which travel independently. If the lattice spacing is a, we 
have b = a / d ,  h = a/&, h / b  = d!, and 2</b = 4 / ( 1  - v) "N 2.1. The result (3) 
can be expected to provide a rough guide. 

In comparison with experiments, eqn. (3) is often used for values of h / b  much 
less than d!. The justification is that if one extrapolates (3) back to the lowest 
experimental values of h/b,  about 0.3, and takes v = $, one obtains ( T ~  M 0.18 p. 
Since both the calculated values of ap/fi and the experimental values of the ratio 
of the flow stress to p cover four orders of magnitude, one can claim that (3) should 
be an acceptable approximation for h / b  z 4, gives a reasonable order of magni- 
tude when extrapolated back to h /b  - 0.3, and therefore may be at least a reasonable 
guide for intermediate values of h/b.  

The disturbing feature of the derivation of (3) is that the energy varies with 
wavelength b as the core of the dislocation moves, the two symmetrical configura- 
tions of the core having equal values. If the energy is expressed as a Fourier series in 
the position of the core, with period b, the leading term is absent. This leading term, 
if present, would be of order 
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1.L 

I - u  
ap = - exp (-2w</h), (5) 

much greater than that given by eqn. (3). 
Huntington (1955) (H) showed that the vanishing of the leading term in the 

Fourier series was an accidental consequence of the details of Peierls’s model, and 
confirmed this by showing that this term re-appeared and led to a Peierls stress of the 
order given by (5) if Peierls’s model in which atoms on one side of the glide plane 
faced those on the other side (F) was replaced by one in which these atomic sites 
alternated (A) as they would in a close packing of circles. 

Huntington made a greater advance in moving to a modified model (M) in which 
the displacement of each atom is a prescribed function of its actual displaced posi- 
tion, whereas in the P-N model it is a prescribed function of its original undisplaced 
position. For the alternating arrangement of atoms, both the P-N and the H calcu- 
lations lead to the result (5). For the facing arrangement, P-N leads to (3), while H 
leads to 

which is of the same order of magnitude as (5). Wang’s recent attempt (Wang 1996a) 
to recover a result of this form is vitiated by the change of sign between his eqns (1 1) 
and (1 7). 

Not only does Huntington’s approach seem more plausible, but it also avoids the 
great sensitivity to the assumed model of the undislocated crystal. Yet the 
Huntington modification is rarely quoted, probably because its mathematical details 
are complicated. 

As has been mentioned, all of these calculations are of very limited accuracy 
because they assume C/b >> 1 and then determine a value of < / b  of order unity. 

The method of Peierls can be extended to the case of potentials across the glide 
plane which are not sinusoidal, but for which the dislocation is still divided into 
components all having the same direction of Burgers vector (Foreman, Jaswon and 
Wood 1951). The method would have to be substantially extended to treat disloca- 
tions moving on close-packed planes, which dissociate into two partial dislocations 
whose Burgers vectors have different directions. In the following discussion we shall 
use the rough model in which each partial feels the influence of the other only 
through the tension of the stacking fault which joins them. The only atomistic 
calculations for a close-packed structure seem to be those of Basinski, Duesbery 
and Taylor (1971) for a hypothetical h.c.p. sodium structure and of Bacon and 
Martin (1981) for two model potentials. Basinski et al. found a value of 
u p / p  M 0.0004 for a screw dislocation. This is considerably closer to the 
Huntington value for an isolated partial than to the P-N value. Bacon and 
Martin found critical shear strains for a screw dislocation in basal slip of 0.015 
for one potential and 0.016 for the other, while for an edge dislocation in basal 
slip the critical strain was 0.011 for one potential and could not be calculated in 
view of the low stacking-fault energy for the other potential. These estimates lie, on a 
logarithmic scale, about as far above the Huntington estimate for an isolated partial 
as the estimate of Basinski et al. lie below it. Since dislocations across close-packed 
planes have components of the Burgers vector which are not parallel to the resultant 
Burgers vector, a substantial extension of Peierls’s method will be required to treat 
them consistently. 
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For non-screw dislocations in the bcc lattice, the Peierls stress has been computed 
for [Tl 11 dislocations lying in various directions on a (1 10) plane, using various pair 
potentials. Except for potentials yielding a very narrow core, values of op/p of the 
order of 0.0015 were found (Vitek and Yamaguchi 1973, Duesbery 1989). For these 
dislocations, h /b  = ($)”2 z 0.816, a value lying very close to the P-N line. However, 
as suggested by Kuhlmann-Wilsdorf (1960) and emphasized by Duesbery (1989), the 
effective value of b to be inserted into a formula of the P-N or Huntington type is not 
the Burgers vector but the distance between successive crystal planes normal to the 
line of the dislocation. For [OOl] and [ 1101 dislocation lines this halves the value of b, 
giving a point which falls almost exactly on the H line. The question arises of why the 
computed value for a [113] dislocation line, for which the effective value of b would 
be reduced by a factor of 11, is not extremely small. The answer is probably that, 
although the mean direction of the dislocation line is [ 1 131, its detailed configurations 
in positions of equal energy a distance of (3)1’2a/l 1 apart are very different, and 
there is a substantial energy barrier between neighbouring configurations of low 
energy. 

When dislocations dissociate off the glide plane, as occurs for screws in bcc and 
Llz structures, the glide processes are still not completely understood, and it is most 
unlikely that any direct extension of the Peierls model would give useful insight into 
their behaviour. 

Atomistic calculations such as those of Sanders (1962), Ishioka (1974) or Zhou, 
Carlsson and Thomson (1994) sometimes show a very sensitive dependence of ap/p 
on the details of the potential, with occasional very low values, the reasons for which 
are understood (Kratochvil and Indenbom 1963, Nabarro 1989a), but are more 
usually values of the order 1 0-2-1 O K ~ ,  or ‘nearly 1 O4 times Nabarro’, corresponding 
roughly to (5) or (6). The calculations of Ohsawa, Koizumi, Kirchner and Suzuki 
(1994) cover a wide range of h/b  using three different atomic pair potentials Ifl, V2 
and V3,  and show a close general agreement with Huntington’s result (fig. 1). 

4 3. EXPERIMENTAL ESTIMATES 

Using and developing the analysis of Seeger (1956), it is possible to derive from 
the activation energy of the Bordoni internal friction peaks the energy of a kink 
where a dislocation crosses from one Peierls valley to the next, and from this to 
derive the Peierls stress. The analysis of Bujard, Gremaud and Benoit (1987) con- 
siders the advance of the dislocation by the Burgers vector of a single partial dis- 
location, and leads to the values op/p = 1.2 x lop3 for copper and 8 x for 
aluminium, in order of magnitude agreement with the predictions of Huntington’s 
formulae (5) and (6). 

Ohsawa et al. (1994) assembled experimental results on the flow stress, and found 
(fig. 2) that they were quite well represented by the P-N formula (3) with v in (4) 
taken as 0.3. The value h / b  = for the close-packed metals again corresponds to 
the motion of single partial dislocations. Since the P-N and H estimates differ by a 
factor of over 300 for this value of h/b,  the H formula is clearly not applicable here. 

One might expect some microplasticity arising from the motion of dislocation 
segments not trapped in Peierls valleys, but this would not lead to strains of the 
conventional order of 0.2%. It has been suggested that dynamical effects could lead 
to these segments overshooting their Peierls valleys and initiating macroscopic defor- 
mation, but Suzuki and Koizumi (1993) showed that such overshooting would occur 
only for applied stresses in excess of 0.7 op. 
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Fig. 1 
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Ratio of the Peierls stress to the shear modulus as a function of h / b  ( h  = spacing between glide 
blanes, b =Burgers vector) calculated for three pair potentials V ,  ~ Vz and V,, and by 
the Peierls-Nabarro and Huntington formulae (Ohsawa et al. 1994). 
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Experimental flow stresses normalized to  the shear modulus as functions of h/b (Ohsawa et af. 
1994). 
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The Peierls stress may also be derived from an analysis of Harper-Dorn creep. 
This is creep at a rate linear in the stress and independent of grain size. It is char- 
acterized by a dislocation density which is independent of the applied stress. It was 
recognized early that the observed creep rates could be accounted for by the climb of 
edge dislocations at the observed density under the influence of the applied stress. By 
analysing the observations on aluminium, Nabarro (1989b) was led to propose that 
the characteristic dislocation density was that at which the stress exerted on each 
dislocation by its nearest neighbour was equal to the Peierls stress. Wang (1993, 
1996b) refined the model, and established its validity by identifying Harper-Dorn 
creep in many materials. The agreement between the observed dislocation density 
and the calculated Peierls stress is shown in fig. 3 to cover three orders of magnitude. 
Wang’s calculated Peierls stress is half of that given by (3) and (4), that is to say 
essentially the P-N value. 

There is thus one class of experiments which supports the H formula, while two 
classes support the ill-founded P-N formula. 

4. RESOLUTION OF THE CONTRADICTIONS 
Analytic formulae such as (3), (5) and (6) can be expected to have approximate 

validity only for the extreme values of h / b S ;  0.5 and h / b  M 1.414 encountered in 
practice. For the low values of h / b ,  theory and experiment both show that disloca- 

Fig. 3 

Prediction of 
the Model 

bp3= 1.3 x - OP 
P 
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up/ IJ 
Dislocation densities during Harper-Dorn creep as functions of the normalized Peierls stress 

using the P-N formula (Wang 199613). 
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tions will move only under stresses of the order of ~ 1 2 0 .  For hlb  = 1.414, the 
analytical results are based on approximations which are reasonably acceptable. 
For intermediate values of h/b we are concerned with a simple interpolation. We 
therefore concentrate attention on the close-packed metals in which h / b  m &! for a 
partial dislocation. 

The first step in resolving the discrepancies was taken by Benoit et al. (1987). 
Suppose the structure of a dissociated dislocation is rigid, so that the separation of 
the cores of the partial dislocations is fixed. If this separation is an integral multiple 
of the unit distance of advance, the two partials climb Peierls hills together, and the 
effective Peierls stress is, apart form small geometrical factors, equal to that for an 
isolated partial dislocation, and should be given by ( 5 )  or (6). If, on the other hand, 
their separation is a half-integral multiple of the unit distance of advance, the effec- 
tive Peierls stress is zero. The structure is not entirely rigid, and the argument 
assumes that the Peierls stress can alter the separation of the partials by a distance 
much less than b. Benoit et al. then assume that the larger stresses created by point 
defects may alter the separation by distances of order i b .  They assume that in 
general the equilibrium separation is neither an integral nor a half-integral multiple 
of the unit distance of advance. Then, in the absence of point defects, the Peierls 
stress will be of order ( 5 )  or (6), though smaller. The presence of point defects can 
shift the spacing to a half-integral multiple and reduce the stress almost to zero. 

The next advance came in the work of Schoeck (1994), who effectively introduced 
a second-order perturbation treatment. Suppose that the equilibrium separation of 
the partials is a half-integral multiple of the unit distance of advance. Then, when 
one partial dislocation is on the top of a Peierls hill and the other is in a valley, the 
Peierls potential does not influence this separation. When the dislocation advances 
by i b ,  one partial dislocations is on the steepest part of the forward slope of the 
Peierls potential, and one on the steepest part of the backward slope. The coupling 
between the partial dislocations is not rigid, and the partial dislocations each sink 
towards the nearest Peierls valley. In a linear approximation, the reduction in energy 
is the same whether the perturbation causes the separation between the partial dis- 
locations to increase or to decrease. The energy of the configuration is therefore 
modulated as the dislocation moves, the period of the modulation being i b  and 
the amplitude proportional to the square of the Peierls stress for a single partial. 

Schoeck’s result is that the amplitude of the energy modulation AE is related to 
the Peierls energy Ep (crest to trough) per unit length of partial dislocation by 

AE ~p _-  - 88--, 
EP P 

where oP is the Peierls stress for a single partial. 
Neglecting small geometrical factors, we have 

Ep = ~ p b p 2 / ~ ,  

and 

AE = 1 b i / 2 ~ ,  
P 

(7) 

(9) 

where CP is the observed Peierls stress arising from the second-order perturbation. 
The additional factor of 2 appears because the period of the second-order perturba- 
tion is ibp. These equations lead to 
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C = 176&/p. 
P 

The appropriate value of op is given by (5 ) ,  with b replaced by bp, and thus the 
effective Peierls stress is given by 

This shows the same exponential dependence as that of the P-N formula (3) with b 
replaced by bp, although the estimated pre-exponential is large. 

The discrepancies between the different experimental estimates of the Peierls 
stress can now be understood. The Bordoni peak represents a localized and quasi- 
reversible process which can occur on any segment of the dislocation network. It is 
dominated by the segments which are not perturbed by local stresses, and the rele- 
vant Peierls stress is of the order calculated by Huntington for a single partial 
dislocation. If the equilibrium spacing of the partial dislocations is an integral num- 
ber of partial Burgers vectors, the stress is equal to this Huntington value; otherwise, 
it is smaller, but of the same order. 

Small long-range internal stresses will broaden the peak, but not shift it signifi- 
cantly. 

The flow stress, on the other hand, is controlled by the least strongly pinned 
segments. Once these become mobile, plastic deformation spreads by the mitigation 
of kinks. The flow stress is thus of the order given by (1 l), which is of the P-N form. 

Finally, the process of dislocation annihilation which determines the equilibrium 
dislocation density, and so the rate of Harper-Dorn creep, is again one which can be 
initiated in the regions where internal stresses have caused the separation of partial 
dislocations to be a half-integral multiple of the partial Burgers vector. The disloca- 
tion can then spread by kink migration. The effective Peierls stress is again given by 
(1 I), with the same exponent as in the P-N formula. 
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