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Abstract 

The origin of the Peierls model and its relation to that of Frenkel and Kontorova are described. Within this model there are 
three essentially different formulae for the stress required to move a dislocation rigidly through a perfect lattice, associated with 
the names of Peierls, Nabarro and Huntington. There are also three distinct approaches to experimental estimates of the Peierls 
stress, depending on the Bordoni internal friction peak, the flow stress at low temperatures and Harper-Darn creep. The results 
in the case of close-packed metals can be reconciled with the aid of ideas due to Benoit et al. and to Schoeck. The analytical 
elegance of Peierls’s solution depends on the assumption of a sinusoidal law of force across the glide plane. This is physically 
unrealistic. Foreman et al. and others have obtained interesting results using other laws of force, while still operating in the 
framework of the Peierls model. The locking-unlocking model extends the ideas to the case in which the dislocation core has two 
mechanically stable configurations. 0 1997 Elsevier Science S.A. 
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1. The early history 

The idea that dislocations of the crystal lattice pro- 
vided the principal mechanism of crystal plasticity was 
introduced simultaneously by Orowan [l], Polanyi [2] 
and Taylor [3] in 1934. Orowan considered the motion 
of dislocations to be thermally activated, the applied 
stress combining with the internal stress produced by 
the dislocation to reduce the activation energy for 
motion of the dislocation in the direction favoured by 
the applied stress. Taylor assumed that dislocations 
were free to move through the lattice under the influ- 
ence of the applied stress, their mutual elastic interac- 
tions and the obstacles presented by the boundaries 
between crystallites, ‘mosaic blocks.’ Only Polanyi con- 
sidered the stress required to move a dislocation 
through an otherwise perfect lattice. 

We are really concerned with two separate, but re- 
lated, problems. 

First, what is the configuration of the atoms in the 
core of an isolated dislocation in a crystal otherwise 
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free from stress? Fig. 1 shows the result of Peierls’s 
calculations [4] for a simple rectangular lattice. Here, 
we have taken the spacing a between slip planes to be 
different from the unit slip distance, the Burgers vector 
b. The early calculations were made for a simple square 
or cubic lattice with a = b. It seems to have been 
Cottrell [5] who first recognized that the physically 
significant cases with a # b could be treated by a math- 
ematically trivial extension of the theory for the case 
a = b. The second problem is more difficult. As the 
dislocation moves through the lattice, its energy fluctu- 
ates with period b (Fig. 2). It will not be able to move 
unless the applied stress exceeds a value which was 
estimated first by Polanyi [2] and then by Peierls, and is 
usually denoted by op. The estimation of CJ~ may be 
made on two levels of approximation. In the first, 
which can be carried out analytically, the displacement 
field which has been calculated for a dislocation in a 
stress-free lattice is assumed to be displaced rigidly as 
the dislocation moves through the lattice. In the second, 
the configuration of the dislocation core is recalculated 
for increasing values of the applied stress ca until a 
value ga = cp is attained for which no stable configura- 
tion can be found. This calculation can only be carried 
out numerically and is technically difficult. 
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Polanyi’s model of the core of an edge dislocation 
was a simple vernier in which n + 1 = 11 atoms on one 
side of the glide plane face n = 10 atoms on the other 
side (Fig. 3). 

If the material above the glide plane is displaced by 
l/n of an interatomic spacing, the configuration of the 
core is restored, but displaced by one interatomic spac- 
ing. The elementary calculation of the shear strength of 
a perfect lattice (e.g. Frenkel [6]) shows that the lattice 
will yield at a shear strain of order 0.5 under a stress of 
under 0.1-0.2 of the shear modulus. Since, in Polanyi’s 
model, the core configuration of the dislocation is 
restored after a shear of order l/n, the critical shear 
stress should be of the order of l/n of the Frenkel 
value. Polanyi remarked that the observed low shear 
strengths of good metal crystals could only be ex- 
plained if they contained dislocations with cores some 
1000 atoms wide. 

2. Peierls’s model and the Frenkel-Kontorova model 

Peierls’s model combines Frenkel’s model of the in- 
teraction of the atoms on opposite sides of the glide 
plane with the solution for the elastic field of a disloca- 
tion in a continuum. Following Cottrell’s generaliza- 
tion, we shall consider two glide planes separated by a 
distance h, in a rectangular lattice with unit glide dis- 

Fig. 2. Change in the atomic displacements of Fig. 1 as the disloca- 
tion moves through the lattice from one symmetrical configuration to 
another inequivalent symmetrical configuration. 

tance b as in Fig. 1, but with a replaced by h. An edge 
dislocation is travelling in the +x direction, and the 
atoms above the glide plane at a point x’ are displaced 
with respect to those below the glide plane by u(x)). 
Then u( - co) = b, u( + IX) = 0. Between x’ and x’ + 
dx’ there is an infinitesimal dislocation of strength 
(du/dx’)dx’. From the elastic theory, this produces at a 
point x in the glide plane a shear stress 

P du(x’) dx’ 
Pyx = ~ ~(1 -v) dx’ x-x” (1) 

where p is the shear modulus and v is Poisson’s ratio. 
According to the Frenkel model, the shear stress 

across the glide plane at the point x is given by 

..o*oo . a 0 

Fig. 1. Atomic positions in Peierls’s model of the core of a dislocation 
in a simple rectangnlar lattice. 

Equating these, we obtain Peierls’s equation 

s m du(x’) dx’ (1 - v)b . 2x24 

--m dx’ x-x’ 2h = ___ sm b (3) 

where the Cauchy principal value of the integral is 
taken. 

In fact, the elastic solution shows that the dislocation 
causes displacements in the y direction as well as in the 
x direction, and the coefficient on the right of Eq. (3) is 
slightly modified [7,8]. 

The history of this problem and its solution has been 
recorded by the protagonists. Orowan wrote [9] “the 
equations...led to an integral equation which was the 
solution of the problem. It would have taken me days 
or weeks of study to solve it; fortunately I was a daily 
guest in the hospitable house of the brilliant theoretical 
physicist Rudolf Peierls. He solved the equation, if I 
remember well, within a few hours and he also drove 
me to a conference in Bristol University in 1939 where 
I gave a paper, and he gave another [4] on the problem 
he had just solved”. 

Peierls’s version [lo] is similar. He adds “I was 
greatly surprised to find that the simplest function with 
the expected qualitative behaviour turned out to be an 
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exact solution of this integral equation. Orowan says 
that it would have taken him ‘days or weeks’ to study 
this problem, and this may be a generous estimate; in 
any event there is no doubt he could have found the 
solution without difficulty”. 

Here, Peierls was too modest. He not only found 
“the size of a dislocation”, as the title of his Bristol 
paper implies, but also solved the much more difficult 
problem of determining the stress required to move the 
dislocation, although with the simplifying assumption 
that the displacement field moved rigidly through the 
lattice. 

All of this was happening on the brink of the second 
World War. Peierls was busy establishing the feasibility 
of a nuclear bomb, and, by the time his paper was 
published, we were all absorbed in matters other than 
the theory of crystal dislocations. It was not until the 
war was over that I attempted to reproduce Peierls’s 
results (which he gave without proof) and to extend 
them to the case of a pair of dislocations of opposite 
sign lying on the same glide plane and in unstable 
equilibrium under their mutual attraction and the ac- 
tion of an external stress. There seemed to be a dis- 
crepancy of a factor of 2 between my formulae and 
Peierls’s. I was not happy about my derivation, which 
involved the use of infinitesimals and singular integrals 
which my mathematics teachers had taught me to 
avoid, so I travelled from Bristol to Birmingham to 
consult Peierls. He guided me through his calculation 
and I went back to Bristol to sort things out. The factor 
of 2 was still there and my results [ 1 l] were published in 
1947. The results, in the present notation, were 

where 

(= h/2(1 - U), 

and 

(5) 

Fig. 3. Polanyi’s model of a dislocation core as a simple vernier [2]. 

Peierls’s result, with a somewhat different coefficient, 
had an exponential factor exp( - 8x(/b). 

Orowan commented “the width calculated by 
Nabarro amounted to a few atomic spacings while 
Peierls obtained an order of magnitude of thousands of 
spacings... Peierls checked it and found that a factor of 
271 was accidentally omitted in an exponent, which 
amounted to a factor of about 1000 in the result”. 
Peierls’s later comment was “Orowan mentions a factor 
271, but in the interest of historical accuracy, I must 
point out that this is an exaggeration. Actually, this 
error occurs in a large exponent, so that even the factor 
2 changes the magnitude of the critical stress by several 
orders of magnitude”. It is worth while to point out 
that the width of the dislocation was in error by a 
factor of 2, while the Peierls stress was of the wrong 
order of magnitude. This emphasizes the great sensitiv- 
ity of estimates of the Peierls stress. 

As is well known, the calculation is barely self-consis- 
tent even for the largest practical values of /z/b. The 
basic Eq. (3) is derived on the assumption that the core 
of the dislocation is many atoms wide, while the solu- 
tion shows that the core is only a few atoms wide. Since 
Peierls’s original estimate of the critical stress was 
about lop7 p, he did not think that it was worth while 
to refine the calculation. 

The one-dimensional model of Frenkel and Kon- 
torova [12214] reproduces the topological properties of 
dislocations and, because of its relative mathematical 
simplicity, is often used to illustrate the properties of 
dislocations. It consists of a chain of atoms linked by 
nearest-neighbour harmonic forces, and interacting 
with a substrate with a potential which is a sinusoidal 
function of position (Fig. 4). The period of the interac- 
tion potential may or may not be equal to the equi- 
librium separation of the atoms in the chain. If n f 1 
atoms occupy n potential troughs, we have the ana- 
logue of a positive or a negative edge dislocation. The 
analogy is sometimes useful, but it can be misleading. 
Peierls wrote to me on 7 August 1989 saying “I am 
surprised that people are still playing with the Frenkel- 
Kontorova model, which is a little too simple-now 
unnecessarily simple.” Th e essential difference between 
the Peierls model and the Frenkel-Kontorova model is 
that, in the former, the force between two well-sepa- 
rated dislocations varies inversely as the distance be- 
tween them, while, in the latter, the force decays 
exponentially with the distance. There is a case in which 
the two models lead to contrary predictions, and, as we 
shall see, the predictions are each correct for the case in 
which the model applies. We consider a sample of wide 
but finite extent in the glide direction. The equilibrium 
lattice parameters above and below the glide plane are 
different, but the lattices are coherent. Elastic stresses 
are present, which could be removed by an array of 
misfit dislocations. Following Olson and Cohen [15], we 
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Fig. 4. (a) The relative displacement u of atoms above and below the glide plane from their position of maximum displacement in the core of the 
dislocation as a function of distance x along the glide plane. (b) The corresponding shear stress distributions. (c) The corresponding 
stress-displacement curves (after Foreman et al. [17].) 

imagine that these misfit dislocations are present, but 
are compensated by an array of anti-misfit ‘coherency’ 
dislocations. If these coherency dislocations run out of 
the glide plane under their mutual repulsion, co- 
herency is destroyed and the strain energy is released. 
The outermost coherency dislocations are held in by 
the Peierls stress. If we use the Peierls model, the 
outward force exerted on an outermost coherency dis- 
location by all the other coherency dislocations is 
given by the sum of a series of the form 1 + $ + i + 
f + . . ., and diverges logarithmically as the width of 
the glide plane increases. The outward force will al- 
ways exceed the Peierls force and coherency will al- 
ways be destroyed. However, if we use the 
Frenkel-Kontorova model, the series is of the form 
R + g2 + a3 + (a < 1) and converges. The total out- 
ward force on an outermost dislocation may or may 
not exceed the Peierls force and coherency may or 
may not be maintained. In fact, the Frenkel-Kon- 
torova model is appropriate to the case of a thin 
epitaxial layer, while the Peierls model is appropriate 
to the case of a thick deposit and their predictions are 
each correct in the appropriate case. 

3. The contributions of Huntington 

Peierls’s model shows a surprising property. The two 
symmetrical configurations of the dislocation core 
shown in Fig. 2 (a) and (c) have the same energy. If the 
energy of unit length of the dislocation when its core is 
at x = [ is expressed as a Fourier series 

U(()= u,+ u, cos(27rr/b)+ U,COS(4Z~/b) 

+ u, cos(67c[/b) + . ..) (7) 

then the coefficient U, vanishes. The mathematical 
structure of the analysis shows that 

U,, cx exp( - 2nn[/b), (8) 

so that the unexpected vanishing of U, implies that the 
Peierls stress is much smaller than it would be if the 
stress had the expected period of b rather than the 
calculated period of ib. 

Huntington [16] first showed that the equality of the 
energies of the two symmetrical configurations arose 
from an accidental symmetry of the model. If the model 
of a rectangular lattice is replaced by the physically 
more realistic one of a distorted hexagonal lattice, 
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Table 1 

a 1 2 3 4 5 10 cc 

(1 -u)w/d 1.000 1.255 1.653 2.076 2.507 4.697 0.422a 
(2~i~)P,,, 1.000 0.787 0.594 0.471 0.389 0.207 2.202/a 
27-41 - ~h,,axlGd 1.000 0.988 0.982 0.978 0.975 0.973 0.973 

The width w of a dislocation normalized to the width in Peierls’s model, and the maximum shear stress pmax normalized to that in Peierls’s model 
as functions of the parameter a, showing that their product is almost independent of a (after Foreman et al. [17]). 

representing the close packing of parallel ellipses in a 
plane, this symmetry is destroyed, the energy has the 
expected period b and the Peierls stress is of order 

0~ = & exp( - F), 

much greater than the value of Eq. (6). 
Huntington then made a more fundamental advance. 

In Peierls’s calculation, the interaction energy across the 
glide plane is calculated by summing the contributions 
from atoms lying on both sides of the glide plane in the 
positions they had before the final displacements which 
establish equilibrium across the glide plane. Since these 
displacements can be of the order $b, it is physically more 
reasonable to estimate the contribution of each atom if 
it is placed in its final displaced position rather than in 
its position before the final displacement. The calculation 
then becomes mathematically ugly, but it leads to the 
physically satisfactory result that the Peierls stress is 
given by Eq. (9) whether the equilibrium lattice is 
rectangular or distorted hexagonal. 

4. Beyond the sinusoidal force law 

Foreman et al. [ 171 showed that the Peierls model could 
be solved for a specific class of interaction potentials 
across the glide plane. Their method consists essentially 
in choosing a distribution p(x) of dislocation density 
along the glide plane which is characterized by a parame- 
ter a. Then the displacement function u(x) is determined 
by direct integration, while the shear stressp,, (x) follows 
from Eq. (1). The distribution p(x) is chosen so that the 
total displacement is b, while the relation betweeng,, (x) 
and du(x)/dx is given by Hooke’s Law when 1x1 is large. 
The distribution when a = 1 corresponds to Peierls’s 
model with a sinusoidal law of force, while larger values 
of a correspond to laws of force in which the stress 
initially increases with displacement according to 
Hooke’s Law, but then rises more slowly than in the 
sinusoidal approximation. Fig. 4(a-c) show respectively, 
the relative displacements of the atoms facing one 
another across the glide plane from their positions of 
unstable equilibrium, as functions of the distance from 
the core of the dislocation (d= b), the corresponding 
shear stresses and the stress as a function of the displace- 
ment. An important result (Table 1) is that the width w 

of the core is very closely inversely proportional to the 
ratio of the maximum shear stress pmax across the glide 
plane to the shear modulus. The authors state that “this 
relation has been found to hold approximately for several 
families of dislocations of the same type as that described 
here.” The dominant influence of the ratio p/p,,, on the 
properties of the dislocation has been recognized by 
several authors [18,19], but it has proved difficult to 
incorporate this idea into a coherent theory. 

The calculated Peierls stress decreases very rapidly 
with increasing width of the dislocation (Table 2). As 
Sanders [20] seems to have been the first to notice, the 
dependence of the Peierls stress on the dislocation width 
is different in Cottrell’s modification of Peierls’s model 
and in the modification by Foreman et al. In Cottrell’s 
modification the dislocation core is widened by increas- 
ing the separation of the atomic layers facing one another 
across the glide plane while retaining the sinusoidal law 
of force and the Peierls stress follows Eq. (6). In the 
model of Foreman et al. the dislocation core is widened 
by softening the law of force while retaining a separation 
between atomic layers equal to the Burgers vector and 
the Peierls stress varies roughly as exp( - 47~/d). Since 
w is defined as the full width to half height of the 
dislocation density distribution, while c is the half width 
to half height and d is taken equal to b, this corresponds 
to exp( - 87c[/b). 

LejEek [21] pointed out that the results of the calcula- 
tion of Foreman et al. retain a formal significance when 
the parameter a is less than unity. The model tends 
towards one of snapping bonds, and the dislocation 
density becomes two-humped when a -c i. However, the 
core is then very narrow and the assumptions of the 
Peierls model are no longer meaningful. 

Table 2 

a 1 2 4 10 

u= l/3 w 1.5d 1.9d 3.ld 7.ld 
T 2 x 10W4G 5 x 10-7G 2 x 10V14G 4 x lo-=G 

v= l/4 w 1.3d 1.7d 2.8d 6.3d 
T 6 x 10V4G 3 x 10-6G 1 x IO-‘*G 1 x lo-=G 

The width w of a dislocation in units of the spacing d between glide 
planes and the corresponding Peierls stress T as a function of the 
parameter a, for two values of Poisson’s ratio u (after Foreman et al. 

V71). 
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Fig. 5. Peierls stress as a function of the quality y ’ = p/p,,, in the 
model of Sanders [20]. 

The calculations of Foreman et al. also remove an 
interesting anomaly. The elastic solution for a screw 
dislocation in an isotropic continuum has rotational 
symmetry. If Peierls’s model is applied to a screw 
dislocation which is allowed to spread along a specified 
glide plane, the rotational symmetry of the problem is 
destroyed. Surprisingly, the solution still displays rota- 
tional symmetry. This symmetry is removed as soon as 
the parameter a differs from unity. 

Sanders’s own model goes beyond that of Peierls in 
that the matrix itself is treated atomistically, though on 
the very simple model of Rosenstock and Newell, for 
which displacements parallel and perpendicular to the 
slide plane are uncoupled, but both central and non- 
central linear forces are considered. The law of force 
across the glide plane is piecewise linear. While the 
overall dependence of the Peierls stress is again expo- 
nential, though only as exp( - 2[/b), there is a strong 
periodic variation in gp as a parameter is varied to vary 
the dislocation width. This is illustrated in Fig. 5. In 
Fig. 5, the ratio y- ’ of the shear modulus to the 
maximum shear stress across the glide plane prnax is 
according to the calculations of Foreman et al. and of 
Sanders, a close measure of the width of the dislocation 
core. The Peierls stress fluctuates by about a factor of 
10 in any cycle. Similar fluctuations were found in 
various other models [22-251. 

Some understanding of the reason for the minima of 
the Peierls stress for certain values of the width of the 
dislocation core may be obtained [26] from a consider- 
ation of the work of Kratochvil and Indenbom [22]. 
Their model was the linear chain of Frenkel and Kon- 
torova, modified to show piecewise linear forces. Fig. 6 
shows the potential, the force and the positions of the 
atoms in a dislocation which is moving to the right. As 
long as no atom crosses a kink in the force-distance 
curve, the response of the system to the applied stress is 
strictly linear. Where, as shown, atom no. 0 crosses a 
kink, the force exerted on it by the substrate suddenly 
changes from one which increases numerically with 
increasing displacement to the right to one which de- 
creases numerically. The configuration undergoes a 
sudden rearrangement, which dissipates energy. How- 
ever, if the dislocation core is slightly narrower, so that 
atom no. - 2 crosses an upward spike just as atom no. 
0 crosses a downward spike, the response remains 
linear. 

5. Dislocations between close-packed planes 

A dislocation with Burgers vector 

b = fa[liO] (10) 

lying on a close packed plane (111) in a face-centred 
cubic lattice dissociates into partial dislocations ac- 
counting to the scheme 

$z[liO] =&[21i]+ stackingfault+~a[l~1](11l) (11) 

The Burgers vectors of the two partial dislocations 
make angles of &- 30” with the resultant slip direction, 
and we shall neglect the difference between cos30D = 
0.866 and unity. A similar dissociation occurs on the 
basal plane of hexagonal close-packed crystals. The 
distance d between the cores of the two partial disloca- 

Fig. 6. Location of the atoms in the potential and force fields in the 
core of a dislocation in the model of Kratochvil and Indenbom [22]. 
Atom no. 0 is about to meet a discontinuity in the dependence of 
force on displacement. 
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tions is often so large that they may be regarded as 
separate, though coupled, entities. The equilibrium sep- 
aration is governed by the balance between the force of 
repulsion between the cores, which varies inversely as 
their separation and the surface tension of the stacking 
fault, which is independent of the separation. The Burg- 
ers vector of each partial dislocation has magnitude 
b’ = a/J6 and a separation between glide planes of 
h = a/,/3, giving the unusually high value h/b’ = J2, 
for which the approximations of the Peierls model 
should be tolerable. 

We consider first the situation in which the configu- 
ration represented by Eq. (11) moves rigidly through 
the lattice. Then, if the equilibrium separation of the 
partial dislocations is an integral or half integral multi- 
ple of $u (1 lo), so that the two partials reach troughs 
or crests of the Peierls potential simultaneously, the 
Peierls stress required to move the configuration is 
simply the stress required to move an isolated partial 
dislocation. However, as was pointed out by Benoit et 
al. [27], if the two partials are rigidly separated by i or 
z times &a( 1 lo), the Peierls forces on them are always 
equal and opposite, and the applied stress required to 
move the rigid configuration vanishes. 

More interesting problems arise when we recognize 
that the separation of the partials is not rigidly deter- 
mined, but may be altered if the two partials lie along 
inequivalent lines in the Peierls potential. If the Peierls 
stress is large and the coupling of the partials is weak, 
the Peierls stress can alter the spacing between the 
partials by i of $u( 110) or more and the partials move 
independently through the lattice. Schoeck [28] consid- 
ered the limiting case in which the equilibrium spacing 
is i or j of iu (1 lo), so that the first-order perturbation 
of the energy of a rigid dissociated dislocation by its 
interaction with the lattice potential is independent of 
its position. When one partial is on top of a Peierls hill 
and one is at the bottom of a trough, the lattice exerts 
no force on either. But when one partial is moving up 
a hill and the other is moving down, the lattice exerts 
opposite forces on them and their separation is either 
increased or decreased. This relaxation reduces the 
energy, so that the total energy fluctuates between 
top-bottom and middle-middle configurations. For 
weak Peierls stresses, the distortion of the configuration 
of the dissociated dislocation is proportional to the 
Peierls stress, the energy relaxation is proportional to 
the square of the Peierls stress, and so the minimum 
observable flow stress is proportional to the square of 
the Peierls stress in a single partial. 

It is not easy to modify the Peierls model to treat 
dislocations in close-packed structures, because their 
dissociation involves coupled displacements in two di- 
rections. However, a simple modification of the model 
of Foreman, Jaswon and Wood considers a dislocation 
entirely of edge character lying between two planes 

which have a mechanically stable (thermodynamically 
metastable) stacking position midway between each two 
thermodynamically stable stacking positions. Fig. 7(a) 
shows the dislocation density along the glide plane as a 
function of $ for various values of a parameter a. Here 
x is proportional to a tan I++ and the dislocation in this 
model divides into two distinct partials separated by a 
distance proportional to a as b becomes large. Fig. 7(b) 
shows the normalized stress across the glide plane as a 
function of (I/, while Fig. 7(c) shows this normalized 
stress as a function of the relative displacement v($) 
from the metastable configuration, verifying that the 
model obeys Hooke’s Law for displacements which are 
close to odd multiples of ib. The calculation of the 
Peierls stress in this model is in progress. 

6. Comparison with experiment 

There are three main experimental methods of esti- 
mating the Peierls stress. We give here only a brief 
summary of them and of the comparison of their results 
with theory, referring the reader to [29] for references 
and more details. 

The first method is the analysis of the Bordoni 
internal friction peaks. These peaks are caused by the 
generation and annihilation of double-kink pairs under 
the combined influence of the applied stress and ther- 
mal activation. The values of a,/,~ found for copper 
and aluminium are 1.2 x 10 ~ 3 and 8 x 10 - 3, respec- 
tively, in general agreement with Huntington’s calcula- 
tions. Since the Bordoni mechanism samples the whole 
dislocation array, this is to be expected. 

An interesting effect occurs (Caillard et al. [30]) if the 
applied stress is constant rather than alternating. As 
kink pairs are formed and migrate along the disloca- 
tion, the dislocation drifts forward under the influence 
of the applied stress. Since the number of sites at which 
kink pairs can be nucleated is proportional to the 
length of the dislocation segment, the drift velocity of a 
dislocation segment is proportional to its length. 

The second method is the measurement of the flow 
stress of a good single crystal at a low temperature, 
where the thermal nucleation of double kinks can be 
neglected. This has been done for a range of materials, 
from the hard and brittle to soft close-packed metals. 
The results assembled by Ohsawa et al. [31] are shown 
in Fig. 8 to fit closely the Peierls-Nabarro line. Here, 
the partial dislocations in the soft metals are assumed 
to move independently. The physical model for these 
soft metals is that they contain internal stresses suffi- 
cient to cause the partial dislocations in some ‘soft’ 
regions to lie i or 2 of iu (110) apart, so that Schoeck’s 
argument applies and these dislocations will move un- 
der a stress which contains the square of Huntington’s 
exponential factor; this square is the PeierlssNabarro 
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Fig. 7. (a) The dislocation density in a modification of the model of Foreman et al. [17] for different values of the parameter a. The distance along 
the glide plane is proportional to a tan I/I. (b) The normalized stress as a function of position. (c) The normalized stress as a function of the relative 
displacement of the atomic surfaces above and below the glide plane, measured from the position of maximum misfit in the core of the dislocation, 
Hooke’s Law is obeyed for small displacements from the stable equilibrium position. 

factor. Once these dislocations have escaped from their 
Peierls troughs, they act as sources for extensive plastic 
flow. The calculation fails for dislocations of intermedi- 
ate width, but for hard crystals all models give a flow 
stress of order p/30 as is observed, while the rest of the 
curve is determined adequately by the values for small 
and large h/b and the slope for large h/b. 

The third method is the measurement of the rate of 
Harper-Dorn creep, or, equivalently, of the dislocation 
density during Harper-Dorn creep (Fig. 9). The data 
assembled by Wang [32] (Fig. 8) are again fitted to a 
(slightly modified) Peierls-Nabarro line. Again the ar- 
gument is that the annihilation of an edge dipole will be 
initiated under the conditions considered by Schoeck 

and will then spread until the whole dipole has been 
annihilated. 

7. The locking-unlocking mechanism 

Couret, Caillard and their colleagues [33,34] have 
developed an extension of the Peierls model which they 
call the locking-unlocking mechanism. Until now, we 
have considered the structure of the core of the disloca- 
tion to be rigid as it moves through the lattice, or, in 
atomistic calculations, to be modified slightly with pe- 
riod b as the dislocation moves through the lattice. In 
the locking-unlocking mechanism, the dislocation has 
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Fig. 8. The observed flow stresses of a wide range of materials show 
the dependence on the ratio h/b of interplanar spacing to Burgers 
vector predicted by the Peierls-Nabarro formula (from Ohsawa et al. 

[311). 

an internal coordinate i. In the state of lowest energy 
when the core is at x = 0, we have i= 0, and the 
configuration is sessile. Specifically, we may think of it 
as dissociated off the glide plane. To move it through 
the lattice in this configuration requires a large Peierls 
energy U,, (Fig. 10) with a corresponding Peierls stress 
comparable with the theoretical strength of the perfect 
crystal. There is also, at x = 0, a glissile configuration 
with i = 1 and energy exceeding that of the sessile 
configuration by U,,. This glissile configuration can 
glide through the lattice with a small Peierls energy Upp, 
and a correspondingly small Peierls stress. If we assume 

10-2 

/ I n Si0, 
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Fig. 9. The observed dislocation densities during Harper-Dom creep 
of a wide range of materials fit closely to those predicted by a slight 
modification of the PeierlssNabarro formula. 
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Fig. 10. Traces of the potential energy curve of a dislocation which 
moves by the locking-unlocking mechanism. The core of the disloca- 
tion moves in the x direction and its energy is periodic with period b. 
The core has two configurations of mechanical stability, represented 
by the reaction coordinate i. When i= 0, the core has its lowest 
energy at x = 0, but the Peierls energy at x = f has the high value U,,. 
When i = 1, the core energy at x = 0 is U,,, and this increases by only 
a small amount Upg as x increases to f. The high-energy glissile state 
with i = 1 can revert to the low-energy sessile state with i = 0 only by 
overcoming an activation energy for locking UaS. 

that the unlocked or locked configuration spreads 
rapidly along the length of a dislocation segment, the 
segments will remain locked for a finite time, run 
forward rapidly, and again become locked. For seg- 
ments of a given length, the probability that a locked 
segment will remain locked decreases exponentially 
with time. For an unlocked segment, the probability of 
a jerky forward jump lasting a time t decreases expo- 
nentially with t. If the stress is constant the velocity is 
constant, and the probability that a single jerky ad- 
vance will cover a distance greater than 1 decreases 
exponentially with 1. Both of these predictions are 
verified experimentally. 

8. Conclusions 

The Peierls model has great heuristic value. 
The Peierls-Nabarro formulation has been super- 

seded by the Huntington formulation. 
The result of the calculation is so sensitive to the 

details of the model that its value is only heuristic. 
For dislocations lying between close-packed planes, 

the argument of Benoit et al. shows that the stress 
required to move a dislocation segment may be reduced 
almost to zero. 

The arguments show that this reduced value contains 
an exponential dependence on the width of a partial 
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dislocation which has twice the exponent of that for the 
flow stress of an isolated partial, converting the Hunt- 
ington expression to the Peierls-Nabarro expression. 

Some experimental techniques probe the average 
stress required to move a dislocation segment, while 
others probe the stress required to move the most 
weakly anchored segments. 

Bearing these considerations in mind, the experimen- 
tal theoretical estimates are reasonably compatible. 

The locking-unlocking model is an extension of the 
Peierls model, in which the dislocation core has distinct 
low-energy sessile and high-energy glissile mechanically 
stable configurations. 
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