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Abstract
The analysis of thermal activation under shear stress in three- and even

two-dimensional models presents unresolved problems. The analysis of one-
dimensional models presented here may illuminate the study of more realistic
models. For the model in which as many dislocations are poised for backward
jumps as for forward jumps, the experimental activation volume V ye(�a) under
applied stresses close to �a is different from the true activation volume V(�)
evaluated at �¼ �a. The relations between the two are developed. A model is
then discussed in which fewer dislocations are available for backward than for
forward jumps. Finally, the appropriateness of the hyperbolic sine approximation
for moderately low stresses is defined and shown to be very limited.

} 1. Introduction
A formal general theory of thermal activation of deformation by the motion of

dislocations under a shear stress was presented for example by Kocks et al. (1975). In
practice the process is usually three dimensional, but the analysis in three dimensions
is still intractable. There has been more success in a two-dimensional model (Kocks
1984), with an analysis that relates closely to the experimental observations.
Nevertheless, the difficulties of even a two-dimensional model are apparent. It is
not completely analytic; an important parameter, the ratio of the average spacing
of ‘hard’ groups of point obstacles to the average spacing of these point obstacles is
derived from a computer simulation. The simulation itself is hardly realistic, since
(Labusch 1970) the finite widths of real obstacles to dislocation motion usually lead
to a behaviour substantially different from that in the presence of point obstacles.
While a one-dimensional model is physically unrealistic, its behaviour can be studied
with some precision and may indicate some considerations which will be relevant in
more realistic models.
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In } 2 the conventional theory of the activation volume, or, in one dimension,
the activation distance, is outlined. This analysis holds when dislocations are driven
forwards over obstacles by the applied stress, and backward jumps may be neglected.
This leads to the idea of the experimental activation volume defined by equation (6).
In } 3 the conventional theory at low stresses, where backward jumps are also con-
sidered, is developed. In general, the true activation volume depends on the stress �
as V(�). The experimental activation volume V ye(�a) measured in the neighbourhood
of an applied stress �a then differs from V(�a), as shown in equation (12). In
principle, V(�a) may be derived from a series of measurements of Vye(�) between
�¼ 0 and �¼ �a by means of equation (21).

The conventional model of dislocations jumping forwards and backwards over
isolated obstacles is not physically realistic. There is no steady state. A dislocation
which has jumped forward over its obstacle runs away to infinity, and there are
no dislocations poised to jump backwards. A more realistic model pictures a
periodic sequence of isolated obstacles, as envisaged by Evans and Rawlings
(1969). In a quasistatic steady state, the same thermal energy which activates
dislocations over obstacles ensures that some dislocations will be poised for back-
ward jumps. This situation is analysed in } 4. Finally, } 5 confirms the statement
of Schoeck (1965) that ‘the indiscriminate use of a sinh function to take account
of the back fluctuations . . . is not . . . justified’.

} 2. The experimental activation volume

As Cahn and Nabarro (2001) have shown, the activation volume is actually a
tensor quantity Vy

ij but, if the applied stress has only the two components �ij¼ �ji,
the suffices i and j may be dropped. We consider only the case of a system which is
described by a single reaction coordinate x. The potential energy of the system U(x)
has a hump at x¼ 0 (figure 1), and the system experiences a force

FðxÞ ¼
dUðxÞ

dx
ð1Þ

opposing its forward motion. This force has a maximum value Fm, and a force Fa
is applied to the system. It is assumed that F(x) is negligibly small when |x|> xm.
It is convenient to shift the origin of coordinates so that the new coordinate X is
zero where dF(X )/dX¼ 0. Then the system is in stable equilibrium at X¼X�(Fa)
and in unstable equilibrium at the saddle point X¼Xþ(Fa).

We define the activation distance Ly(Fa) by

Ly
ðFaÞ ¼ XþðFaÞ � XðFaÞ, ð2Þ

and the activation enthalpy for a forward jump is

Hy
þðFaÞ ¼

ðFm
Fa

Ly
ðFaÞdFa: ð3Þ

For a three-dimensional problem described by a single reaction coordinate, Ly
þ

is replaced by an activation volume V y. In the case of a dislocation segment
approaching an obstacle on its glide plane, V y is the product of the magnitude b
of the Burgers vector and the area of the glide plane swept by the segment during the

3048 F. R. N. Nabarro
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activation process, while Fa is the product of b, the resolved shear stress �a and the
length ‘ of the dislocation segment. Then

Hy
þð�aÞ ¼

ð�m
�a

Vy
þð�Þ d�: ð4Þ

The rate _"" of plastic deformation as a result of the activation of forward jumps
may be written

_""ð�aÞ ¼ _""0 exp
�Hy

þð�aÞ

kT

 !
: ð5Þ

One-dimensional models of thermal activation under shear stress 3049

Figure 1. In the upper half of the figure, the energy U is plotted as a function of the
coordinate x, with x¼ 0 at the position of maximum energy. In the lower part, the
opposing force F is plotted as a function of the coordinate X, with X¼ 0 at the position
of maximum opposing force.
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We define the experimental activation volume V ye by

Vye
ð�aÞ ¼ kT

@ ln _""

@�a

� �
T

: ð6Þ

If _""0 depends negligibly on �a, this leads to

Vye
ð�aÞ ¼ Vy

þð�aÞ: ð7Þ

} 3. Behaviour at low stresses

Equation (5) cannot hold at low applied stresses, whatever physical model is
considered. This would imply a steady directed process in the absence of an applied
stress, contrary to the principle of detailed balance, and a forward strain rate under
a small backward stress, contrary to the laws of thermodynamics. The theory
must incorporate the possibility that backward jumps will occur as well as forward
jumps. If we assume the systems to be symmetrical, and that backward and forward
jumps can be treated on the same basis, the rate of strain is given by

_""

_""0
¼ exp

�Hy
þð�aÞ

kT

 !
� exp

�Hy
�ð�aÞ

kT

 !
ð8Þ

where

Hy
�ð�aÞ ¼

ð�a
��m

Vð�Þ d�: ð9Þ

The symmetry of the potential V(�) allows Hy
þ and Hy

� to be written in the forms

Hy
þð�aÞ ¼

ð�m
0

Vð�Þ d� �

ð�a
0

Vð�Þd� ð10 aÞ

and

Hy
�ð�aÞ ¼

ð�m
0

Vð�Þ d� þ

ð�a
0

Vð�Þ d�: ð10 bÞ

It follows that

_""

_""0
exp

ð�m
0

Vð�Þ

kT
d�

� �
¼ 2 sinh

ð�a
0

Vð�Þ

kT
d�

� �
: ð11Þ

As was made clear by Argon (1996), equation (7) holds only when �a is so close to �m
that the frequency of backward jumps can be neglected in comparison with that of
forward jumps. When this is not the case, equation (7) is replaced by

Vye
ð�aÞ ¼ Vð�aÞ coth

ð�a
0

Vð�Þ

kT
d�

� �
: ð12Þ

If V y(�) tends to a constant value V y(0) as �a tends to zero, the integral in equation
(12) tends to �aV

y(0)/kT, and equation (8) becomes

Vye
ð�aÞ ¼

kT

�a
: ð13Þ

3050 F. R. N. Nabarro
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Experimental observations often fit a power-law relationship

_"" / �na : ð14Þ

Except for the cases when n¼ 1 and n¼ 3, there are no simple theoretical models
for this formula. If equation (6) is applied to equation (14), the result is

Vye
ð�aÞ ¼

nkT

�a
: ð15Þ

This result has two unexpected features. Firstly, Vye tends to infinity as �a
tends to zero. This behaviour, although incompatible with the initial assumption
that V y tends to the finite value V y(0), is not unrealistic. Figure 1 illustrates
an obstacle with a finite range xn. A real isolated defect will have a small effect
even at very large distances and, when the applied stress is very small, the stable
and unstable equilibrium values of the reaction coordinate will be very large.
In practice, the dislocation segment or other lattice displacement will, when the
reaction coordinate is large, interact more strongly with other lattice defects
than with the obstacle that is about to be overcome. The analysis above does not
consider such many-centre potential fields. Secondly, V ye depends only on �a,
and is independent of V y(0). This implies the extraordinary result that the experi-
mental activation volume for any system at low stresses does not depend on the
nature of the system under observation. It is less surprising that V y(0) cannot be
determined by stress-dip experiments in the Newtonian range. The difference
between the rates of forward and backward jumps is proportional to V y(0)�a,
but the observed strain rate _""ð�aÞ is multiplied by the unknown factor _""0.

In the general case, it is possible to invert equation (12) and to express the
true activation volume V }(�) in terms of the experimental activation volume V }e(�).

If we write

Ze
ð�aÞ ¼

ð�a
0

Vye
ð�aÞ

kT
d� ð16Þ

and

Zð�aÞ ¼

ð�a
0

Vð�Þ

kT
d�, ð17Þ

equation (12) becomes

dZe

d�a
¼

dZ

d�a
cothZ, ð18Þ

which integrates to give

Ze
¼ ln ðsinhZÞ ð19Þ

or

Z ¼ arcsinh ðexpZe
Þ: ð20Þ

One-dimensional models of thermal activation under shear stress 3051
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Hence

Vð�aÞ ¼
kTdZ

d�a

¼ kT
d

d�a
arcsinh exp

ð�a
0

Vye
ð�Þ

kT
d�

 !" #( )
:

ð21Þ

} 4. A one-dimensional statistical model

The analysis of } 2 is based on the implicit assumption that each particle or
dislocation segment poised to jump in the direction of the applied force or stress
is matched by another, poised to jump in the opposite direction. This will not be the
case if the activation events are isolated. Once a particle has jumped over an obstacle
in the direction of the applied force, it will move indefinitely in the direction of the
force, acquiring an unbounded negative enthalpy. It will never return to the position
from which it can make a backward jump. However, if it comes to rest against
another obstacle at a finite distance, it will have a finite negative enthalpy, and
thermal activation may return it to the edge of the initial obstacle. We analyse the
behaviour of a one-dimensional array of non-interacting particles moving under a
force Fa in a potential field in which isolated obstacles of width Ly(0) and activation
enthalpy under zero force Hy(0) are separated by distances L � Ly

ð0Þ. The analysis
for the case of dislocation segments is similar, provided that they are so dilute that
their interactions may be neglected.

The potential energy of a particle at a distance X forward of an obstacle is – FaX.
At a temperature T, the density of particles at X is proportional to exp (FaX/kT ).
If the mean linear density of particles is �, independent of Fa, then the density �(X )
at X is

�ðXÞ ¼
FaL�
kT

exp ðFaX=kTÞ

exp ðFaL=kTÞ � 1
: ð22Þ

In particular,

� � 1
2
Ly

ð0Þ
h i

	
FaL�
kT

exp ðFaL=kTÞ
exp ðFaL=kTÞ � 1

ð23Þ

and

� þ 1
2
Ly

ð0Þ
h i

	
FaL�
kT

1

exp ðF0L=kTÞ � 1
: ð24Þ

Equation (8) is now replaced by

_""

_""0
¼

FaL�
kT ½exp ðFaL=kTÞ � 1

exp
FaL�Hy

þðFaÞ

kT

 !
� exp

�Hy
�ðF0Þ

kT

 !" #
ð25Þ

where equations (10 a) and (10 b) are replaced by

Hy
þðFaÞ ¼ Hy

�ð0Þ �

ðFa
0

Ly
ðFaÞ dFa ð26 aÞ

3052 F. R. N. Nabarro
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and

Hy
�ðFaÞ ¼ Hy

ð0Þ þ

ðFa
0

Ly
ðFaÞ dFa: ð26 bÞ

Then equation (11) is replaced by

_""

_""0
exp

Hy
ð0Þ

kT

 !
¼ 2�

sinh FaLþ 2
Ð Fa
0 L

y
ðFaÞ dFa

h i.
2kT

n o
ð2kT=FaLÞ sinh ðFaL=2kTÞ

: ð27Þ

Equation (27) bridges the gap from small to large Fa. We note thatðFa
0

Ly
ðFaÞ dFa <

ðFa
0

Ly
ð0Þ dFa ¼ Ly

ð0ÞFa � LFa: ð28Þ

The formula simplifies in certain ranges of Fa. If FaL/2kT is small, it becomes

_""

_""0
exp

Hy
ð0Þ

kT

 !
¼
FaL�
kT

, ð29Þ

with Newtonian flow. The same result holds if FaL/2kT is neither large nor small,
and the integral in equation (28) is small.

If FaL/2kT is large, equation (27) becomes

_""

_""0
exp

Hy
ð0Þ

kT

 !
¼
FaL�
kT

exp

Ð Fa
0 L

y
ðFaÞ dFa

kT

 !
ð30Þ

The additional proportionality to Fa arises because the applied force compresses the
gas of particles against the obstacles. The corresponding experimental activation
distance is

Lye
ðFaÞ ¼ Ly

ðFaÞ þ
kT

Fa
: ð31Þ

Since activation processes are usually observed under conditions where FaL
y
ðFaÞ 	

30kT , the second term in equation (31) represents only a small correction.

} 5. The appropriateness of the hyperbolic sine approximation

At very low stresses the strain rate _"" is expected to be linearly proportional to the
applied stress �a. It is often suggested that at somewhat higher stresses an expression
of the form

_"" ¼ _""0 sinh
�a
�

� �
ð32Þ

will be appropriate.
Some analysis of the word ‘appropriate’ is necessary. Equation (32) may be

expanded as

_"" ¼ _""0
�a
�
þ
1

6
_""0

�a
�

� �3
þ

1

120
_""
�a
�

� �5
þ � � � : ð33Þ

One-dimensional models of thermal activation under shear stress 3053
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The experimental observations may be expanded in the form

_"" ¼ a1�a þ a3�
3
a þ a5�

5
a þ � � � : ð34Þ

Comparison of equations (33) and (34) requires that

a1 ¼
_""0
�
,

a3 ¼
_""0
6�3

and

a5 ¼
_""0

120�5
, ð35Þ

so that

a1a5
a23

¼
3

10
: ð36Þ

The hyperbolic sine approximation is appropriate if this relation is satisfied.
To apply this analysis to equation (11), we note that, for a symmetrical potential,

V(�) may be expanded at a fixed temperature T in the form

Vð�Þ ¼ c0kT þ 3c2kT�
2
þ 5c4kT�

4
þ � � � , ð37Þ

so that ð�a
0

Vð�Þ

kT
d� ¼ c0�a þ c2�

3
a þ c4�

5
a þ � � � ð38Þ

and

_"" / c0�a þ c2�
3
a þ c4�

5
a þ

1

6
ðc0�a þ c2�

3
aÞ

3
þ

1

120
c50�

5
a þ � � �

¼ c0�a þ
1

6
c30 þ c2

� �
�3a þ

1

120
c50 þ

1

2
c20c2 þ c4

� �
�5a þ � � � , ð39Þ

which clearly does not satisfy equations (34) and (36).
The hyperbolic sine approximation is not appropriate even for the simple model

leading to equation (11).
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