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Abstract

Under certain conditions, the plastic extension of a sample subjected to a constant stress is to a good approximation proportional to the
logarithm of the time. Similarly, if a sample is plastically strained and unloaded, there are changes in its length and hardness which vary
logarithmically with time. For dimensional reasons, a logarithmic variation must involve a time constant t characteristic of the process, so
that the deformation is proportional to £n(t/t).

Two distinct mechanisms of logarithmic creep have been proposed, the work-hardening of a set of barriers to dislocation motion, all
having the same activation energy, or the progressive exhaustion of the weaker barriers in a set which has a distribution of activation
energies, these energies remain constant during the process of creep. It has been suggested that the experimentally observed value of T can
be used to decide which of the two mechanisms is operative. It is shown here that the work-hardening mechanism expresses 7 in terms
of parameters which are not easy to estimate, while, if the exhaustion mechanism operates, the observed value of 7 is determined by the
experimental conditions rather than by the parameters of the dislocation mechanism. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

When a material is loaded under a constant stress at a
constant temperature, it undergoes a time-dependent creep
strain €(7). If the stress and the temperature are low, € usu-
ally increases linearly with the logarithm of the time. This
is called logarithmic creep. [1,2]. Similarly, if a sample is
plastically extended under an increasing load, and the elon-
gation is suddenly held constant, the stress in the sample
decreases as the logarithm of the time [3]. There are anal-
ogous cases of dielectric and magnetic relaxation (e.g. [4]).
For a thermally activated process with a single activation
energy one expects a decay which is exponential in time,
not logarithmic. A suitable spectrum of activation energies
will lead to logarithmic recovery, but the assumption that
such a spectrum is frequently present is very artificial.

There are two models of logarithmic creep and similar ef-
fects. The first is, in the case of logarithmic creep, called the
work-hardening model. The second is called the exhaustion
model. It is important to know which model is appropriate
in a particular case.

Mott [5] and Cottrell [6] suggested that a distinction could
be made along the following lines. For dimensional reasons,
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a logarithmic dependence on time must involve the func-
tion €n(t/t), where t might be expected to be the order
of the period of a lattice vibration. We argue below that
the experimentally measured value of t represents, in the
work-hardening model, a rather complicated combination of
physical parameters, and, in the exhaustion model, the du-
ration of the transient deformation which occurs before log-
arithmic creep is established.

2. The work-hardening model

In the work-hardening model, all the sites at which defor-
mation can be initiated are assumed to have the same activa-
tion energy U. However, U is not constant in time. It depends
on the effective stress o acting on each site. The effective
stress is the applied stress o minus the frictional stress of
the material. As a result of work-hardening, this frictional
stress increases linearly with the small plastic strain €. Thus

Ocff =0 — ke (1

It is then reasonable to assume that, for small changes in
oeff, U will be a linearly decreasing function of o, so that

U(t) = Ug + re(t) )
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The cases of stress relaxation and elastic after effects dif-
fer slightly from that of creep under a constant applied stress.
Here [4], the driving stress o is an internal stress, which
decreases linearly with the relaxation strain. Eq. (2) again
applies. In all cases, the rate of creep is given by

U
& = gpexp <_k_T> 3)

The value of £yg depends on the volume density of the bar-
riers, and on the strain which is produced each time a barrier
is overcome. The value of A in Eq. (2) is not easy to estimate,
even if it is assumed that the rate of work hardening during
logarithmic creep is the same as that in rapid deformation.

From Egs. (2) and (3) it follows that

de Up + re
o 2 4
- Soexp< o ) )

The solution is

kT t
£ = <7> in (1 + ;) o)

where

_ kT Uy
()

Experiment determines k7/A and 7, and so gives the values
of A and of &y exp(—Uy/kT). The latter is proportional to the
frequency of lattice vibrations, but involves several unknown
physical quantities.

3. The exhaustion model

The usual outline of the exhaustion model is as follows.
There is a distribution of barriers such that all values of the
activation energy are equally likely. Each activation process
produces the same increment of strain. The dislocation seg-
ments attack each barrier with a frequency v equal to the vi-
bration frequency of a dislocation segment about 100 atoms
long, say about 10'©s~!. Then at time ¢ those barriers for
which the activation energy satisfies

-U@) ] 1
exp | —Vt exp T =3 @)

are equally likely to be present or to have been overcome.
Those with U less than U (t) — 2kT are almost certain to
have been overcome, these with U greater than U (t) + 2kT
are almost certain not to have been overcome.

It follows from Eq. (7) that

vt

U(t) = kTt
@) nZnZ

®)
and from the physical assumptions that € is a linear function
of U(r). Hence

vt
= AkTln— 9
e =¢y+ nEnZ 9

However, while Eq. (5) gives e = 0 att = 0, Eq. (9) gives
a divergence at + = 0. This is because it has been assumed
that all values of U, even negative values, are equally likely,
so that there is an infinite instantaneous extension when the
stress is applied. It is therefore necessary to measure the
time from some epoch 7 at which € is defined to be zero.
Then Eq. (9) is replaced by

t+7
e(t) =& +AkTln | v (10)
n2
subject to the condition
vt
e(0) =0=¢; + AkT¢n (—) (11)
n2

The creep strain is given by

6(1) = AKTEn (1 n 2) (12)

The experimental characteristic time is then t, which is of
the order of the duration of the rapid extension on loading,
a few seconds. The observation [1] that T is of this order
is therefore compatible with the exhaustion model. It could
also be compatible with the work-hardening model. The lat-
ter would only be excluded if the measured v was found to
depend very little on temperature.
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