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Geotechnical Applications of a Two- 
Dimensional Elastodynamic Displacement 
Discontinuity Method 
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S.L. CROUCH 2 
A general two-dimensional elastodynamic displacement discontinuity method 
is used to model a variety of  application problems. The plane strain problems 
are: the elastodynamic motions induced on a cavity by shear slip on a nearby 
crack," the dynamic response of  a backfilled versus a non-backfilled tabular 
excavation or stope," and the interaction between two inclined stopes and a 
slipping fault. An antiplane strain problem is also presented, where slip 
occurs along a crack near the surface of  a half plane. These problems indicate 
the wide potential of  this method in investigating elastodynamic effects, 
especially for  crack-like geometries. 

INTRODUCTION MATHEMATICAL BACKGROUND 

Elastostatic boundary element methods are routinely 
used in the mining industry to investigate the effects of 
different mining layouts on the displacements and 
stresses in the surrounding rock mass. Many important 
practical problems, however, involve transient 
phenomena, which cannot be taken into account in static 
analyses. Elastodynamic methods can be used, for 
example, to determine the effects within a rock mass of 
sudden changes in the mining layout, or to observe the 
interactions between seismic waves generated by slip 
along a fault, and mining excavations. Valuable 
information about the particle velocities, accelerations, 
displacements, and stresses can be obtained from an 
elastodynamic model. 

The displacement discontinuity method is well 
established in elastostatics [1]. In elastodynamics, two- 
and three-dimensional boundary integral methods have 
been developed to solve crack-like problems [2, 3, 4, 5]. 
These methods all use numerical integrations at some 
stage of the derivation. The development of displacement 
discontinuity methods in three and two dimensions, 
using analytical integrations in both space and time have 
also been developed [6, 7]. 

A number of geotechnical applications of a two- 
dimensional elastodynamic displacement discontinuity 
method, called TWO4D [7], are presented in this paper, 
demonstrating the potential of this method. A brief 
summary of the mathematical background follows, as 
well as a validation of the numerical model with an 
analytical solution in order to demonstrate the accuracy 
of this method. Further validations are available [7]. 
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The elastodynamic displacement discontinuity 
method is a boundary element method designed for 
crack-like or tabular geometries in an infinite, 
homogeneous, isotropic, and linearly elastic domain. The 
method solves for the shear and normal discontinuities in 
displacement, due to a known history of shear and 
normal tractions, on a crack surface. Once the 
displacement discontinuity components have been 
determined, time histories of displacements, particle 
velocities, and stresses can be calculated at arbitrary field 
positions in the surrounding continuum. 

The method can be summarized in the following 
boundary integral equations, which describe the 
displacements Uk(X,t ) and stresses ~kl(X,t) at position x 
and time t in terms of the displacement discontinuities 
Di(~,t ) at position ~ convoluted with fundamental 
solutions Tki(X,t;~,0 ) and Sklij(x,t;~,0 ), respectively 

uk(x_,t)= f T~(x_,t;~_,O)*D~(~_,t)dS( ~ (1) 
s 

crk,(x_,t ) = f Sutv (x_,t; ~_, 0)* D i ( ~_,t)n]dS(9 x) (2) 
s 

The * symbol in the above equations is the time 
convolution operator [8], and denotes a time integration 
between the fundamental solution and the displacement 
discontinuity function. The fundamental solutions Tki 
and Skhj:; describe the displacements and stresses, 
respectively, due to the spatial derivative of a unit 
impulse in space and time [8]. These fundamental 
solutions therefore describe a dynamic doublet state [8]. 
In three dimensions, all indices range from 1 to 3. In the 
two-dimensional case, indices range from 1 to 2 for the 
in-plane part, and the third index is the antiplane part. 
The two-dimensional fundamental solution is obtained 
from the three-dimensional one by spatial integration in 
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the antiplane direction [8]. 
In order to obtain the two-dimensional numerical 

method, the spatial integrals are discretized into linear 
elements with a piecewise linear variation of the 
displacement discontinuity functions over each element 
and internal collocation. The time integrals are 
discretized into time steps, with a linear variation in the 
displacement discontinuity functions within each time 
step. All space and time integrations are performed 
analytically, resulting in a set of algebraic equations in 
an implicit time-marching algorithm given by [9] 

m-I  

b_m:C'D '' +~_C'-k+'D k 
k=l 

(3) 

where 
m = current time step number 
(3 = influence coefficient matrix 
b = vector of known boundary 

displacements and/or tractions 
D = vector of displacement discontinuities. 

The above equation can be structured so that, in 
general, a mixed displacement and/or traction boundary 
value problem can be solved for the unknown shear and 
normal displacement discontinuities D m at the current 
time step m. The summation term contains a history of 
known influences from previous time steps. 

SUDDENLY PRESSURIZED SEMI-INFINITE 
CRACK 

An analytical solution [ 10] exists for the case of a 
stationary, suddenly pressurized semi-infinite crack, as 
depicted in Figure 1, under plane-strain conditions. 
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Figure 1 shows a normalized erack face displacement 
versus normalized "distance" plot of  the :analytical 
solution and the numerical solution obtained using 
TWO4D. The numerical solution matches the analytical 
solution until the first diffracted wave arrivals from the 
truncated row of displacement discontinuity elements 
(total length L), used to approximate the semi,infinite 
crack, at time t = (L + x')/c d, where c d is the 
compressional wave velocity. 

Before the arrival of the compressional waves from 
the crack edge, all applicable positions along the crack 
faces are governed only by the applied crack pressure, 
indicated by the horizontal dashed line in Figure 1. 
Notice that the peak motions coincide with the arrival of 
the Rayleigh wave along the crack faces. 

CAVITY RESPONSE DUE TO SHEARING CRACK 

The interaction between the stress waves generated 
from a displacement discontinuity shear source and a 
large cavity is modeled here. A similar problem has also 
been modeled in three dimensions [11], using an 
elastodynamic fictitious stress method. 

A cavity (or exterior) problem can be modeled with 
the displacement discontinuity method, but care should 
be taken to prevent rigid body motions of the interior 
[ 1 ]. This can be accomplished either by introducing extra 
displacement discontinuity elements inside the cavity and 
prescribing zero shear and normal displacements on one 
side of each of those elements, or by leaving a small 
section along the cavity boundary undiscretized so that 
the interior and exterior are connected together. The first 
approach requires the solution of a mixed boundary value 
problem (displacement and traction), and the latter 
approach allows stress waves to enter the cavity naturally 
via the connecting bridge. Both approaches give 
satisfactory results (the former approach is presented 
here). Care should be taken to use a sufficiently fine 
discretization to prevent excessive numerical leakage of 
the stress waves directly through the mesh into the 
cavity. The resolution required depends upon the 
temporal and spatial variation of the source loading - a 
load applied abruptly over a short distance generates high 
frequencies and hence a fine discretization is needed. 

Figure 2 depicts the geometry and loading of a 
cavity that interacts with stress waves from a nearby 
slipping crack. Figures 3 and 4 are snapshots in time of 
the dynamic displacements and particle velocities, plotted 
in a vertical window, induced by the slipping crack. 
Notice that the left and bottom sides of the cavity 
experience significant motion, even though they are on 
the leeward side of the source. Different orientations of 
the shear source with respect to the cavity would result in 
quite different dynanuc responses. 

Figure 1. Normalized normal displacement of upper crack face 
vcrsus normalized distance (after Freund [10]). 
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Figure 3a. Snapshot in time of induced dynamic displacement 
vectors. Figure 4. Snapshots in time of particle velocities. 
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STRESS W A ~  INTERACTION WITH FILLED 
AND ~ E D  STOLE 

Deep-level gold mines in the Witwatersrand of 
South Africa experience a high level of seismicity. The 
gold reef typically occurs in extensive tabular deposits. It 
is often possible to approximate the effect of these 
excavations in the surrounding rock mass by assuming 
plane strain. As mining proceeds, the stresses are 
changed in the surrounding rock mass. After a sufficient 
build-up of  stress, a seismic event can occur by failure of 
the intact rock or along weaker faults or pre-existing 
mining induced fractures. In order to reduce rockburst 
and rockfall damage, the mined out sections of the stope 
are often filled with finely crushed waste rock, called 
backfill. 

There is almost no experimental data available about 
the dynamic constitutive response of  backfill. Hence, so- 
called "seam" elements [1] are used here in an attempt to 
model backfill. Each displacement discontinuity seam 
element contains shear and normal springs with a linear 
force-displacement response (Figure 5). 
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Figure 6. Geometry and loading of filled/unfdled stope. 
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Figure 5. Seam element and loading response. 

Figure 6 depicts a problem where a stope is 
modeled with and without backfill. The dynamic spring 
stiffnesses are assumed to be K s = 200 MPa/m and K n 
= 400 MPatm. The elastic constants of E = 35 GPa, v 
= 0.27, and p = 2,700 kg/m 3 are different to the usual 
values used for quartzitic rock. The soft Young's 
modulus is used in order to try to account for the highly 
fractured nature of the rock mass around a deep-level 
stope, in an elastic analysis [12]. 

Figure 7 shows velocity vector snapshots in time of 
the interaction of  the elastic waves generated by the shear 
source with the filled stope. The dominant motions are 
generated after the arrival of the shear wave, s because the 
source is of a shearing nature. In Figure 7a the largest 
particle velocity vectors are those coinciding with the 
arrival of the Rayleigh wave along t l~  stope. 
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Figure 7. Snapshots in time of filled stope response. 
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Figure 9. Normal velocity discontinuities at A for filled stope. 

A diffracted wave, from the right hand-side stope face, 
is evident in Figure 7b. Figure 8 shows the closure rate 
(i.e. rate of  change in normal component of displacement 
discontinuity) across the stope at position A (Figure 6) 
for the unfilled stope, and Figure 9 shows the effect of a 
filled stope. Figures 8 and 9 also contain the numerical 
results of an elastodynamic finite difference code, called 
WAVE [13], and the results are comparable with 
TWO4D. The wave reflection (arriving at t = 0.7 s) from 
the right-hand stope face is damped when backfill is 
introduced. A slight wave reflection (arriving at t = 0.4 
s) is also evident from the edge of the backfill in the 
stope in the TWO4D results. A more detailed numerical 
study on the stability of backfilled stopes under dynamic 
excitation is available [14]. 

TWO REEF INTERACTION W I T H  D A Y L I G H T I N G  
FAULT 

A shear fault that daylights into two inclined stopes 
is shown in Figure i0. The entire fault is activated at 
time t = 0 by a simple Heaviside (in time) shear traction 
loading. This applied shear traction loading corresponds 
to the "static excess shear stress" developed along the 
line of the fault due to an initial compressive primitive 
stress field of  54 MPa vertically and 27 MPa 
horizontally, and assuming a Mohr-Coulomb failure 
criterion with cohesion 10 MPa and friction angle 30 °. 
Static excess shear stress is the shear stress available to 
trigger a shear-based event [15]. The static excess shear 
stress is calculated, using an elastostatic displacement 
discontinuity method, for the case when only the two 
stopes exist in the rock mass. TWO4D is then used to 
determine the induced dynamic interactions between the 
two stopes and the fault, the driving force being the 
applied static excess shear stress obtained from the static 
calculation. 

The dynamic friction angle and dynamic cohesion 
are assumed to be zero along the fault, which is a worst 
case scenario. In reality, a fault surface would have some 
residual friction during the dynamic phase. Special 
elements can be included to model frictional behavior. 
The normal traction along the fault is assumed to remain 
unchanged during the dynamic phase. The fault is 
assumed to have a normal stiffness of K n = 50 GPa/m. 
The surrounding rock mass is assumed to have elastic 
constants of E = 70 GPa, v = 0.2, and p = 2,700 
kg/m 3. 
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Figure 10. Stope-fault geometry and loading. 
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Figure 11 shows a snapshot in time of  the dynamic 
displacement vectors on a vertical window. The two 
circular lobes are the shear waves moving out into the 
rock mass, away from the fault. The sense of  shear along 
the fault is indicated by the displacement vectors at field 
points close to the fault. Figures 12 and 13 are snapshots 
in time of the induced dynamic principal stresses and the 
total (i.e. initial static plus dynamic) principal stresses, 
respectively. Figure 13 shows that the dynamic action is 
strong enough so that it is not swamped by the primitive 
stress field. This is evident from the local tensile zones 
(which change with time) and skewed orientations of the 
principal stress field (which also change with time) 
remote from the stopes and fault. 
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Figure 11. Dynamic displacement vectors at 30th time step. 
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Figure 12, Induced dynamic principal stresses at 30th time 
step. 
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Figure 13. Total principal stresses at 30th time step. 

ANTIPLANE STRAIN SLIP NEAR SURFACE OF 
HALF-PLANE 

A displacement discontinuity element under 
antiplane strain conditions, has a non-zero out-of-plane 
displacement discontinuity component, and zero in-plane 
components. In other words, D z ¢ O, and D x = Dy = 0, 
where z is the axis of  plane strain. A half plane p~oblem 
can be modeled in an approximate way with the 
displacement discontinuity method, by introducing a line 
of  elements representing the surface of the half plane. 
This representation provides a good approximation to the 
effects of the surface until the first diffractions from the 
edges of the truncated surface elements reach the field 
point(s) of interest. 

Figure 14 shows a slipping Mode IIl crack that 
intersects with the surface of  a half-plane. The inclined 
crack is loaded by applying a prescribed antiplane shear 
traction, as shown in Figure 14. 
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The small circles containing either crosses or dots 
depicted in Figure 14 indicate the sense of  antiplane 
she, ar .  

Contours of  the out-of-plane particle velocities v z at 
the 40th time step are shown in Figure 15. The surface 
of  the half  plane has a significant effect on the location 
of  the peak particle velocities. In the absence of  the half 
plane, the particle velocities would be symmetric about 
the slipping crack, and attenuate away from the source. 
The introduction o f  the half plane allows surface waves 
and reflections to develop, thereby influencing the 
pattern of  particle velocities. 
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Figure 15. Particle velocity v z contours at 40th time step. 

C O N C L U S I O N S  

A two-dimensional elastodynamic displacement 
discontinuity method has been used to model a variety of  
application problems. Both crack and cavity type 
geometries have been modeled, demonstrating the 
versatility o f  this method. The method can be extended 
to include any desired linear or non-linear material 
behavior within each element [7], provided that suitable 
dynamic constitutive relations can be found. The 
displacement discontinuity method can be combined with 
other boundary integral methods, such as [9], so that 
cavity type applications can be modeled more 
appropriately. 

Future work on TWO4D will include the 
introduction o f  various friction laws for investigating 
active and passive fault movement, further stope support 
constructs, and an algorithm to allow normal and shear 
cracks to grow automatically, depending on the stress 
conditions ahead of  the crack tip at each time step. 
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