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Abstract

We study the relationship between the properties of data and
classifier performance. Data measures are employed to char-
acterise classification problems and it is shown that these data
measures successfully capture important characteristics of the
relationship between data and classifiers. The proposed data
measures can be used to predict the classification performance
of real-world data sets and to gain insight into the structures and
properties of real-world data.

1. Introduction

We today have a wide-range of classifiers that are employed
in numerous applications, from credit scoring to speech-
processing, with great technical and commercial success. No
classifier, however, exists that will outperform all other classi-
fiers on all classification tasks and the process of classifier se-
lection is still mainly one of trial and error.

Several empirical studies have shown that the choice of
optimal classifier does in fact depend on the data set em-
ployed [1, 2], and some guidelines on classifier selection have
been proposed [3]. These guidelines do not, however, provide
much insight into the specific characteristics of the data that
will determine the preference of classifier; several theoretical
approaches have also been employed to predict the performance
of classifiers in an a priori fashion [4—-6]. We will show in the
next sections that these approaches fall short of a comprehen-
sive solution to the task of classifier selection.

A significant amount of insight into the theoretical proper-
ties of classifiers and of data will be required to fully describe
the relationship between data characteristics and classifier per-
formance; we will search for such insight by (1) identifying
data properties that influence classification performance and (2)
measuring these properties from data.

Various experiments have been performed in [7,8] to iden-
tify the properties of data that influence classification perfor-
mance; in this paper we will propose measures to measure these
properties from data. We will also illustrate how these data mea-
sures can be used to predict the classification performance of
real-world data sets.

In Section 2 we will briefly summarise various approaches
that have been proposed in the literature to predict the classifi-
cation performance of classification tasks; in Section 3 we will
propose data measures that capture important characteristics of
the relationship between data properties and the performance of
classifiers and in Section 4 we will illustrate how these data
measures can be employed to construct a meta-classification
system. We will explain the results of this meta-classifier in

Section 5 and we will conclude on our findings in Section 6.

2. Background

Various strategies have been employed to describe the relation-
ship between classifiers and the problems they try to solve.
These approaches are summarised as follows:

e Empirical studies have been performed to compare the
performance of classifiers on different real-world data
sets [1,2] and to predict the domain of competence
of classifiers [3,9]. A heuristic meta-learning search
method has been proposed by [10] to find the optimal
parameters settings of classifiers and to estimate the gen-
eralisation performance of these classifiers.

e Data measures to characterise the difficulty of classifica-
tion problems were studied by [11]; their focus was on
the geometrical complexity of the decision boundaries
between classes.

e A theoretical framework, known as the no-free-lunch
theorems, was developed in [4, 5] to predict and com-
pare the generalization performance of classifiers.

e Statistical learning theories, such as that of Vapnik and
Chervonenkis (VC) [6], have been used to place bounds
on the generalisation error rates of data sets.

All these approaches are limited in some way or another. The
no-free-lunch theorems and the bound on generalisation perfor-
mance of classifiers using VC dimensions are very limited in
terms of real-world applications. Empirical studies have shown
the importance of the relationship between data characteristics
and classifier performance; they have, however, failed to de-
scribe this relationship in detail. A detailed discussion of each
of these approaches is given in [8].

3. Data measures

Previous empirical studies have shown that data measures can
be employed to give valuable insight into data set properties
[11,12]; these studies have, however, failed to explain how these
properties influence classification performance.

In this section we will briefly summarise data measures that
are specifically designed to measure data properties that influ-
ence classifier performance. We will use the data measures pro-
posed in [8]; we will, however, only discuss the most infor-
mative data measures, as identified by [8], in this section. A
detailed discussion of all the data measures is given in [8].



3.1. Correlation of features

We use the following data measure to measure the average ab-
solute correlation between features in a data set [2]:
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where |p;| is the absolute value of the Pearson correlation co-
efficient between variables j and k and T is the total number of
correlation coefficients added together.

3.2. Multivariate normality

We will use the BHEP test for multivariate normality since this
test possesses the following desirable properties [13,14]:

o Affine invariant
e Consistent against non-normal distributions

e Can be applied to data sets of any size and dimensional-
ity.

The calculation of this measure is rather involved; we refer the
reader to [13] for a full discussion of this test. We will use
this weighted distance measure as a measure of normality and
indicate it as MVN.

3.3. Linear separability

We use a linear-discriminative classifier described in [15] to
perform linear classification. The linear discrimination func-
tion is a linear combination of the variables in a sample. This
discrimination function is used to construct an optimal hyper-
plane to discriminate between data of different classes in a d-
dimensional feature space. We use the 10-fold cross-validation
error rate of this linear classifier as a measure of linear separa-
biltity. We denote this error rate as L1.

3.4. Samples per group

We use an e-neighbourhood pretopology approach proposed by
[11,16], to grow successive adherence subsets from points in
each class; each adherence subset is grown to the highest order
such that it includes only points of the same class.

The number of samples in the retained adherence subsets
gives us an indication of the sizes of groups in the data. The
average size of these subsets can be seen as a measure of the
average number of samples per group. We use the following
measure:
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where Nyctgined 18 the number of retained adherence subsets

and S; is the number of samples in adherence subset 4.

3.5. Variation in feature standard deviation

We will calculate the variation in feature standard deviations
(SDs) in each class by calculating the SD of the feature SDs; we
use the maximum-likelihood equations given in [8] to calculate
these SDs. We denote this SD of the feature SDs as measure
T3.

3.6. Inter-class scale variation

The scale of data in various parts of the feature space of a data
set can be measured by the density of the hyper-spheres retained
by the pretopology e-neighbourhoods approach. We define the
density of a retained subset as:
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where Ngphere 18 the number of samples in a retained subset
and Viphere is the volume of the retained subset. The radius of
a sphere is the Euclidean distance from the sphere centre to the
furthest sample in the sphere.

We calculate the SD of the sphere densities of a data set to
give us an indication of the variation in sphere density in a data
set and consequently a measure of variation in scale through
the feature space. The SD of sphere densities will give us a
measure of both intra-class and inter-class scale variation. We
will denote the SD of sphere densities as measure 7'4.

3.7. Input noise

To determine input noise we will determine the amount of over-
lap between features of different classes; we will follow an ap-
proach suggested by [11] with two slight variations - we will
rotate the feature axes with an eigenvalue transformation and
also consider the number of dimensions in which overlap oc-
curs. The reason for the eigenvalue transformation is to decor-
relate the data as much as possible, since correlation can create
the false impression that overlap between features exists (when
we only consider one feature at a time).

The maximum and minimum values of a feature in each
class are used to define boundaries for a feature; if the feature
value of a sample lies in the boundaries of another class’s fea-
ture values then we will assume that this sample contributes to
overlap in this specific feature. We will count for each sample
in how many dimensions it overlaps and then normalise the total
overlap with the product of the number of samples in the data
set and the dimensionality of the data set. We will denote this
measure of input noise as measure N 1.

3.8. Feature noise

We use the intrinsic dimensionality measure proposed in [8]
to measure the proportion of features that don’t contribute to
classification. We use the following measure as a measure of
feature noise:
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where d is the dimensionality of the data and /D is the intrinsic
dimensionality measure.

3.9. Summary of data measures

The data measures discussed in this section are summarised in
Table 1 (the efficacy of these data measures are verified in [8]).



Table 1: Summary of most informative data measures

| Measure | Data property ‘

P Correlation of features
N1 Input noise

T3 Variation in feature SD

MVN Multivariate normality

L1 Linear separability

T4 Inter-class scale variation
T2 Samples per group

1D2 Feature noise

4. Meta-classification

In this section we will construct a meta-classification system to
predict the classification performance of real-world data sets.
We will make use of the data measures proposed in [8] to char-
acterise data sets; these measures include the measures dis-
cussed in the previous section. We will also utilise artificial
data sets to construct a meta-classifier.

4.1. Classifiers

We will use model-based and discriminative classifiers to con-
struct our meta-classifier; these classifiers are the Naive Bayes
(NB), Gaussian (Gauss), Gaussian Mixture Model (GMM), De-
cision Tree (DT), k-Nearest Neighbour (kNN), Multilayer Per-
ceptron (MLP) and Support Vector Machine (SVM) classifiers.
More details regarding these classifiers are given in [8]. The
meta-classifier will be able to predict the performance of these
classifiers for real-world data sets.

4.2. Artificial data

We will make use of artificial data sets to construct a meta-
classification training set; these artificial data sets are gener-
ated with very specific data properties that influence classifi-
cation performance. Artificial data sets are generated by sam-
pling from a prescribed density function. These density func-
tions are the uniform, Gaussian, Gaussian mixture model and
Cauchy probability density functions.

More information on the generation of these artificial data
sets and their properties is given in [8].

4.3. Real-world data sets

We will predict the classification performances of ten real-world
data sets obtained from the UCI Machine Learning repository
[17]. These data sets are summarised in Table 2. We abbreviate
dimensionality as d, number of samples as /N and number of
classes as C. The number of numerical attributes is abbreviated
as d(Num) and the number of categorical attributes as d(Cat).
The Diabetes, Heart, Australian, Vehicle and German data sets
were previously studied in the Statlog project [2].

4.4. Data characteristics

We will make use of the following data characteristics and their
corresponding data measures to characterise a data set: corre-
lation of features, multivariate normality of class conditional
probability density functions, variation in feature SDs, sparsity
of data, input noise, output noise, intra-class scale variation,
inter-class scale variation, variation in decision boundary com-

Table 2: Summary of real-world data sets

| Dataset [ dNum) [d(Cat) [ d [ N [ C]|
Iris 4 - 4 150 | 4
Balance-scale 4 - 4 625 3
Diabetes 4 4 8 768 2
Tic-tac-toe - 9 9 958 2
Heart 7 6 13 | 270 | 2
Australian 6 9 15 690 2
Vehicle 18 - 18 | 846 | 4
German 7 13 20 | 1000 | 2
Tonosphere 34 - 34 | 351 2
Sonar 60 - 60 | 208 2

plexity, intrinsic dimensionality, groups per class, samples per
group and the interleaving of groups of different classes.

The most informative data measures have been discussed in
Section 3 and a detailed description of all these data measures
is given in [8].

4.5. Meta-classifier

The flow diagram in Figure 1 illustrates the process used to pre-
dict and evaluate the classification performance of real-world

data sets.
Real-world Generate artificial
| l |

Classify real-world Perform data Perform data Classify artificial
data measures | |  measures data

tion
performance

|

Compare
classification
error rates

Figure 1: Flow diagram of meta-classification system

The data measures proposed in [8] are employed on a real-
world data set and artificial data sets are generated with the
exact same dimensionality, number of samples and number of
classes; these artificial data sets contain various data properties
that were identified in [8]. Data measures are employed on
these artificial data sets and the 10-fold cross-validation classi-
fication error rates of the artificial data sets are determined.

A weighted Euclidean distance is used to compare the data
measures of the real-world data set to the data measures of the
artificial data sets. The artificial data set closest to the real-world
data set (in terms of Euclidean distance) is considered as the
data set with the most similar data properties. The classification
error rates of this artificial data set are used as the predicted
error rates of the real-world data set.

The classification error rates of the real-world data set are
estimated by performing 10-fold cross-validation; these error
rates are used to evaluate the efficacy of the meta-classifier by
comparing them to the predicted classification error rates.

The accuracy of the meta-classifier predictions for all the
real-world data sets are given and discussed in the next section.



Table 3: Classification error rates of real-world data sets

| Data set [ NB [ Gauss [ GMMd [ GMMf [ kNN [ DT [ SVM [ MLP ‘
Tris 0.0467 | 0.0200 | 0.0400 | 0.0333 | 0.0333 | 0.0600 | 0.0267 | 0.0400
Balance-s. | 0.0960 | 0.0983 | 0.2720 | 0.0832 | 0.0976 | 0.2176 | 0.0000 | 0.0512
Diabetes 0.2422 | 0.2579 | 0.2566 | 0.2695 | 0.2500 | 0.2630 | 0.2305 | 0.2227
Tic-tac-toe | 0.2265 | 0.3011 25.00 0.2140 | 0.0313 | 0.0438 | 0.0939 | 0.0167
Heart 0.1667 | 0.1704 | 0.1519 | 0.1814 | 0.1926 | 0.2037 | 0.1519 | 0.1667
Australian | 0.2290 | 0.2103 | 0.1942 | 0.2029 | 0.1478 | 0.1507 | 0.1464 | 0.1217
Vehicle 0.5627 | 0.1451 | 0.5638 | 0.1525 | 0.2943 | 0.2731 | 0.1478 | 0.1690
German 0.2510 | 0.2890 | 0.3200 | 0.3220 | 0.2690 | 0.2600 | 0.2120 | 0.2490
Tonosphere | 0.1738 | 0.0765 | 0.3589 | 0.3049 | 0.1311 | 0.1168 | 0.0884 | 0.0855
Sonar 0.3173 | 0.3500 | 0.1680 | 0.3269 | 0.1490 | 0.2933 | 0.2260 | 0.1490
Table 4: Predicted error rates of real-world data sets
| Data set [ NB [ Gauss [ GMMd [ GMMf [ kNN [ DT SVM MLP
Iris 0.1867 | 0.0400 | 0.1533 | 0.0400 | 0.1133 | 0.1667 | 0.0667 | 0.0667
Balance-s. | 0.6333 | 0.6400 | 0.6083 | 0.6250 | 0.6117 | 0.6700 | 0.6250 | 0.6117
Diabetes 0.4838 | 0.5275 | 0.4925 | 0.5175 | 0.4975 | 0.5050 | 0.4788 | 0.4888
Tic-tac-toe | 0.3052 | 0.3156 | 0.1885 | 0.1865 | 0.2063 | 0.1323 | 0.2531 | 0.1479
Heart 0.4500 | 0.4150 | 0.4100 | 0.3850 | 0.4550 | 0.5100 | 0.4350 | 0.4150
Australian | 0.3786 | 0.4757 | 0.3271 | 0.2443 | 0.1414 | 0.3757 | 0.2671 | 0.3086
Vehicle 0.0248 | 0.0000 | 0.0248 | 0.0000 | 0.0142 | 0.1168 | 0.02005 | 0.0224
German 0.3600 | 0.4330 | 0.3560 | 0.3740 | 0.3690 | 0.4110 | 0.3390 | 0.3420
Ionosphere | 0.1893 | 0.4567 | 0.1864 | 0.4522 | 0.4096 | 0.1808 | 0.1525 | 0.2175
Sonar 0.0150 | 0.3550 | 0.0000 | 0.0050 | 0.0000 | 0.1350 | 0.0000 | 0.0050
5. Results We see in Figure 2 that the Tic-tac-toe data set is the only

The classification results of the ten real-world data sets are given
in Table 3. We will compare these error rates to the predicted
error rates of the meta-classifier in order to evaluate the perfor-
mance of the meta-classifier; the predicted error rates are given
in Table 4.

The Pearson correlation coefficients between the 10-fold
cross-validation classification error rates and predicted classi-
fication error rates are calculated for each data set. These cor-
relation coefficients give us an indication of how accurately the
measurements can explain the behaviour of the classifiers. The
classifier correlation coefficients are given in Figure 2.
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Figure 2: Correlation coefficients of real-world data sets

one with a negative correlation coefficient; this is to be ex-
pected, since this data set is the only one that contains only
categorical features. Closer evaluation of the classification er-
ror rates in Table 3 reveal that the NB, Gaussian, GMMd and
GMMf classifiers have very poor classification performance for
this data set; this is due to the fact that these classifiers are not
suited for categorical data. All the data sets in the meta-training
set contain continuous variables, which explains why the pre-
dictions of these error rates are not accurate.

The Ionosphere data set has the lowest correlation coeffi-
cient of the non-categorical data sets. If we investigate the clas-
sification error rates and the predicted classification error rates
more closely we find that the predicted error rate of the Gaus-
sian classifier differs significantly from the 10-fold cross valida-
tion error rate. If we calculate the correlation coefficient exclud-
ing the Gaussian classifier we obtain a correlation coefficient of
0.2861.

The two data sets with the highest correlation coefficients
are the Iris and Diabetes data sets. The artificial data set nearest
to the Iris data set has Gaussian distributed classes with fea-
ture SDs close to unity; the nearest data set to the Diabetes has
GMM distributed classes with 100 groups per class with feature
SDs between 0 and 5.

What is interesting is that the Diabetes data set contains
four numerical and four categorical features; if we evaluate the
classification error rates we observe that these four categorical
features do not influence the model-based classifiers too nega-
tively compared to the discriminative classifiers. This explains
why the correlation coefficient is still very good even though the



data set contains categorical attributes.

The remaining data sets have correlation coefficients be-
tween 0.1364 and 0.5862; these data sets and their data mea-
sures are discussed in more detail in [8]. These results show
that important data characteristics are captured by the employed
data measures.

We calculate the correlation coefficients for each classifier
across the ten real-world data sets to give us an indication of
how well the data measures describe the properties of each clas-
sifier; the Pearson correlation coefficients between the classifi-
cation error rates of each classifier are given in Figure 3.

Normalised measures

NB
kNN

DT
SVM |
MLP |

Gauss
GMMd
GMMf L

Figure 3: Correlation coefficients of classifiers

We see that the NB and SVM classifiers have negative cor-
relation coefficients across all the real-world data sets, and that
the observed correlation values are generally lower than the val-
ues across the different classifiers for a fixed data set. This sug-
gests that our features are more successful in predicting the rel-
ative performance of different classifiers across the same data
set than error rates across data sets. This is not surprising in
light of the tremendous variability of data sets. Fortunately, the
prediction of relative classifier performance is also the more in-
teresting task from a practical perspective.

6. Conclusion

Understanding the relationship between classifiers and the prob-
lems they try to solve is crucial in selecting the optimal classifier
for a classification task. In this paper we have identified infor-
mative data measures that capture some of the characteristics of
this relationship.

We have illustrated how these data measures can be em-
ployed to characterise a data set and how these data measures
can be used to predict the classification performance of real-
world data.

The data measures used to characterise a data set allows
us to quantify important data properties such as correlation of
features, multivariate normality of class conditional probabil-
ity density functions, variation in feature SDs, sparsity of data,
input noise, output noise, intra-class scale variation, inter-class
scale variation, variation in decision boundary complexity, in-
trinsic dimensionality, groups per class, samples per group and
the interleaving of groups of different classes.

Positive correlation coefficients were obtained between the
true and predicted classification error rates of all the non-
categorical real-world data sets. These results show that the

meta-classifier captured important characteristics of the rela-
tionship between data and classifier performance.

The performance of the meta-classifier across all real-world
data sets for each classifier, however, suggests that further in-
sight into the properties of data is required to fully describe the
relationship between data characteristics and classifier perfor-
mance.
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