Naive Bayesian classifiers for multinomial features: a theoretical analysis
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Abstract

We investigate the use of naive Bayesian classifiers for multi-
nomial feature spaces and derive error estimates for these clas-
sifiers. The error analysis is done by developing a mathemati-
cal model to estimate the probability density functions for all
multinomial likelihood functions describing different classes.
We also develop a simplified method to account for the corre-
lation between multinomial variables. With accurate estimates
for the distributions of all the likelihood functions, we are able
to calculate classification error estimates for any such multino-
mial likelihood classifier. This error estimate can be used for
feature selection, since it is easy to predict the effect that differ-
ent features have on the error rate performance.

1. Introduction

Recent years have seen a resurgence in the use of naive
Bayesian (NB) classifiers [1, 2]. These classifiers, which as-
sume that all features are statistically independent, are particu-
larly useful in high-dimensional feature spaces (where it is prac-
tically infeasible to estimate the correlations between features).
Their newfound popularity stems from their use in tasks such
as text processing, where such high-dimensional feature spaces
arise very naturally. Consider, for example, a task such as
text classification, where a natural feature set is the occurrence
counts of the distinct words in a document. In this case, the
number of dimensions equals the size of the dictionary, which
typically contains tens of thousands of entries. Similarly, in
text-based language identification [2], n-gram frequency counts
are frequently used for test vectors (where an n-gram is a se-
quence of n consecutive letters). High accuracies are achieved
by using large values of n, thus creating feature spaces with
millions of dimensions.

The practical popularity of NB classifiers has not been
matched by a similar growth in theoretical understanding. Is-
sues such as feature selection, compensation for training-set
sparsity and expected learning curves are not well understood
for even the simplest cases. In the present contribution we
therefore develop a theoretical model for the specific case of
frequency counts, which can be used to address some of these
issues.

To be precise, we assume that each feature has a fixed class-
conditional probability of occurring, but only one feature can
occur in any given observation; these observations are repeated
m times to create a feature vector. This is known as a Bernoulli
process [3]; for any given vector, m Bernoulli trials are drawn,
and each feature contains the frequency of occurrence of the
corresponding entity. If all samples are drawn independently,
the class-conditional density functions take on a multinomial
distribution [3].
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We are mainly interested in developing a class separability
measure that can be used for feature selection. This separability
measure will be in the form of an error estimate for the appro-
priate classifier. After developing this separability measure, a
search algorithm can be used for feature selection. Some exam-
ples of search algorithms are the Branch and Bound procedure
(if we assume that features cannot make negative contributions
to error — a possibly inaccurate assumption), Sequential forward
selection and Plus 1 take away r selection [4]. Other search
methods such as the Best individual N method may not be use-
ful since, as we will show later on, the different features are
correlated.

The class separability measure that we will use assumes
that features are generated from a multinomial distribution with
known feature probabilities. It then estimates a distribution for
the likelihood function of each class. By observing the overlap
of these probability functions, we can calculate an estimate on
the error rate of the given classifier.

There are many different ways in which we could approx-
imate the likelihood function. One approach is to note that all
features are individually binomial. Then, if we apply the naive
Bayesian philosophy and define the likelihood function as the
product of all binomial features, we get the likelihood function
of class ¢,

D
p(Zler) = H ,pdc,q;’z, ea (1

where 7 is the input vector, x4 is the frequency count for feature
d, m is the number of Bernoulli trials done, pq.,. is the proba-
bility of feature d occurring in a Bernoulli trial for class ¢, and
qdc, = 1- Pdc,--

The advantage of using eq. (1) is that features are easily
added to or deleted from a given set by including or excluding
the relevant terms in the product. Further, for a given input
vector, the factors m!, z4! and (m — z4)! remain constant over
all classes. Therefore they do not contribute to the error rate of
the classifiers and may be omitted from the analysis. Therefore
we define the modified log likelihood as follows

L(zle,) = Zxdbg Pde,) + (m — x4)10g(qac,)  (2)

It is clear from eq. (2) that the distribution of L(Z|c,) is a lin-
ear combination of the binomial elements x4. If we assume that
all z4s are uncorrelated, we can use the central limit theorem
[5] to deduce that L(Z|c,) is approximately Gaussian. In this
way, we can calculate a modified log likelihood distribution for
all classes and calculate the overlap to estimate the error perfor-
mance of the classifier. Unfortunately, we will see that it is a



poor assumption that all z4s are uncorrelated, because Y x4 is
constrained to equal m.

The technique that we will use for error analysis in this pa-
per therefore uses the full multinomial distribution, rather that
a product of binomial distributions, and thus accounts for the
correlation between the x4s. It should also be noticed that even
though correlation is accounted for, the difterent Bernoulli trials
are still assumed to be independent.

2. Multinomial likelihood distribution
estimation

Let us assume that we have a collection of D features and that
a test sample consist of m independent Bernoulli trials, where
each feature has a probability of p4., and ZdDzl Pde,. = 1 for
a class c,. Let the frequencies of each feature (over m trials)
represent a D-dimensional feature space. Assuming that all test
samples are independent and that all Bernoulli trials are inde-
pendent, we can calculate the likelihood of any given test vector,
given class ¢,:

m!

paler) = i e, O)
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Notice that the factors m! and z4! are common to all class like-
lihood functions for any input vector. Therefore we can ignore
these factors and define the modified log likelihood as

D
L(Zler) = Y | cara, )
d=1

where agr = log(pdec,.)-

Next, we wish to calculate the distribution of this likeli-
hood function given that Z is sampled from class c;. There-
fore, the probability density function that we wish to estimate is
p((L(zler)]ler).

It is clear that L(Z|c,) represents a linear combination of
multinomial variables that are correlated. It can be shown ex-
perimentally (see section 4.1) that L(Z|c,) is approximately
Gaussian for high D. For a theoretical treatment on the central
limit theorem for linear combinations of correlated multinomial
variables, refer to [5]. If we assume a Gaussian distribution and
estimate the mean and variance of p([L(Z|c,)]|ct), we have an
estimate for the overall distribution. Therefore we can use the
overlap between different likelihood distributions and use it as a
separability measure. By taking the expectation of this expres-
sion, we find that the mean and variance of the modified class
log likelihood functions are

1= B[L(z|e,) s)

o = E[L*(Z|c,)] — E*[L(Z|c,)] (6)

where all expected values are calculated from the multinomial
distribution of class c¢;.
The mean of L(Z|c,) is therefore given by

D D
= E[Z Qarxa) = mz QdrPdey - @)
d=1 d=1

It is therefore straightforward to calculate the mean of all like-
lihood functions in O(D) calculations.

Unfortunately, it is not straightforward to calculate the vari-
ance of the likelihood function, since the variables over all di-
mensions are correlated. Below, we will show an easy way to

compensate for the correlation; however, we first derive the es-
timate that arises when feature correlations are neglected, and
also the exact expression.

2.1. Variance without correlation

If we assume that all variables x4 are uncorrelated, we can cal-
culate the variance of L(Z|c,) as

D
ol = Var[z QarZd)
d=1
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where o2 represents the uncorrelated variance. This equation
shows that o> can be calculated in O(D) computations.

2.2. Variance with correlation

Let us now calculate the complete equation for the variance of
L(Z|cr) that takes all correlation into consideration. From the
definition of variance, we can write

D D
o> = E[() auwrza)’] — E*[> aarzd] ©)
d=1 d=1

From this equation we can rewrite the variance in terms of the
multinomial covariance matrix 33:

o’ =arSa, (10

where @y = [@1r, Q2r, ..., @py]. The diagonal elements of X
are 0qq = MpPde, qde, and the off-diagonal elements represent
the covariance terms oge = —MPdc, Pec; -

We can also rewrite eq. (10) in terms of the uncorrelated
variance as follow:

o? =00 —mY > CdarQerPic,Pec, (11)

d e;e#d

From this equation, it is clear that o2 can be calculated in

O(D?), which is computationally expensive when D is large
(which is often the case). In the next section we will show a
different way to estimate the correlated variance accurately in
O(D) calculations, which is useful for very large values of D.

2.3. Compensating for correlation

It is not surprising (see results) that the uncorrelated assump-
tion gives inaccurate results, since the features are constrained
to sum to a constant value. We now propose a method of com-
pensation to correct for the constraint violation that arises from
assuming uncorrelated variables. When assuming that all vari-
ables are uncorrelated, we treat each variable as an indepen-
dent binomial variable. In the multinomial case, we know that
>~ x4 = m. Therefore, the technique of compensation will cal-
culate Y x4 = m + Am for the uncorrelated assumption and
add or subtract the necessary Am to compensate.
We can express eq. (4) as

D

L(Zler) = La(walcy) (12)

d=1



where Lq(xq|cr) = aarzq. Now, if we add any compensation
value Amg to x4, we get

Lg(za + Amaler) = La(zaler) + Amgoar (13)

The true variance (with all correlations considered) can also
be expressed as

o = E[()_ La(zaler) — 1)) 14
d=1

From eq. (14) we can also write an approximate expression for
the true variance oa,,, when > 24 = m + Am:

D D
0am = B[O La(waler) + Am >~ aarpae, — p)°], (15)
d=1

d=1

where we used eq. (13) and made the approximation Amg =
Ampgc,. By expanding the square in eq. (15) we obtain

O'QAm =02+ AQm[Z angdct]2 (16)
d=1

Next, the uncorrelated variance 03 generates > . xq = m+
Am with a distribution mean and variance for Am = > zq —
m given by

Mean(Am)

mzpdq —m=0
ZVar (zq)

The uncorrelated variance o2 can be expressed in terms of
o4,, by summing over the probability mass function of Am:

Var(Am) =m Zpdct qdc, a7
=

= oAmp(Am) (18)

Am

Combining eq. (16) and (18) we get

D
+ (O aarpae,)* Y APmp(Am)  (19)
d=1 Am

and we notice that:

ZAQmp(Am) Var(Am)
Am

=m Z Pde.qde;  (20)

Therefore, the true variance is expressed in terms of the un-
correlated variance as

D D
- m(z ad7'pdct)2(z pdctqdct) (21)
d=1 d=1

Notice the similarities between eq. (11) and (21) and also that
eq. (21) can be calculated in O (D) computations.

As we will see below, experimental evidence shows that eq.
(21) is accurate for values of mpq., not too high. This is a
reasonable condition for high dimensional applications such as
text-based language identification.

2.4. Adding and removing features

Since we are interested in feature selection, we need a mech-
anism to add and remove features from the analysis. All the
derivations thus far (eq. (3) to (21)) assume that all features are
accounted for.

The solution to the problem is simple. We simply define a
frequency feature x g that represents the sum of all frequency
counts that are removed from the analysis. Therefore we define
the following parameters:

PRe, = 1-— Z Pde,.
acc
DPRe, = 1-— Z Pdecy
accC
TR = m — Z Xd
acc
QRyr = log(pRcr) (22)

where C is the subset of all features that are included in the
analysis.

The analysis is practically the same as above, except for the
fact that pr., can grow large, depending on how many features
are used, and eq. (21) might be inaccurate. Therefore we need
to take correlation into consideration between features d C C'
and R.

Eq. (23), (24) and (25) are the new formulas that are equiv-
alent to eq. (4), (7) and (8) respectively:

L(@ley) = > (arza) + arewr 23)
dccC
H=m Z Pdey Odr + MPRe, ARy (24)
daccC

2 2
Oy =M [pdct Qde, Xdr — 2pdctpRCt adTaRT]
acc

+MPrc,Grey O‘?%r (25)

Notice that eq. (23) to (25) can all be calculated in O(Dc¢)
calculations, where D¢ is the number of features considered
(length of subset C). It is also important to notice that o2 ig-
nores all correlation between features in subset C, but takes all
the correlation into consideration with feature R. We can there-
fore use a modified version of eq. (21) to include all correlation.
The new version of eq. (21) can be expressed as

pdcr
- 011 E Qdr

acc  Re

( Z Pdcyqde; — MPReyqRe; )
dcc
(26)
Eqg. (26) can also be calculated in O(D¢) computations.

3. Error estimation from likelihood
distributions

Now that we have a Gaussian model with mean and variance
estimates for all the likelihood functions, we are in a position
to calculate an error rate estimate for all the different classes. If
we use the likelihood classifier for discrimination, the optimal
class choice (for minimum error) is given by [4]:

¢= max_ L; + log(pi), 27

1=



where L; = L(Z|c;) and p; = p(c;) is the prior probability of
class ¢;.

The probability of detecting class 7, when the real class is
7, 1s:

pij; = plc = ilc;) (28)
We can combine eq. (27) and (28) to get:

pij = pl(Li +log(p:) > L1+ log(p1)) N
(Li +log(ps) > L2 + log(p2)) N

(Li +log(pi) > Lo +logpe))les]  (29)

In addition, we can assume independence between all compar-
isons to get a pessimistic estimate:

C
pi; = | [ piris (30)
k=1

where

Pikl; = Pl(Lir > Tir)|c;] 3D
where L;;, = L;— Ly, and T, = log(pr) —log(p;). Notice that
Pix|; = 1 for i = k. Finally, for a binary (two class) classifier,
the expression in eq. (30) is exact.

In the previous section we estimated the probability density
function of L; fori = 1,2, ..., C, which we can use to find an
estimate for p;z|;. In order to do this we need a distribution
estimate for

D

Lix =L; — Ly = Z (ovai — og)xa (32)
d=1

Notice that eq. (32) is similar to eq. (4). Therefore we can
use eq. (7), (21) and (26) to estimate the distribution of L;x by
simply substituting aq, with (ag; — aar)-

Figure 1 shows how we can calculate p;j; from the distri-
bution of L;x:

1 1 Tik — Min;
Piklj = 5 — §€Tf[m

where p;x); and o;y); are the mean and variance estimates for
Ly, given class j.

Finally, we can calculate the overall error estimate of the
classifier and use it as a dissimilarity measure for feature selec-

tion: o
. 21:1 Pi|iPi
C C
D1 Zj:l Di|;Pj

4. Results

In this section we will investigate the validity of the various ap-
proaches derived above with a simulated problem consisting of
two multinomial classes with Bernoulli probabilities, as shown
in figure 2.

These two classes are generated over a feature space of 500
dimensions and all tests are done both empirically and with the
theoretical model given above. The empirical distributions are
calculated by generating 10000 multinomial samples of each
class and drawing a histogram for all the likelihood functions.
The error analysis is done by simply testing the error rate of the
10000 samples of each class. All tests are done with a Bernoulli
count m = 10.

] (33)

e=1 (34)
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Figure 1: Estimating p;y; from the probability density function
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Figure 2: Two classes generated with different Bernoulli feature
probabilities.

4.1. Probability distributions of Likelihood functions

In this section the theoretical distributions of two likelihood
functions will be compared to the empirical histograms. The
main reason for doing so is to illustrate the fact that the likeli-
hood functions are indeed approximately Gaussian.

Figure 3 shows the empirical and theoretical distributions
given by p([L(Z|c1)]|c1) and p([L(Z|c2)]|c1), where ¢1 and c2
are classes one and two shown in figure 2. Also, for this test,
only the first 200 features are used and m = 10. Therefore,
these are the distributions of the likelihood functions for ¢; and
c2, while the true class generator of the input vector is c;. It is
expected that p([L(Z|c1)]|c1) tends to higher likelihood values
than p([L(Z|c2)]|c1) since the true vector is from class ¢1.

It should be noted that only the first 150 features are use-
ful for classification, since classes one and two are identically
distributed from features 150 and onwards.

Notice that the overlap between the likelihood functions (in
figure 3) of classes one and two suggests that the error rate could
be high. However, this is not necessarily the case, since the two
likelihood functions are correlated. In fact, the correct likeli-
hood functions to use for error analysis are given by eq. (32).
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Figure 3: Likelihood distributions of classes 1 and 2 for features
0 to 200
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Figure 4: Mean curves for the modified difference likelihood
Sfunction Li2 for input vectors from classes c1 and c2 while in-
crementally adding features

4.2. Error analysis

In this section, the empirical error rate (10000 test samples per
class are used) of the naive Bayesian classifier will be compared
with the theoretical error rate predicted earlier. For all the tests,
we will use the two classes described in figure 2 with m = 10.
We will assume equal priors for both classes.

4.2.1. Effects of feature addition on likelihood means

Figure 4 shows the predicted likelihood mean values of L2 for
input vectors from classes ¢; and ¢z when features are incre-
mentally added into the analysis (see eq. (32) and (33)). Notice
that L;x is symmetric to Ly, in eq. (32) and therefore we only
consider Li2 and not L2;. Also notice that the mean value of
L1 does not change after feature 150 since the two classes are
identical afterwards, even though classes one and two have a
dense probability space between features 200 and 300 (see fig-
ure 2).

4.2.2. Effects of feature addition on likelihood variance

Figures 5 and 6 show the predicted likelihood variances for L1z
given input vectors from classes c¢; and co respectively. No-
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Figure 5: Variance curves for L12, given ci, when incremen-
tally adding features. Sampled values are compared to those
computed from two different approximations.
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Figure 6: Variance curves for Li2, given ca, when incrementally
adding features

tice again, that features 150 to 500 have very little influence on
the variances since the two classes are distributed identically on
these features.

One deduction that might be surprising from figure 5 is
that the variance starts decreasing when adding features beyond
about 100. This is understandable, since the cross-correlations
between different features are negative (refer to eq. (10)).

4.2.3. Effects of feature addition on classification error rate

Now we investigate the effect that feature selection has on the
dissimilarity measure and error estimate € (see eq. (34)). Figure
7 shows the empirical error rate (on a test set of 10000 sam-
ples per class) and the estimated error rate, while incrementally
adding features.

In figure 7, the estimated error rate has the correct overall
shape, but is proportionally less accurate when a large number
of features are employed. This is a consequence of our assump-
tion that all distributions are Gaussian. In fact, the distributions
are somewhat skewed, especially for small values of m. The
normal assumption is consequently less accurate for small error
rates. Even though € is a rather inaccurate estimate for the true
error rate, it can still be used as a good dissimilarity measure for
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Figure 7: Classification error rate € of Bayesian classifier while
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feature selection.

5. Conclusions

We have found that by using the Gaussian probability distri-
bution approximations we can get a useful error estimate for
feature selection in naive Bayesian classifiers. Even though
the error estimate is somewhat inaccurate for low error rates,
it still serves as a good dissimilarity measure between the dif-
ferent class distributions. The strong point of the analysis above
is that the mean and variance of all the likelihood distributions
are calculated accurately, independently of the final distribution.
The only assumption made on the distributions are that they are
composed as a sum of multinomial variables.

Usually, the likelihood distributions become Gaussian (and
therefore provide accurate error analysis) when many Bernoulli
trials are taken (high value for m), the dimensionality is high
(many features included in the analysis) and the total frequency
count on the used feature space isn’t too low.

Unfortunately, for applications such as Text-based language
identification, we cannot assume perfect Gaussian distributions.
For example, we would like to use small values for m. In this
paper we used m = 10 and the effect of this can be seen by
observing skewed Gaussian curves that would typically result
in poor error estimates for low error rates (since the tail of the
distribution is somewhat inaccurate). Future research will in-
vestigate whether more accurate estimates can be derived by
correcting for this deviation from normality.

In the analysis given above, all the feature probabilities
were assumed to be fixed. In real life applications, these prob-
abilities have to be estimated from training data and are there-
fore random variables themselves. To model this fact, one could
follow a Bayesian approach and take expectations over the dis-
tributions of the Bernoulli probabilities. However, for low di-
mensional spaces one would expect the probability estimates
on training samples to be accurate and therefore the Bayesian
approach is expected to provide little benefit. On the other
hand, when the problem expands into extremely high dimen-
sional spaces the feature probability estimates become inaccu-
rate. Even though these estimates are inaccurate, the distribu-
tions of different classes might become more mutually exclu-
sive. The naive Bayesian classifier that is trained on the inaccu-
rate probabilities might still perform very well (and often much

better than a lower dimensional classifier on the same problem).
For example, in Text-based language identification, we can in-
crease the performance by increasing the dimensionality of the
problem (increasing n for the n-grams), even though the fea-
ture probability estimates become inaccurate. Hence, the full
Bayesian analysis may be important in practice. A particular
issue that will be addressed by such an analysis is the proper
treatment of observations that occur in the test set, but not the
training set. Eq. (4) would assign negative infinity to the log
likelihood function, which is not a good choice in many practi-
cal situations. The theoretical basis developed in this paper will
help us choose more suitable values for this penalty.

We also intend to use this analysis to gain a more intuitive
understanding on the contribution of individual features, and
to apply that understanding to improve the performance of our
language-identification system.
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