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Executive summary 
 
Previous fundamental research projects have indicated the value of continuous closure 
measurements for improved support design and hazard assessment and for quantifying the 
effect of seismicity on stope closure. This project examined the feasibility of a mine-wide 
continuous closure monitoring system. A RMT remote reading telltale system was modified to 
operate as a closure system and installed at Mponeng Mine. Unfortunately, this system did not 
succeed in collecting data from a large number of closure stations. Nevertheless, some valuable 
lessons were learnt. The two most serious problems experienced were communication 
problems from underground to surface and maintaining continuity of the cabling in the stope. 
 
Three types of closure meters were designed and evaluated during the project. These designs 
operated satisfactorily. The cable network used in the stope presented a major challenge in 
terms of maintenance. Mining activity and falls of ground resulted in frequent cable damage. In 
conclusion, cable connections in the stope for a mine- wide closure system is not seen as a 
viable option. Radio communication is probably the best method to link closure meters to a data 
logger located elsewhere in the stope. Further problems were experienced with the 
communication system to surface. The RMT system required a copper link to surface. This was 
not available at Mponeng and attempts to use the fibre optic network were not successful. In 
future, mine-wide closure systems should be designed with the necessary flexibility to link-in 
with the existing mine communications systems, whether it is fibre optic, copper of leaky feeder.       
  
Following the problems experienced with the RMT system, SIMRAC requested Miningtek to use 
the remaining funds to collect data from one site only using stand-alone closure meters. The site 
chosen was the 109/51 area at Mponeng Mine. Four panels were instrumented with CSIR 
closure meters. During the three month period of monitoring, only two significant events 
occurred. These were seismic events on 21 November 2002 and 17 January 2003 causing 
significant falls of ground in some of the panels. A very significant finding for mine-wide closure 
monitoring was that there is a very good correlation between the amount of instantaneous 
seismic closure in the panels and where the damage occurs. In both cases the falls of ground 
occurred in the panels with the highest amount of instantaneous seismic closure, even though 
the seismic events located closer to other panels that remained undamaged. For both seismic 
events, some increase in the steady-state closure rate was observed for some hours preceding 
the event. There is, however, not enough evidence to prove that this increase in closure rate 
can be used as a precursor to damaging seismic events.  
 
A useful parameter calculated from the closure data is the closure ratio (CR), which is the ratio 
of the instantaneous blasting closure to total closure following a blast. Note that this parameter 
is only defined for the closure following a blast and not a seismic event.  Calculation of this 
closure ratio for closure data collected in earlier projects showed that it is a very good measure 
to identify different ground conditions and possible hazards. Closure ratio values greater than 
0.4 (measured in VCR stopes with a hard lava hangingwall) are typically associated with strain 
bursting conditions, while low values (< 0.1) are associated with significant risks of falls of 
ground. The typical closure ratio calculated for the experimental site at Mponeng Mine was 0.5. 
Fortunately no face bursting occurred during the period of monitoring but any possible changes 
in closure ratio preceding bursts could therefore not be investigated. 
 
Another preliminary finding is that it appears that the closure ratio is relatively independent of 
position along the stope face. This implies that the exact position of the closure meter in the 
panel might not be critical when calculating the closure ratio, while the exact position must be 
known when analyzing the total amount of closure. This hypothesis requires further validation.    
 
Some numerical modelling using DIGS was conducted to verify the usefulness of the CR 
parameter.  It was found that these initial results support the utility of the closure ratio in 
discriminating the response of different geotechnical environments. However, the present 
numerical simulations do not support more definite trends of the closure ratio as a function of 
time or as a predictor of incipient face stability. 
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Glossary of abbreviations, symbols and terms 
 
Abbreviations 
 
RF  Radio frequency 
CR  Closure ratio 
 
Terminology 
As much confusion surrounds the terminology used with closure measurements, the following 
terms as defined in Malan (1999b) will be used in this report.        
 
Closure 
Relative movement of the hangingwall and footwall normal to the plane of the excavation.  
 
Ride 
Relative movement of the hangingwall and footwall parallel to the plane of the excavation. 
 
Convergence 
Elastic component of closure.  
 
Long period closure measurements 
Discrete closure measurements with a typical interval of 24 hours or longer between successive 
data points.  
 
Continuous closure measurements 
Closure recorded in a continuous fashion with suitable instrumentation such as clockwork 
closure meters. Closure collected with electronic data loggers with a sample frequency of 
greater than 1 sample/15 minutes will also be referred to as continuous.  
 
Time-dependent closure 
Slow ongoing closure observed between successive blasts when there is no change in the 
mining geometry. It consists of a primary and steady-state phase.  
 
Primary closure phase 
This is the component of time-dependent closure following a blast and is characterized by a 
period (≈ 3 to 5 hours) of decelerating rate of closure. It is also observed after large seismic 
events. 
 
Steady-state closure 
The component of time-dependent closure following the primary closure phase. The rate of 
steady-state closure appears to be constant in the short term but it gradually decreases when 
there is no blasting or seismic activity.  
 
Instantaneous blast closure 
The instantaneous closure component occurring at blasting time. Due to the delays in the 
detonation sequence between adjacent blast holes in the face, this closure phase is not really 
instantaneous at blasting time but can last for several minutes. 
 
Instantaneous seismic closure 
The instantaneous stope closure occurring during a seismic event. Similar to the blast closure, 
the instantaneous seismic closure is followed by a primary and steady-state closure phase. 
 
Closure ratio  
The ratio of the instantaneous blast closure to total closure following a blast. Note that this 
parameter is only defined for the closure following a blast and not a seismic event.   
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1 Introduction 
 
Work in the SIMRAC projects GAP332 and GAP601b indicated that continuous stope closure 
measurements may be a very valuable diagnostic tool in the interpretation of rock mass 
behaviour. Especially in the areas of hangingwall stability, the risk of falls of ground and 
effective support design, little information can be obtained from existing seismic systems. Much 
can be gained from a systematic programme of closure measurements to complement the 
seismic data. Some specific examples where continuous stope closure measurements may be 
useful include: 

• Identification of different geotechnical areas (Malan and Napier, 1999) 
• Identification of areas with high face stresses and therefore prone to face bursting 

(Malan, 1999a) 
• Identification of areas with a large rock mass mobility leading to unstable hangingwall 

conditions (Malan, 1999a) 
• Estimation of closure rates at different mining rates needed for effective support design 

(Malan, 1999b) 
• To assess the effectiveness of preconditioning (Malan, 1999a) 
• To assess the effect of seismicity on stope closure (Malan, 1998) 

From these studies, the concept of a continuous real-time mine-wide closure system was born 
as it was felt that the design parameters and hazard identification tools available to rock 
mechanics engineers would be greatly enhanced by such a system.  
 
In spite of the enormous benefits of such a system, from the onset it was known that such a 
closure system could be difficult to maintain, as the closure transducers would have to be 
moved forward on a regular basis as faces were blasted. Studies by Malan (1998) also 
indicated that the distance to face for each instrument on a particular day would be needed to 
perform an effective analysis of the closure data. To further examine the practical problems 
associated with these systems, the SIMRAC project GAP705 (Malan et al, 2000) investigated 
the feasibility of a mine-wide closure system for gold mines. The logical next step was then to 
develop a small-scale prototype to test the various hardware options in underground conditions.        
 
As a continuation to GAP705, SIMRAC proposed collaboration between CSIR Miningtek and 
Groundwork Consulting (Pty) Ltd and the use of an existing RMT remote-reading telltale system 
to collect the closure data. Unfortunately, due to problems experienced with the RMT closure 
system, only limited data was collected for the period from April 2001 to March 2002. This data 
was not suitable to achieve the objectives of this project.  After a meeting was held between 
SIMPROSS and members of the industry on 10 June 2002, it was decided that no additional 
funding would be given to this project. The request from SIMRAC was that Miningtek use the 
remaining funds to collect significant data at one site only. There should also be no attempt to 
collect data in real time. This data should be used as further validation of the benefits of such a 
system. 
 
Although insufficient data could be collected from the RMT system, valuable lessons were learnt 
from the implementation of this system and these are summarised in Chapter 2. 
 
Additional closure data was subsequently collected at Mponeng Mine using stand-alone closure 
meters over a period of three months. The closure collected and the value of these 
measurements are discussed in the report.       
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2 Implementation of a pilot-scale, real-time, remote 
monitoring closure system 
 

2.1 THE RMT REMOTE READING TELLTALE SYSTEM 

2.1.1 System Overview 
The RMT system was originally designed to remotely monitor roof displacement and bed 
separation in collieries using electronic telltales as transducers.  Telltales have become 
established worldwide as an effective means of identifying and measuring roof deformation in 
underground coal mines, providing a major contribution to safety.  Mechanical telltales, which 
are anchored in small diameter boreholes and operate in a similar manner to extensometers, 
give a visual warning of rock deformation through the movement of an indicator. 
 
With the Remote Reading Telltale system designed by RMT, up to 400 telltales can be 
integrated into a mine-wide monitoring system to provide real-time data of roof condition on a 
surface computer.  The system allows up to 100 telltales to be strung together along 4 separate 
tunnels in a simple “daisy chain” configuration using a twin core connection cable.  As each 
tunnel advances, new transducers can be added.  At the other end, the cable of each 
transducer chain is connected to an underground interrogation and communications unit.  This 
sends data to the surface computer using a twisted wire pair and provides local interrogation 
and diagnostic facilities.  Up to four interrogation units can be connected to a single computer.  
 
Software is available to provide a simple user-friendly interface.  The standard display provides 
information on the current reading and recent deformation history of all the installed telltales.  
The software provides an archiving facility to allow a subset of the data to be stored for later 
access.  In addition, the Boltmon software must be loaded onto the surface computer to control 
the entire system. This captures the data from each transducer at a regular time interval as 
required by the system operator. 
 

2.1.2 Communications architecture  
To address and interrogate each transducer in turn, the underground communications unit uses 
a frequency-based method.  This overcomes the danger of sensitivity to poor connections in the 
harsh underground environment.  The transducers can be installed and connected by the 
mining workforce without the need for electrical specialists. 
 
Each transducer is supplied with a unique pre-programmed address from 1 to 120 and can be 
connected in any order.  The 20 additional addresses are provided to allow any units which 
develop faults, to be replaced by a spare without the need to use the same address for the 
replacement.  This reduces the number of transducers that are held in stock by the mine.   
 
The communications interface unit build into the telltale, uses a modem chip controlled by a 
micro controller to generate and receive frequency shift keying (FSK) communications.    
 

2.2 System components 

2.2.1 The Underground Interrogation Unit (UIU) 
 
The interrogation unit used for local interrogation and diagnostic purposes is housed within a 
wall-mounted steel case with lockable access to the inner control panel (see Figure 2.2.1a).  
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Although the electronic modules, located behind the inner control panel, are sealed against any 
penetration of mine dust, the front access should always be kept closed and locked.  The RMT 
system has intrinsic safety approval. 
 
The interrogation unit must be connected to an approved 12V DC power supply.  The power 
supply cable, communications cable and transducer linking cable enter the wall-mounted case 
via a cable point to a labelled terminal block situated on the lower part of the interrogation unit 
front panel. 
 
The function of the Underground Interrogation Unit is to: 
 

• Generate transducer selection signals and process the returning signals from the 
activated transducers. The transducers can be activated either by using the local 
channel select control or remotely from surface by computer instruction.  There is a knob 
on the UIU to select local or remote mode (see Figure 2.2.1b). 

• Provide a means of locally controlling and viewing each transducer. 
• Interface with a dedicated communication link (twisted copper pair) to a surface 

computer. 
• Provide a power supply to the transducer cable line and to the interrogation unit’s 

internal circuitry. 

            
                                   (a)                                                                          (b) 

Figure 2.2.1 a)  The UIU in protective casing and b) the UIU control panel. 
 

2.2.2 The Surface Interrogation Unit (SIU) 
 
The main function of the Surface Interrogation Unit is to convert FSK, which is the 
communication medium between the SIU (surface) and UIU (underground), into RS232, which 
is standard computer protocol used for communication purposes.  This enables the closure data 
from the transducers to be interpreted and stored by the computer.  The RS232 signal can only 
be reliably conveyed over a limited distance of up to 3 m and hence the SIU has to be located in 
close proximity to the computer. 
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Figure 2.2.2 The Surface Interrogation Unit. 

 

2.2.3 The Cabling Network 
 
The transducers are interlinked by means of a twisted copper pair, which in turn is connected to 
the UIU.  The system was designed such that the UIU can be connected to the SIU via a single 
pair of copper cable (typically a telephone line on the mines).  The SIU is then connected to the 
computer by means of a normal serial cable. 
 
 
2.2.4 The Telltale Transducers 
 

The transducers are designed to give an on-site visual indication of the displacement as well as 
an electronic signal for remote reading. Two cylinders are attached via stainless steel wires to 
anchor springs installed at different heights in a 35 mm borehole.  The upper cylinder (“A” in 
Figure 2.2.3) is attached to the lower spring, which is anchored near the collar of the borehole.  
The lower cylinder (B) is attached to the upper spring anchored at a depth that is typically at 
least twice the depth of the installed bolts in the area.  Movement of the rock within the typical 
depth of rockbolting is registered on the A indicator and is displayed visually by the plastic 
reference tube.  Movement of the rock at a depth greater than the installed rockbolts is 
displayed on the B indicator and read relative to the bottom of the A indicator. 
 
Each indicator cylinder is marked with 3 different colour bands at 25 mm increments. A 
millimetre scale is also included.  The colour bands allow instant recognition of the magnitude of 
movement by any person passing the transducer.    If the green band can be seen, less than 25 
mm of movement has occurred.  If the yellow band can be seen but not the green band, 
between 25 mm and 50 mm of movement has occurred.  If only the red band is visible, more 
than 50 mm of movement has occurred.  The millimetre scale allows for accurate reading of 
each indicator. 
 
In addition to the visual indications of movement described above, the transducer measures the 
displacements of the two indicator cylinders electronically.  It uses the principle of changing 
inductance of a coil as a ferrite rod moves through it.  This measurement method has the 
advantage of no moving contacts and is superior to low cost measuring devices using the 
measurement of changing electrical resistance. 
 
The onboard electronics include an address recognition system and a measurement circuit, 
which converts the measured inductance to a frequency for transmission to the underground 
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interrogation unit.  The accuracy is better than 0.5 mm.  The circuit is designed to be intrinsically 
safe and to have extremely low power consumption.  In the dormant mode, the current 
consumption per transducer is only 0.6 mA.  All power can be supplied from a single 12 V power 
supply connected to the underground interrogation unit.  The transducers do not use any on-
board batteries and are therefore maintenance free. 

 
 
Figure 2.2.3 The RMT roof mounted remote reading telltale.  

 
 

 

2.3 Required modifications to the RMT system 
 
2.3.1 The transducers 
The RMT transducer design was not considered suitable for the purposes of the GAP852 
project.  The closure meters were to be installed in the stope as opposed to the coal mining 
application where the transducers were installed in the roof.  Therefore, the transducer design 
had to be more robust and able to withstand mining operations and the harsh environmental 
conditions.  The need to place the transducers within 4 to 5 m of the advancing face placed 
particular demands on the closure meter design.  Between the period May and July 2001, a 
significant amount of time was spent on modifying the transducer.  The transducer consisted of 
the same inductance circuit (a ferrite rod and coil combination) as the RMT telltale, a gearing 
mechanism to drive the ferrite rod in and out of the coil and the standard RMT circuit board to 
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convert the inductance measurement into a frequency signal that could be interpreted by the 
UIU.  The transducer casing had to be manufactured from a non-ferrous material to prevent 
interference with the sensitivity of the inductance circuit (Figure 2.3.1). 
 

 
Figure 2.3.1  The modified transducer in a plastic housing. 

 

2.3.2  The closure meter design 
 

Since the closure meters had to be kept as close to the face as possible, the housings were 
designed to be as blast resistant and robust as possible.  The Mark I closure meter was a 
spring-loaded telescopic unit designed to ensure hangingwall and footwall contact and was 
manufactured from mild steel (see Figure 2.3.2).  Initially three closure meters of this type with 
channel numbers 7,14 and 89 were installed ahead of the backfill approximately 4 m back from 
the face directly exposed to the blast.  After the second blast, two of the closure meters were 
damaged by the blast and had to be replaced.  Although it was decided that the closure meters 
were to be installed in a rib left open between the backfill to protect the instruments from blast 
damage, it meant that the instruments could only be moved forward once an open rib was made 
available closer to the face.  This compromised the requirement that the instruments should be 
kept as close to the face as possible and within the 15 m distance to face limit.  After a month of 
monitoring, a few changes were necessary which led to the design of the Mark II housing (See 
Figure 2.3.3).  It was decided to change the inner tube from mild steel to stainless steel since 
corrosion of the mild steel could interfere with the free movement of the inner tube as closure 
took place causing it to stick, resulting in inaccurate closure profiles.  A removable seal was also 
designed to allow for any grit that may have accumulated between the two tubes to be removed.  
The Mark II closure meters were then installed in the second panel to be instrumented.  
Although this design was well suited to the stoping environment, it proved very costly and time 
consuming to manufacture. However, it should be noted that these closure meters are still 
operational after 18 months in the stoping environment.   
 
A third type of closure meter, the Mark III was designed to be cost effective without 
compromising its durability and ability to produce reliable results. HDPE was selected as a 
cheap, light and durable material that is normally used for the manufacture of blast barricades.    
Unfortunately, HDPE in the form required was not always readily available so it was decided to 
use an alternative plastic material, Polypropylene.  This material is just as durable as HDPE, but 
is more brittle.  For this reason it was decided to install these closure meters behind a backfill 
rib.  For the Mark III instruments, a bolt type of attachment of the closure meter to the 
hangingwall was used to ensure contact at all times, as the design did not include the spring 
load mechanism.  The three types of closure meters can be seen in Figures 2.3.2 to 2.3.4. 
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Figure 2.3.2 The Mark I telescopic closure meter. 

 
Figure 2.3.3 The Mark II Telescopic Closure Meter. 

 
Figure 2.3.4 The Mark III Telescopic Closure Meter. 
 

2.3.3 Cabling 
Cabling as part of a remote reading system was always anticipated to be a problem.  Since it 
would be exposed to blasting, cabling that was blast resistant, easy to transport, install and 
easy to replace in sections was required. SMX blast cable (LTM) consisting of a single copper 
pair of wire and RCA plug connectors on either end (Figure 2.3.5) was used.  This made it easy 
to connect. It was also available in various standard lengths (3 m, 5 m, 10 m and 20 m).  Used 
on its own, this cabling is not blast resistant and is prone to physical damage.  Therefore, it was 
inserted into a steel protective sheath (DB10), improving its durability and blast resistance (see 
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Figure 2.3.6).  Due to manufacturing limitations, the DB10 could not be fitted right to the ends of 
the LTM cabling and so connector covers were developed to protect the exposed copper 
cabling and the joint between the plugs (see Figure 2.3.7).  Each cover was fitted with a chain 
link for ease of attachment and a screw on either end for secure attachment to the DB10.  
Furthermore it prevented any force or tension on the cable from being exerted directly on the 
copper cabling or plug connections which could result in them being disconnected.  This DB10 
cabling was used in all the high-risk areas and was extended from the centre gully or raise to 
the face area.  From the centre gully, normal LTM cabling (blasting cable) was extended all the 
way through to the cross-cut, attached behind existing electrical cable, reducing the risk of 
physical damage. 
 

 
Figure 2.3.5 The LTM cabling and RCA plugs. 

 
Figure 2.3.6 The LTM Cable inside the DB10. 

 
Figure 2.3.7 The Connector Cover. 
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2.3.4 The UIU power management system 
 

The UIU box was installed inside an electrical enclosure as an additional protective measure.  
The UIU required a 12 V DC power supply.  Initially a 12 V, 18 AH battery was used as a power 
source for the UIU.  The idea was to use two 12 V batteries interchangeable on a fortnight 
basis.  However, this did not prove to be reliable and hence a permanent power management 
system was developed to ensure that the system had a reliable power source (Figure 2.3.8).  A 
transformer was installed next to the UIU, which converted the 550 V power supply from the 
gully rig to 220 V.  An internal transformer, part of the power management system, converted 
the 220 V to a 12 V DC supply. 
 
The power management system included three sealed lead acid batteries (7 AH) as can be 
seen in Figure 2.3.8.  The batteries acted as a back-up power supply in the event of a power 
failure. The circuit also incorporated a battery charging function.  Note that the power 
management system was incorporated into the existing UIU box. 
 

 
Figure 2.3.8 The power management system. 
 

2.3.5 The Boltmon Software 
 
As mentioned above, the Boltmon software had two main functions;  to control the interrogation 
of each transducer and facilitated the recording and storing of the transducer data and to 
provide a visual display of the data as a frequency measurement and operational status of the 
system.  Although the transducers could be connected in any order, Boltmon interrogated each 
transducer in numerical order in terms of the channel number. 
 
Boltmon was designed to store the data in a text format, which was written to the same folder as 
where the Boltmon software was stored.  The recording interval could be selected in multiples of 
15-minute intervals, up to an hour, depending on the application.  However, the data was stored 
as a frequency value rather than a displacement measurement.  Therefore, a new program 
called Monitor was developed to convert the frequency measurement into a displacement 
measurement, as per the calibration curves for each of the transducers, and to provide a 
graphic interpretation of the closure data as a function of time.   
 
Initially Monitor was designed to import the frequency data from the text file at a delayed rate of 
16-minute intervals as opposed to the 15-minute interval recording rate selected in Boltmon.  
This 1-minute delay was to ensure that all the readings in the text file had already been stored 
before importing into Monitor.  Unfortunately, this approach caused a problem.  Although the 
text file would store the data as per the recording interval, Boltman did not write the data to the 
text file at the exact time as recorded.  The data would be stored in the background and would 
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only be written later, at an unknown time.  This meant that when Monitor imported the readings 
from the text file at a particular time, it would import zeros since the data had not yet been 
written to the text file. 
 
To solve this problem, the Boltmon software had to be modified.  The latest version of Boltmon 
allows the selection of the rate at which the text file is updated.  The best option is to select a 1-
minute update interval to ensure that the readings are already stored in the text file by the time 
Monitor imports the data. 
 
Another minor problem with Boltmon was that if any of the settings were changed, such as the 
recording rate or the addition or deletion of any transducers, the changes would only take effect 
when a new text file was opened or when Boltman was closed and re-opened. 
 

2.4 The Mponeng site 

2.4.1 Site Description 
 

The 94/44 area at Mponeng Mine was initially chosen as the project site.  Three closure meters 
were installed in the E3 panel.  However, due to delays in establishing the communication link 
to surface and poor grade in this area, the site had to be moved further down the raise line.  
This was ideal in terms of the project objectives since the panels on the east side were 
advancing towards a dyke, which meant that a significant amount of seismic activity was 
expected in this area.   
 

2.4.2 Installation of the UIU 
 

The UIU was installed in the cross-cut at the stope entrance where an existing gully rig was 
present.  The area was well illuminated, secure and out of the way of mobile machinery.  To 
avoid tampering, the electrical enclosure was painted orange to match the colour of the gully rig 
to make it as inconspicuous as possible (see Figure 2.4.1). 
 

 
Figure 2.4.1 The UIU at the stope entrance.   
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2.4.3 The transducer locations 
 
 
Three closure meters were to be installed per panel, one at the top, one in the centre and one at 
the bottom of the panel.  Previous studies (Malan et al, 2000), showed that it was necessary to 
keep the closure meters no further than 15 m behind the face.  Therefore, the meters had to be 
moved forward on a regular basis.  Initially they were installed ahead of the backfill and 
although the closure meters proved to be blast resistant, the cabling was a problem.  If the 
closure meters were installed ahead of the backfill, it was difficult to gain access to them as the 
broken ore accumulated in the back area, which meant that they could only be moved forward 
once the back area was cleaned.  This made them very prone to scraper damage and difficult to 
move forward on a regular basis.  The cabling was also at high risk of being damaged by 
scraper activity during the cleaning operation. If the cabling was damaged at a particular point, 
the entire system could be rendered non-functional.  It was therefore decided to install the 
closure meters behind a backfill rib, which protected them from blast and scraper damage and 
provided convenient access.  However, an open backfill rib had to be available first before the 
closure meters could be moved forward, during which time the maximum distance to face of 15 
m could be exceeded.  Further problems associated with this method will be discussed later in 
the report.   
 

 

2.4.4 The cabling layout 
A schematic representation of the cable layout can be seen in Figure 2.4.2.  A main cable (a 
combination of DB10 and LTM) was extended down the centre raise along existing electrical 
cabling to offer added protection and to make it as inconspicuous as possible.  DB10 cabling, 
which was connected to the main line by means of connector pieces, was further extended 
down the strike gullies of the panels and attached along the backfill to the closure meter 
positions.  As the faces advanced, the closure meters would be moved forward and cables 
extended along the strike gullies.  This layout provided a permanent, once-off installation for 
most of the cabling. 
 

 
Figure 2.4.2. The cable layout. 
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2.4.5 The communication link to surface 
 

The RMT system was designed so that a single copper wire pair can be used for the 
communication between the SIU (surface) and the UIU (underground).  Unfortunately, Mponeng 
Mine did not have a spare copper cable pair available at the position where the UIU was 
situated underground, to the Rock Engineering Department on surface.  The only 
communication channel available was a fibre optic network which was part of the mine-wide 
seismic system.  It was therefore decided to use the seismic system communication 
infrastructure since it already had an established copper cable network on various levels in the 
haulages and a communication link to the Rock Engineering Department. 
 
From the UIU in the 94/44 cross cut, LTM and DB10 cabling (in high risk areas) was extended 
along the crosscut to the haulage where it was connected to a spare copper pair of the seismic 
cabling.  This cabling extended all the way to 81 level.  From 81 level, it was connected to the 
surface interrogation unit, which in turn was connected to a modem using a copper to fibre 
interface.  The fibre optic link extended all the way to the Rock Mechanics department on 
surface (see Figure 2.4.3).   
 

 
Figure 2.4.3 The communication link to surface. 
 

Normally the SIU would be situated on surface in close proximity to the computer.  The SIU can 
only operate by means of a copper link and since there was only a spare copper cable pair 
available up to 81 level, it meant that the SIU had to be situated underground rather than on 81 
level.  The problems associated with this link will be discussed later in the report. 
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2.5 Data collection 

2.5.1 Initial results 
 

The RMT monitoring system was commissioned during October 2001.  The first three 
transducers were installed and the continuity and quality of the data proved to be very 
promising.  The plan was to gradually increase the number of transducers by instrumenting two 
panels per month until six panels were monitored.  The graph below shows the data obtained 
from the three closure meters in the E3 panel between 23 October 2001 and 7 November 2001. 
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Figure 2.5.1 Initial closure data collected. 
 

Although there was no data collected between 4000 and 6000 minutes, because of cable 
damage, the remaining recordings illustrated that the system had the potential to deliver good 
quality data.   
 

2.5.2 Monitoring problems 
 

Unfortunately, significant monitoring problems started as soon as additional closure meters 
were added to the system.  A major problem was in terms of communication and maintaining 
continuity of the cables in the stoping environment.  The more closure meters that were added 
to the system, the higher the risk of damage due to the expanding network of cabling.  This is 
demonstrated by the loss of data in the graph in Figure 2.5.2 between the period 8 November 
and 6 December 2001. 
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Figure 2.5.2 Problems in maintaining continuity of data. 
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Figure 2.5.3 Position of the closure meters.
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The Mark II closure meter (Channels 13,15 and 83) was re-designed with the intention of 
overcoming the stick-slip problem and these meters were installed in the 99/44 E7 panel on 5 
December 2001.  Eventually the three closure meters, Channels 7,14 and 89 from the 94/44 E3 
panel, were moved to the 99/44 E6 panel.  The remaining two panels were instrumented with 
the Mark III closure meters.  Unfortunately, problems with the communication link and regular 
occurrence of cable damage due to the expanded cable network persisted.  These problems 
were compounded by software problems to such an extent that no meaningful data was 
collected after December 2001.  
 

2.5.3 Termination of the real-time monitoring experiment 
 
 

 

E7

E6

E5

E4

Figure 2.5.4 Positions of the panels at termination of the real-time monitoring 
experiment. 
 

During the time interval taken to solve the communications problem and maintain continuity of 
the cabling, the E7 and E6 panels reached the pillar boundary against the dyke.  The E5 and E4 
panels were also reaching their limits, with E5 having only one more month of mining to go and 
E4 only two.  This created a problem since Miningtek required at least three months worth of 
quality data for analysis.  At the time there was no indication of how long it would take to resolve 
the communications problem. 
 

Originally two sites were chosen for data collection, Mponeng and East Driefontein.  With the 
problems experienced at Mponeng it was suggested by Miningtek that all efforts should be 
made to get the Mponeng site up and running before starting at East Driefontein.  East 
Driefontein had the same communications infrastructure as Mponeng and hence the same 
communications problems were anticipated.  Unfortunately, the time taken to resolve the 
problems at Mponeng spanned over the duration allowed for the entire project.  This ultimately 
meant that the project had to be suspended and eventually terminated due to depleted funds. 
 

2.6 Evaluation of the modified RMT system 

Although the RMT system appeared to be successful initially, a number of problems were 
experienced with the system.  The two most serious problems were the communications from 
underground to surface and maintaining continuity of the cabling.  The experience gained and 
problems encountered with each of the system components are addressed individually below. 
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2.6.1 The transducers 
 
Problems were experienced with some of the circuit boards in the closure meters, resulting in 
the data being corrupted.  It was not clear what caused this and the phenomenon could not be 
reproduced in the laboratory.  The faulty circuit boards were replaced and the problem did not 
reappear. 
 

2.6.2 The closure meter design 
 

The advantages and disadvantages of the three types of closure meters that were developed 
and evaluated during the project are considered below: 
 

Mark I 
ADVANTAGES DISADVANTAGES 

• Relatively blast resistant • Manufactured from mild steel, therefore 
not corrosion resistant 

• Relatively cheap 
• Due to the corrosion problem, it tended 

to stick resulting in inaccurate closure 
profiles 

• Easy to install 
• Grit accumulated between the two 

telescopic tubes, hence also 
contributing to the stick-slip problem 

• Spring loaded to maintain contact 
between the hangingwall and footwall 

• Housing plugs were not well designed, 
therefore it was difficult to connect 
interlinking cabling and maintain 
connectivity 

• Very rigid 

• The protective plate (to protect the 
plugs when exposed to blasting) 
interfered with the installation when 
installed close to support units  

• Relatively lightweight 
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Mark II 
ADVANTAGES DISADVANTAGES 

• Relatively blast resistant • Expensive 

• Easy to install  
• Spring loaded to maintain contact 

between the hangingwall and footwall 
 

• Very rigid  
• Plugs well designed for easier 

attachment to the cabling 
 

• Removable seal to prevent grit from 
accumulating between the telescopic 
tubes  

 

• Narrow profile allowing installation 
close to a support unit for additional 
protection  

 

• Relatively lightweight  
• Stainless steel inner tube which 

eliminated the corrosion problem and 
hence ensured free movement of the 
inner tube as closure took place 

 

 

 

Mark III  
ADVANTAGES DISADVANTAGES 

• Cheap • Not very rigid, therefore susceptible to 
buckling 

• Lightweight  
 

• Not spring loaded, therefore it had to be 
attached adjacent to an elongate or 
backfill for support which could affect 
the accuracy of the readings 

• Easy and cheap to replace components 
if damaged 

• Not as resistant to damage as the steel 
housings 

• Not susceptible to corrosion  

 

2.6.3 Cabling 
 
It was anticipated that in-stope cabling was going to be a challenge.  Where possible it was 
attempted to attach the cabling to existing cables in such a way that it would be further 
protected.  However, mining activity and rock falls in the stopes contributed the most to cable 
damage.  For example, when panel E7 reached its boundary limit, the reclamation of pipes and 
power cables resulted in most of the cabling being damaged.  Furthermore, when the travelling 
way was wire meshed and laced, it also resulted in the cabling being damaged.  When any 
cabling was damaged, it was often very difficult to replace it immediately and it normally took at 
least a day or two to re-establish the connection to surface. 
  
Short lengths of cable were selected to facilitate replacements.  However, the problem with this 
approach was that the 10 m lengths of DB10 cabling were connected in a series fashion 
resulting in many connection points.  Although the RCA plugs were easy to connect to one 
another, the connections were not very strong, which made it very susceptible to be being 
disconnection.  As a result of the multiple connections, it was very difficult and time consuming 
to locate any break in the cabling.  This meant that a cable system such as the one at Mponeng 
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would require high maintenance and hence result in costly labour requirements.  Three hundred 
man-days were spent underground between September 2001 and February 2002.  If a system 
like this were to be installed on a mine on a routine basis, this would not be feasible due to the 
costly labour requirements.  If cabling were to be installed in areas where the risk of damaged is 
high, then it is suggested that a continuous cable be used with a limited number of junction 
points.  Cabling can definitely be considered in applications where the positions of transducers  
are fixed such as in backfill monitoring applications and shaft pillar extractions. For these 
applications, cabling does not have to be extended continuously and the junction points can be 
limited to the minimum.  
 
Since there is always human activity in the stoping environment, any cabling is at risk of being 
damaged.  The transducers were connected to a main cable line in the centre raise and if this 
cable was damaged, any transducers beyond the break would then be isolated from the system.  
Also, if a cable is damaged and a short circuit occurs, all the data is corrupted until the problem 
is resolved.  A wireless system would have the advantage of each transducer being 
independent with greater reliability than the current RMT system.  
 

2.6.4 Communication to Surface 
 
As mentioned already, the RMT system design required a copper link between the SIU and UIU.  
Mponeng Mine could not provide a copper link to surface and therefore the system had to be 
linked to a fibre optic network.  This interface proved to be problematic.   

 
The communication protocol between the modem rack underground and RAD unit on surface 
as illustrated in Figure 2.4.3, is RS232.  The RAD unit is also a modem rack, which is an 
interface between the fibre optic and copper cables.  The output signal from the surface 
interrogation unit was assumed to be RS232 and hence it was thought that it was possible to 
connect it to the RAD unit underground instead of on surface.  However, the problem arose that 
the RS232 output from SIU was not strictly speaking RS232.  The RAD unit accommodated a 
RS232 signal with a voltage range between –12 V and +12 V, whereas the output from the SIU 
had a voltage range between 0 and +5 V, resulting in a communication delay between the 
outgoing signal from Boltmon and the return signal from the UIU.  Hence, the time taken to 
scroll through the closure meters was significantly longer than anticipated.  Initially this was not 
a problem with only three transducers installed. However, when there were 18 transducers 
linked to the system, the time taken to scroll through all 18 transducers was longer than the 
maximum recording time window of fifteen minutes.  The readings for all 18 transducers could 
not be written to the text file within the recording interval of fifteen minutes.  This resulted in the 
loss of continuous data.  RMT subsequently manufactured a RS232 rectifier to improve the 
communication problem and although it did improve matters, the time taken to scroll through all 
18 transducers was still considerably longer than the maximum 15 minutes interval time.  For 
this reason it is believed that the RMT system is only suited to applications where a direct 
copper link is available to surface. 
 

2.6.5 The software 
 
Although the current software can be used effectively, it requires that the Monitor program be 
running continuously for it to be operational.  If the program were to run efficiently, it would be 
best if the program were installed on a dedicated computer with little interference.  When other 
applications are opened on the same computer, the Monitor program becomes unstable.  It was 
subsequently decided to import data only once a day.  The data would be imported from the text 
file at 01:00 in the morning, which reduces the risk of the program becoming unstable due to the 
operation of other software applications. 
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2.7 Recommendations 

2.7.1 Suitability of the current system 
 
Although not successful, the trial application of the RMT system as a mini mine-wide stope 
closure monitoring system has highlighted important issues for the design and implementation 
of a mine-wide remote reading closure system.  The system has demonstrated that remote 
reading is possible and can be successful.  This has laid the foundation for the successful 
enhancement of the current system or development of a new system, which will be reliable 
enough to provide continuous real time closure data on surface. 
 
The main area of concern is the communication network.  The RMT system has demonstrated 
that cabling does not work well in the stoping environment since transducers have to be moved.  
This is a high maintenance, labour intensive and unreliable method of communicating in the 
stopes.  Furthermore, the RMT system has also demonstrated that a remote reading system 
needs to be flexible in terms of communication infrastructure.  It has to be able to be 
incorporated into existing infrastructure on any mine and should not be dependent on only one 
communication type.  Most mines today are moving towards new generation communications 
networks such as fibre optics and leaky feeder systems and any mine-wide closure system 
should be able to use these networks.  For these reasons, the RMT system is not well suited to 
mine-wide stope closure monitoring applications. 
 
The RMT system should only be considered when: 
 

1. There is a copper link available between underground and surface, 
2. There is limited human activity in the area to be monitored,  
3. The transducers are stationary and do not have to be moved, 
4. The cabling is a once-off installation and the likelihood of damage is minimal.  

 

2.7.2 Future developments 
 
The ideal closure monitoring system should incorporate the following: 
 

1. A cable free communication network in the stoping environment. This fact was already 
identified by Malan et al (2000) in the project GAP705 which examined the various 
options such as infrared or radio communication.   

2. Simple communication protocols that can be incorporated easily into existing 
communication infrastructure on the mines. 

3. The transducers and housings must be low maintenance and rugged enough to 
withstand the harsh underground conditions in terms of humidity, heat and mining 
operations. 

4. Software that makes the stope closure data readily available and easy to interpret. 
 
The modified transducers proved to be very reliable and require very little further development.  
More care needs to be taken in protecting all the electronic components of the transducer.  In 
future, it would also be advisable to mould the transducer housings so that the manufacturing 
can be standardised.  This will ensure that each transducer is manufactured to the same 
specifications and hence all the transducers can have one calibration curve which will simplify 
the software.  The closure meter housings that were developed for the project worked well.  It is 
recommended that these types of housings be used in the future.  
 
In-stope cabling needs to be replaced by wireless communication means, which will reduce the 
maintenance requirements and improve the reliability.  This still requires further research. 
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In future, it is necessary that a reputable local manufacturer of instrumentation with the 
necessary electronic and communications expertise should be identified to further develop a 
remote reading system.  This is important not only in terms of technical back up, but also in 
terms of an understanding of how a remote reading system can be incorporated into existing 
communication networks on different mines.   
 
The RMT system requires some modifications and is only suited to specific applications.  It is 
suited to applications where cabling is at low risk of being damaged and where the transducers 
will be stationary.  The system can be used to monitor shaft movement during shaft pillar 
extraction or pillar behaviour in mined out areas, provided copper cabling is available to 
communicate to surface. 
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3. Data collection using stand-alone closure meters 
 
3.1 Introduction 
 
As described above, no closure data could be collected during the period from April 2001 to 
March 2002 due to problems experienced with the RMT closure system. After a meeting was 
held between SIMPROSS and members of the industry on 10 June 2002, it was decided that no 
additional funding would be given to this project. The request from SIMRAC was that Miningtek 
should use the remaining funds to collect significant data at one site only. This data should be 
used to further verify the value of continuous closure data as a decision making tool to rock 
engineers and mine management. There should also be no attempt to collect data in real time. 
 
3.2 Description of the CSIR closure meters 
 
Until recently, the only reliable method to collect continuous stope closure was to use 
mechanical clockwork closure meters. These units recorded the data on graph paper. 
Converting the data into digital format was very tedious and a reliable electronic closure meter 
was needed.  The specifications and requirements of such a meter is given in Malan et al. 
(2000).   One particular design of a telescopic closure meter, developed at CSIR Miningtek, is 
shown in Figure 3.2.1. This design provides a robust meter as all the electronic components, 
data logger and batteries are contained within the telescopic tubing, It is also lightweight, easy 
to install and to move as the main body of the meter is manufactured from rigid PVC piping. It 
allows a maximum deformation of 300 mm, and can be used in stope widths ranging from 
990 mm up to 3 m by adding an additional section of PVC tubing. This is indicated in Figure 
3.2.1. This extension piece can be cut in the stope to the required length. These meters are not 
blast resistant and should be installed behind support units to protect them from damage. For 
the purposes of this project, 13 of these meters were installed in  panels as indicated below. 
The reliability of the meters was found to be adequate, apart from the occasional problems such 
as loose battery connections or batteries running flat. The meters have the ability to be 
downloaded underground with a handheld controller. This option was not used, however, due to 
initial reliability problems with the handheld unit. The observer also experienced too many 
problems with the complex operation of the unit. A simpler unit is currently being designed. To 
download the data, the observer took three additional meters underground during every shift 
and replaced three of the installed meters.  These three meters were brought to the surface for 
downloading.  Although this system of meter rotation increased the workload of the observer, 
the supply of data became more reliable. The revised design of the handheld unit will solve this 
problem in future.   
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                                (a)                                                (b) 
 
Figure 3.2.1 (a) Telescopic closure meter developed at CSIR Miningtek and (b) 
installation underground. 
 
3.3 The experimental site at Mponeng Mine 
 
A new site was chosen at Mponeng Mine in the 109/51 area. A map of the area is given in 
Figure 3.3.1. The depth ranged from 3423 m at the top of panel E10 to 3481 m at the top of 
panel E5. The dip of the area was 22°. 
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Figure 3.3.1 The 109/51 area at Mponeng Mine. 
 
Closure meters were installed in the E10, E9, E8 and E7 panels. Three meters were installed  at 
the top, middle and bottom of each panel. It is of interest that these panels are mining towards 
the Greater Green Dyke. The effect on the closure data of mining towards this dyke needs to be 
investigated and therefore a further closure meter was installed in the E5 panel, which is closer 
to the dyke than the panels above. Although not all closure meters remained operational during 
the entire monitoring period, this was the largest number of continuous closure meters ever 
installed in a single raise connection. Data was recorded from the beginning of November 2002 
to March 2003.        
 
The support in these panels consisted of elongates, backfill and camlock props as temporary 
support in the face area. Rockprops were also used in certain areas where the stoping width 
exceeded a certain maximum height.  Figure 3.3.2 illustrates typical backfill support and 
hangingwall conditions. Typical hangingwall conditions are further illustrated in Figure 3.3.3 and 
the face area is shown in Figure 3.3.4.    
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Figure 3.3.2 Backfill in the E9 panel. 
 
 

 
Figure 3.3.3 Typical hangingwall conditions in the E8 panels. 
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Figure 3.3.4 Conditions in the face area. Note how close the backfill is installed to 
the face. This often made it difficult to find a suitable location to install the 
closure meters. 
 
In terms of seismicity, Figure 3.3.5 illustrates all the events bigger than magnitude -1 recorded 
for the period from 21 January 2002 to 13 March 2003. As expected, the seismic activity tends 
to cluster around the active faces. The largest event recorded during the entire period of 
monitoring had a magnitude of 1.9. The largest proportion of events appeared to be located in 
the footwall as indicated in Figure 3.3.6.      
  

 
Figure 3.3.5 Seismic data recorded for the period from 21/1/2003 to 13/3/2003. 
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Figure 3.3.6 Vertical location of the seismic events shown in Figure 4.3.5.  
 
 
3.4 Examples of data collected 
 
Similar to results shown in earlier studies (Malan, 1999b), the closure data following a panel 
blast consisted of an instantaneous component, a primary closure phase and a steady-state 
closure phase. Figure 3.4.1 shows some good data collected with a total amount of closure of 
85 mm over a period of 6 days. The closure pattern can be more complex, however, as 
indicated in Figure 3.4.2. If there is no blasting activity, the closure rate becomes very small as 
illustrated in Figure 3.4.3 where a total closure of only 2.3 mm was recorded over a period of 8 
days. In some cases, however, even if a specific panel is not mined, blasting in a neighbouring 
panel can cause an increase in closure as indicated in Figure 3.4.4.         
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Figure 3.4.1. Data collected in the E7 panel where the meter was installed at a 
distance of 6 m to the face. 
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Figure 3.4.2 Data collected in the E10 panel. 
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Figure 3.4.3 Closure in the E10 panel when there was no blasting activity. 
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Figure 3.4.4 Closure in the E8 panel when there was no blasting activity. The 
increase in closure was caused by the blasting in the neighbouring E9 panel.  
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4. Effect of seismic events on continuous closure data 
 
4.1 Introduction 
 
The effect of a seismic event on the continuous closure data is very similar to that of a blast 
where the seismic closure is characterised by an instantaneous, primary and secondary 
component. As an example, Figures 4.1.1, 4.1.2 and 4.1.3 illustrate the effect of a magnitude 
1.9 seismic event on the closure recorded in the top, middle and bottom of panel E9. The 
magnitude of instantaneous seismic closure is relatively small as the event located some 
distance away at the top of the raise line ahead of the panels mining in the westerly direction. 
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Figure 4.1.1 Closure recorded at the top of panel E9.   
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Figure 4.1.2 Closure recorded in the middle of panel E9.   
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Figure 4.1.3 Closure recorded at the bottom of panel E9.   
 
 
In terms of the implementation of a real-time mine-wide continuous closure system, a key 
question was whether there is a good correlation between the amount of instantaneous seismic 
closure measured in a particular panel during a damaging seismic event and the amount of 
damage in this panel. If this is the case, a real-time closure monitoring system will be very 
valuable to direct search and rescue efforts after big seismic events. The current method of 
using the location of seismic events to estimate where damage occurred is often not 
satisfactory. As an example, a case study is given in Jager and Ryder (1999) where a 
magnitude 2.5 seismic event caused a violent shakedown in panels in a Carbon Leader Reef 
stope. The most severe damage was found in the W3 panel while the W1 and W2 panels, which 
were located closer to the event, were virtually undamaged. The location of a seismic event is 
therefore not a good indicator of where to expect damage. 
 
During the monitoring period, only two seismic events caused falls of ground in the five panels 
being monitored. As both these events occurred shortly after blasting time, no personnel were 
injured.  These events are described below.                    
 
4.2 Effect of the seismic event on 21 November 2002 
 
On 21 November at 19h51, a seismic event of magnitude 0.6 was recorded ahead of the E5 
panel (co-ordinates: x=30365, y=-42790, z=3193). This is indicated in Figure 4.2.1.  
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Figure 4.2.1 Location of the seismic event on 21/11/2002.  
 
Significant falls of ground were observed in the E8 panel as shown in the schematic diagram 
(Figure 4.2.2) and in Figures 4.2.3 to 4.2.6. No damage was observed in the other panels. From 
Figure 4.2.1, the location of the seismic event, as given by the seismic system, was ahead of 
panel E5. It is therefore not clear why the most damage occurred in panel E8.   
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Figure 4.2.2 Illustration of the area of the falls of ground in the E8 panel following 
the seismic event. 
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Figure 4.2.3 Fall of ground in the E8 panel next to the 0306 closure meter (looking 
down dip). 
 

 
 

Figure 4.2.4 Fall of ground in the E8 panel next to the 0302 closure meter (looking 
down dip).  
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Figure 4.2.5 Fall of ground in the E8 panel close to the bottom gully.  
 

 
Figure 4.2.6 Fall of ground in the E8 panel showing the zone of influence of the 
support unit.  
 
In terms of closure measurements, Figures 4.2.7 to 4.2.13 illustrate the closure measured in 
panels E9, E8, E7 and E10.  On the day of the seismic event, only panel E9 was blasted. Note 
the large amount of instantaneous seismic closure in panel E8 (Figure 4.2.11) while the event 
had no effect on the closure in E10 (Figure 4.2.13). Table 4.2.1 illustrates the instantaneous 
closures recorded in the various panels.   Note that the falls of ground occurred where the 
largest amount of instantaneous closure was recorded. Of further interest is the acceleration of 
the rate of steady state closure on the day preceding the damaging seismic event in panel E9 
as seen in Figures 4.2.7 and 4.2.8. It is also seen to a lesser extent in panel E8 (Figures 4.2.10 
and 4.2.11).  
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Figure 4.2.7 Closure recorded at the top of E9. Note the acceleration of the rate of 
steady state closure on the day preceding the damaging seismic event on 21 
November.    
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Figure 4.2.8 Closure recorded at the bottom of E9. Note the acceleration of the 
rate of steady state closure on the day preceding the damaging seismic event on 
21 November.    
 

 41



0

5

10

15

20

25

30

0 2000 4000 6000 8000 10000

Time (minutes)

C
lo

su
re

 (m
m

)
TOP E8 (311) 
 Installed 19/11/2002, 9h44, 6.1 m to face
Removed 29/11/2002, 6h45, 6.1 m to face
File: 0311291102.xls

22/11 : 18h06
Effect of blast in E9

21/11 : 19h51
Seismic event of 
mag 0.6
No blast in this panel

 
Figure 4.2.9 Closure recorded at the top of panel E8.    
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Figure 4.2.10 Closure recorded in the middle of panel E8. 
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Figure 4.2.11 Closure recorded at the bottom of panel E8. 
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Figure 4.2.12 Closure recorded at the top of panel E7. 
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Figure 4.2.13 Closure recorded at the bottom of panel E10. 
 
Table 4.2.1 Listing of the instantaneous closure recorded in the various positions 
at the time of the seismic event   
Closure meter 
position 

Instantaneous closure 
at time of event 

Blast Damage in panel 

Bottom E10 0 mm No No 
Top E9 3.7 mm Yes No 
Bottom E9 7 mm Yes No 
Top E8 11.7 mm No FOG 
Middle E8 32.7 mm No FOG 
Bottom E8 50.1 mm No FOG 
Top E7 20.5 mm No FOG in top gully 
 
 
4.3 Effect of the seismic events on 17 January 2003 
 
Another major fall of ground was caused by two seismic events recorded on 17 January 2003 
(see Figure 4.3.1).  The first event of magnitude 1.3 occurred at 18h57 at co-ordinates x=30319, 
y=-42759, z=3194. This was followed by a second event of magnitude 1.5 at co-ordinates 
x=30288, y=-42708, z=3168. A third event of magnitude 1 was recorded at 18h57, but was 
located at the top of the raise line ahead of the panels mining westwards and is not considered 
in this discussion. Significant fallouts occurred in the E10 panel as illustrated in the schematic 
diagram (Figure 4.3.2) and the photographs in Figures 4.3.3 to 4.3.7. The only other panel 
where damage occurred was in E8 with the fallout illustrated in Figure 4.3.8.           
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Figure 4.3.1 Location of the seismic events on 17/1/2003. Note that the same map 
is used as in Figure 4.2.1. The faces were advanced during the period from 
21/11/2002 to 17/1/2003 but the map is not updated to show this. 
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Figure 4.3.2 Illustration of the area of the falls of ground in the E10 panel 
following the seismic events. 
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Figure 4.3.3 Fall of ground in the E10 panel next to the 0249 closure meter. The 
fallout height was approximately 1 m.   
 

 
Figure 4.3.4 A different view of the fallout in Figure 4.3.3 to illustrate the fallout 
height.   
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Figure 4.3.5 Fall of ground in the back area of E10.   

 
 

 
Figure 4.3.6 Fall of ground in the back area of E10. 

 

 
Figure 4.3.7 Fallouts around the 0311 closure meter in panel E10. 
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Figure 4.3.8 Fall of ground at the bottom of E8. 

 

 
Figure 4.3.9 Hangingwall conditions in the E7 panel after the seismic events 
showing very little damage.   

 
In terms of closure measurements, Figures 4.3.10 to 4.3.15 illustrates the closure measured in 
panels E10, E9, E8 and E7.  On the day of the seismic events, only panels E8 and E7 were 
blasted. Table 4.3.1 illustrates the instantaneous closures recorded in the various panels.  
Similar to the event described in Section 4.2, the most damage occurred where the largest 
amount of instantaneous closure was recorded. Although expected intuitively, the events 
described in Sections 4.2 and 4.3 and the accompanying closure data are therefore some of the 
first data supporting the hypothesis that during damaging seismic events, areas with the largest 
instantaneous seismic closures experience the most damage. If mine-wide closure systems can 
become a reality, this would therefore greatly assist mine personnel to immediately assess 
where damage could have occurred after large seismic events.      
 
Of further interest is the acceleration of the rate of steady state closure on the day preceding the 
damaging seismic event in panel E8 as seen in Figures 4.3.14. A similar phenomenon was 
seen for the event described in Section 4.2 and warrants further investigation.   
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Figure 4.3.10 Closure recorded at the top of panel E10. 

0

5

10

15

20

25

0 5000 10000 15000 20000

Time (minutes)

C
lo

su
re

 (m
m

)

Meter 0311 Bot E10
Installed 9/01/2003  10h08
Removed 21/01/2003 9h32 10.2 m to face
File: 2101030311.xls

16/1 : 18h58

17/1 : 19h05
Seismic events
mag 1.3 and 1.5

 
Figure 4.3.11 Closure recorded at the bottom of panel E10. 
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Figure 4.3.12 Closure recorded at the top of panel E9. 
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Figure 4.3.13 Closure recorded at the bottom of panel E9. 
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Figure 4.3.14 Closure recorded in the middle of panel E8. Note the acceleration of 
the rate of steady state closure on the day preceding the damaging seismic 
events on 17 January.    
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Figure 4.3.15 Closure recorded at the bottom of panel E7. 
 
Table 4.3.1 Listing of the instantaneous closure recorded in the various positions 
at the time of the seismic events.   
Closure meter 
position 

Instantaneous closure Blast Damage in panel 

Top E10 16.6 mm No FOG 
Bottom E10 16.1 mm No FOG 
Top E9 6.3 mm No No 
Bottom E9 2.5 mm No No 
Middle E8 5.4 mm Yes FOG at bottom of panel 
Bottom E7 16.1 mm Yes No 
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5. Calculation and use of the closure ratio 
 
5.1 Definition of the closure ratio 
 
One closure parameter suggested in earlier work (Malan and Napier, 1999) as a possible risk 
parameter, is the closure ratio CR. For a single mining increment j, CR is defined as the ratio of 
instantaneous blast closure to total daily closure given by (from Figure 5.1.1)  
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Figure 5.1.1 Typical continuous stope closure after blasting and the definition of 
closure terms.   
 
For n successive blasts, equation (5.1.1) can be written as   
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     (5.1.2) 

 
The period ∆t used for calculating ∆ST is taken as 24 hours. In some cases, this period might 
be slightly shorter if the next blast occurs before the full 24 hours has expired since the previous 
blast. Note that the closure ratio is only defined for the closure following a blast and not a 
seismic event. As it might be difficult in practice to determine the magnitude of the 
instantaneous closure from the graphs, it is suggested that j  be taken as the increase in 
closure during the 5 minute period following the blast.         

iS∆

 
 
5.2 Calculation of closure ratio using historical data 
 
As an example of calculating closure ratio, data from three different geotechnical areas 
described by Malan and Napier (1999) is analysed in this section. Figure 5.2.1 illustrates closure 
data collected at Mponeng Mine. The hangingwall of the VCR mined in this area consisted of 
hard lava and the area was prone to face bursting. The competent lava has a strong influence 
on the closure behaviour and the general rock mass behaviour of the stopes. When applying 
equation 5.1.2 to this data set, a closure ratio of CR = 0.46 is obtained. It should be noted that 
this is an average value as the closure ratio for the first blast is 0.36, the second 0.51 and the 
third 0.52. As a possible hazard parameter, it is therefore important not to look at an isolated CR 
value after a single blast, but rather an average over a period of time.     
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Figure 5.2.1 Time-dependent closure measured at Mponeng Mine (after Malan and 
Napier, 1999). The closure instrument was 8.1 m from the face before the blast on 
26/5/98.  
 
Continuous closure data was also collected at Kloof Mine where the hangingwall of the VCR 
consisted of soft lava. The rock mass behaviour and the closure response in this area were 
dominated by the time-dependent disintegration of the soft lava in the hangingwall. It was very 
difficult to support the hangingwall with significant fallouts between packs. The risk of strain 
bursting was low in this area, although the risk of falls of ground was very high. When applying 
equation 5.1.2 to this data set, a closure ratio of CR = 0.04 is obtained.    
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Figure 5.2.2 Time-dependent closure measured at Kloof Mine (after Malan and 
Napier, 1999). The closure instrument was 8.5 m from the face before the blast on 
14/8/98. 
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Data from a third geotechnical area, the Vaal Reef at Hartebeestfontein Mine, is shown in 
Figure 5.2.3. Well-defined bedding planes in the quartzite of the hangingwall dominate the rock 
mass behaviour and closure response of the stopes. These areas appeared to be prone to falls 
of ground while the risk of strain bursting was very low. When applying equation 5.1.2 to this 
data set, a closure ratio of CR = 0.06 is obtained.    
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Figure 5.2.3 Closure measured at Hartebeestfontein Mine (after Malan and Napier, 
1999). The instrument was 10.9 m from the face before the first blast. 
 
In summary, from this historical data, it appears that the closure ratio is a good measure to 
identify different geotechnical conditions. The results are summarised in Table 5.2.1. Low 
values of closure ratio are typically associated with poor hangingwall conditions and a high risk 
of falls of ground whereas high values of closure ratio are associated with areas prone to face 
bursting. As mentioned above, however, the closure ratio does not stay constant for every blast 
but shows some statistical variation. It is therefore important to calculate an average value and 
use this as a base value to investigate possible changes in conditions in the stope over a period 
of time. 
 
Table 5.2.1 Typical values of closure ratio for different geotechnical conditions. 
Area Closure 

Ratio  
Conditions Reference 

VCR (hard lava) : Mponeng Mine 
87-49 area 

0.46 High risk of face bursting, 
Significant seismicity, 

Malan and 
Napier, 1999 

VCR (soft lava) : Kloof No 1 Shaft 
31-34 area 

0.04 Very high risk of falls of 
ground, low risk of strain 
bursting 

Malan and 
Napier, 1999 

Vaal Reef : Hartebeestfontein No 
6 Shaft, 78N23 longwall 

0.06 High risk of falls of 
ground, low risk of strain 
bursting 

Malan and 
Napier, 1999 

Carbon Leader : TauTona 
102 E3 area 

0.35 Good backfill installation, 
stable hangingwall 
conditions, seismically 
active area 

Malan et al, 
1999 

VCR (soft lava) Kloof No 1 shaft 
37-61 longwall 

0.15 More stable hangingwall 
conditions than 31-34 
area 

Malan and Van 
Rensburg, 1999 
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5.3 Closure ratio for the 109/51 area at Mponeng Mine  
 
For the recently collected data in the 109/51 area at Mponeng Mine, the closure ratio was 
calculated as 0.5 for the closure data given in Figure 3.3.1. This is very similar to the value of 
0.46 calculated for the data collected in 1998 in a different part of the mine (Table 5.2.1).   
   
5.3.1 Effect of spatial position on closure ratio 
 
In Section 4.2 of this report, Figures 4.2.7 and 4.2.8 illustrated the closure recorded at the top 
and bottom of panel E9. Using equation 5.2.1, the closure ratio for these data sets were 
calculated giving values of 0.46 at the bottom and 0.48 at the top of the panel. The values are 
very similar even though the total closure at the top was 16.1 mm and 21.9 at the bottom. This 
appears to show that the closure ratio is independent of total closure measured in the various 
positions of the panel. A further example is given in Figures 5.3.1 and 5.3.2. The total closure at 
the top position in E7 just before the blast on 28/2/2003 was 22.9 mm while it was 18.8 mm for 
the meter in the middle of the panel. The closure ratio for the top position after the first three 
blasts was calculated as 0.57 while it is 0.55 for the data collected in the middle of the panel.    
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Figure 5.3.1 Closure collected at the top of panel E7.  
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Figure 5.3.2 Closure collected in the middle of panel E7. 
 
In both the examples used above, the closure meters were positioned at the same distance to 
face. A further question investigated was the influence of distance to face on closure ratio. 
Unfortunately, due to the backfill used in the experimental area, usually only one open area at a 
certain distance to face between backfill ribs was available to install the closure meters. It was 
therefore not possible to have closure meters at different distances to face for one particular 
blast. It was nevertheless possible to calculate the closure ratios for the entire data set during 
different blasts and these are plotted Figure 5.3.3 as a function of distance to face. Note that 
there is no clear trend as the distance to face increases. The closure ratio ranged from 0.26 to 
0.74 with an average of 0.49.      
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Figure 5.3.3 Closure ratio versus distance to face for the various panels. 
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5.4 Numerical modelling of stope closure and closure ratio 
 
In order to gain further insight into the use of the closure ratio in determining the geotechnical 
condition of the rock mass, a two-dimensional numerical modelling study was performed using 
the computer code DIGS. The DIGS program has been developed to model fracture zone 
development near the edges of tabular stopes. The analysis technique is based on the 
displacement discontinuity method and has been described previously by Napier and Malan 
(1997). In the present study, fracture zone development was modelled by extending one side of 
a parallel-sided, horizontal mining panel towards a region covered by a random mesh of 
potential cracks. The random mesh was generated as a Delaunay triangulation having an 
average side length of one metre. The failure properties of the mesh positions are determined 
by a Mohr-Coulomb criterion with specified cohesion and internal friction angle. Two cases were 
considered: a “low” strength rock with cohesion equal to 15 MPa and a “high” strength rock with 
cohesion equal to 25 MPa. In each case the internal friction angle was chosen to be 45 
degrees. The mining simulation was carried out in 25 face advance steps of one metre starting 
from an initial span of 50 m. Following each mining step, twenty four time relaxation steps were 
allowed to occur. Within each time relaxation step, the stress state is examined at each element 
of the random mesh and, if the stress exceeds the specified Mohr-Coulomb intact limit, these 
elements are allowed to slip at a rate that is proportional to the difference between the shear 
stress and a specified residual frictional resistance. (The residual friction angle was set to 30 
degrees). Closure “measurements” were performed by computing the difference in vertical 
displacement arising between benchmark points located 2 m in the hangingwall and 2 m in the 
footwall at each of five monitoring positions. These closure “stations” were spaced at intervals of 
5 m with the measuring points of the first station aligned vertically above and below the centre 
of the first excavation increment. 
 
Figures 5.4.1a and 5.4.1b show the fracture zone developed after 25 mining steps in the 
random mesh for the “low” and “high” strength rock environments.  In these plots, the 
hangingwall region is separated from the footwall region to display the distorted deformations 
more clearly. It can be seen that a much larger region of rock is activated in the low strength 
material as would be expected intuitively. It is apparent also that considerable fragmentation of 
the rock occurs at the boundaries of the hangingwall and the footwall. This arises from the 
particular assumption of the Delaunay tessellation grid and the validity of this fracture pattern 
must be judged according to actual field observations and the installed internal stope support 
performance. Detailed simulation of support effects are not considered in the present study. 
However, the modelled block detachments do not contribute to stress changes in the intact rock 
body but do need to be considered in the monitoring of detailed closure movements. For this 
reason “internal” monitoring points, located 2 m into the hangingwall and the footwall 
respectively, were chosen to record the effective stope closure behaviour. 
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(b) 

Figure 5.4.1  Distorted grid plots of fracture zone formation after twenty five 
mining steps in (a) “low” strength and (b) “high” strength rock. 
 

Two closure profiles observed at Station 4 (located 15.5m to the right of the origin in Figures 
5.4.1a and 5.4.1b), for the low and high strength rock cases, are shown in Figure 5.4.2. These 
profiles show a marked difference in deformation behaviour between the two material models. It 
is of interest to contrast this behaviour with the changes in incremental energy release (effective 
seismic activity) that are computed in each case. (The simulated energy release increments 
may also be interpreted as a measure of the incremental stability of the overall rock mass). The 
cumulative energy release increments are plotted in Figure 5.4.3 for face advance steps 16 to 
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25 (time 480 to 720) and, interestingly, show little difference between the low and high strength 
rock cases. The cumulative energy release increments that are computed when explicit 
fracturing is considered are, however, much greater than the case where no fracturing is 
allowed to occur (elastic rock), depicted in Figure 5.4.4. More importantly, it is apparent that the 
commonly computed elastic energy release rate (ERR), which can be deduced from Figure 
5.4.4 as the elastic energy release per unit area mined, will not provide a useful measure of the 
effective fracture zone size in the “low” and “high” strength cases shown in Figure 5.4.1. This 
motivates strongly the need to assess supplementary measures of the geotechnical rock 
response. One particular form of such a measure is the Closure Ratio as defined in Section 5.1. 
  
A useful test of the performance of the closure ratio as a measure of geotechnical behaviour 
and, simultaneously, a check on the validity of the numerical procedure in relation to observed 
behaviour is obtained by computing the closure ratio for the low and high strength rock 
simulations shown in Figure 5.4.1. (The “numerical” closure ratio is computed as the ratio of the 
closure that is measured after the first time interval, following a mining step, to the total closure 
after 24 time steps.  Since the sampling frequency is much lower than the “instantaneous” field 
measurements, it may be expected that the simulated closure ratios will be generally greater 
than field observations.). Figure 5.4.5a shows a plot of the closure ratio as a function of the 
absolute observation time. In this case the earliest observations are obtained at Station 1, 
followed by observations at successive stations as they are installed. The data in Figure 5.4.5a 
are re-plotted in Figure 5.4.5b as a function of the distance to the mining face position relative to 
when each meter is installed. A fairly wide scatter in the results is observed with no clear trends 
of the closure ratio as a function of time or relative position to the mining face. The average 
closure ratio is approximately equal to 0.5 which may be compared to the observed values 
quoted in Table 5.2.1. 
 
Figures 5.4.6a and 5.4.6b show the equivalent closure ratios observed in the high strength rock 
simulation. It should be noted that a few closure ratio values greater than unity were recorded in 
this case but are not plotted in Figures 5.4.6a or 5.4.6b. In these instances, detached “blocks” 
were formed at the closure monitoring positions leading to spurious stope “opening” behaviour. 
Although the closure ratios plotted in Figures 5.4.6a and 5.4.6b are also scattered, the mean 
value is approximately equal to 0.7 and is clearly greater than the mean closure ratio of 0.5 
shown in Figures 5.4.5a and 5.4.5b. Consequently, the numerical simulation of the closure ratio 
is in good agreement with the contrasting geotechnical behaviour exhibited in Figures 5.4.1a 
and 5.4.1b and is also in agreement with the observations quoted in Table 5.2.1. However, the 
present numerical simulations do not support more definite trends of the closure ratio as a 
function of time or as a predictor of incipient face stability. It is apparent though that these very 
encouraging initial results support the utility of the closure ratio in discriminating the response of 
different geotechnical environments. This should motivate further studies that incorporate 
improved representations of fracture patterns, which include the treatment of three dimensional 
layout geometries. 
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Figure 5.4.2  Closure profiles monitored at “Station 4” for “low” and “high” 
strength rock materials. Please note that the numerical model did not include the 
effect of bedding planes and therefore these results should not be directly 
compared to Figures 5.2.1 and 5.2.2. 
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Figure 5.4.3  Comparison of cumulative energy release increments computed in 
the numerical simulation of mining through “low” and “high” strength rock. 
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Figure 5.4.4  Cumulative energy release – no rock failure. 
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(b) 

Figure 5.4.5  Observed closure ratio for low strength rock at each of 5 measuring 
stations plotted (a) as a function of absolute time and (b) plotted as a function of 
the face advance increments relative to the individual time of first observation. 
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Figure 5.4.6  Observed closure ratio for high strength rock at each of 5 measuring 
stations plotted (a) as a function of absolute time and (b) plotted as a function of 
the face advance increments relative to the individual time of first observation. 
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6 Conclusions 
The objective of this project was to investigate the feasibility of implementing a continuous real-
time closure monitoring system as a decision making tool for gold mines. The first part of this 
report describes attempts to implement a prototype closure monitoring system. A RMT remote 
reading telltale system was modified to operate as a closure system and installed at Mponeng 
Mine. Although this system never really succeeded in collecting data from a large number of 
closure stations, valuable lessons were learnt. The two most serious problems experienced 
were communication problems from underground to surface and maintaining continuity of the 
cabling in the stope.  
 
Three types of closure meters were designed and evaluated during the project. The Mark I 
meters manufactured from mild steel were relatively cheap and blast resistant, but suffered from 
corrosion problems. To overcome this problem, the Mark II meters were manufactured from 
stainless steel. The high cost, however, prevented widespread use. The Mark III meters were 
manufactured from polypropylene to be cost effective without compromising on durability. These 
meters were, however, not blast resistant and had to be installed behind support for protection. 
 
The cable network used in the stope presented a major challenge in terms of maintenance. 
Mining activity and falls of ground resulted in frequent cable damage. In conclusion, cable 
connections in the stope for a mine- wide closure system is not seen as a viable option. As 
suggested by Malan et al. (2000), radio communication is probably the best method to link 
closure meters to a data logger located elsewhere in the stope.  
 
Further problems were experienced with the communication system to surface. The RMT 
system required a copper link to surface. This was not available at Mponeng and attempts to 
use the fibre optic network were not successful. In future, mine-wide closure systems should be 
designed with the necessary flexibility to link-in with the existing mine communications systems, 
whether it is fibre optic, copper or leaky feeder.       
  
In spite of the problems mentioned, the limited data that was captured remotely on surface 
illustrated the potential of such a system and was probably an industry first for remote 
continuous closure recording.   
  
Following the problems experienced with the RMT system, SIMRAC requested Miningtek to use 
the remaining funds to collect data from one site only using standalone closure meters. The 
instruction was that no further attempt should be made in this project to collect data in real time.   
 
The site chosen was the 109/51 area at Mponeng Mine. Four panels were instrumented with 
CSIR closure meters. Three meters per panel were installed. An observer visited the panels 
every day and recorded parameters such as daily face advance for each panel, falls of ground, 
any strain bursting and performance of the support units. 
 
During the three month period of monitoring, only two significant events occurred. These were 
seismic events on 21 November 2002 and 17 January 2003 causing significant falls of ground in 
some of the panels. A very significant finding was that there is a very good correlation between 
the amount of seismic closure in the panels and where the damage occurs. In both cases the 
falls of ground occurred in the panels with the highest amount of seismic closure, even though 
the seismic events located closer to other panels that remained undamaged. If a robust real-
time closure system can be developed in future, one of the big benefits of such a system will be 
the ability to immediately pinpoint damage after large seismic events to a greater accuracy than 
currently possible with seismic systems. For both seismic events, some increase in the steady-
state closure rate was observed for some hours preceding the event. There is, however, not 
enough evidence to prove that this increase in closure rate can be used as a precursor to 
damaging seismic events.   
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A useful parameter calculated from the closure data is the closure ratio (CR), which is the ratio 
of the instantaneous closure to total closure following a blast. Calculation of this closure ratio for 
closure data collected in earlier projects showed that it is a very good measure to identify 
different ground conditions and possible hazards. Closure ratio values greater than 0.4 
(measured in VCR stopes with a hard lava hangingwall), are typically associated with strain 
bursting conditions, while low values (typically < 0.1) are associated with significant risks of falls 
of ground. The average closure ratio calculated for the experimental site at Mponeng Mine was 
0.5.  
 
Another preliminary finding is that it appears that the closure ratio is relatively independent of 
position along the stope face. As an example, for a number of blasts, the total closure at the top 
of the panel was 16.1 mm while it was 21.9 mm at the bottom. The calculated closure ratio was, 
however, very similar with a value of 0.48 at the top and 0.46 at the bottom. This implies that the 
exact position of the closure meter in the panel might not be critical when calculating the closure 
ratio, while the exact position must be known when analyzing the total amount of closure. This 
hypothesis requires further validation, however. 
 
Fortunately no face bursting occurred during the period of monitoring but any possible changes 
in closure ratio preceding these bursts could not be investigated. 
 
Some numerical modelling using DIGS was conducted to verify the usefulness of the CR 
parameter. The incremental mining of a stope in a random mesh of potential fracture planes 
was investigated. Simulations were conducted for both a “strong” and a “weak” rock type and 
the closure ratios computed. A fairly wide scatter in the results is observed with no clear trends 
of the closure ratio as a function of time or relative position to the mining face. The average 
closure ratio for the “strong” material at 0.7 was, however, noticeably higher compared to that of 
the weaker material at 0.5 and is in qualitative agreement to the responses observed 
underground.  It is apparent though that these very encouraging initial results support the utility 
of the closure ratio in discriminating the response of different geotechnical environments. 
However, the present numerical simulations do not support more definite trends of the closure 
ratio as a function of time or as a predictor of incipient face stability.  
 
In terms of the objectives of this project, an important question to answer is whether real-time 
closure monitoring is necessary or will standalone closure meters be sufficient to provide the 
necessary data. There is no doubt that the collection of continuous closure data is very valuable 
to optimise support design for different mining rates, identify different geotechnical areas and 
the hazards associated with each area and to investigate the effectiveness of preconditioning.  
The data necessary to do these analyses need not be collected in real time and therefore stand-
alone closure meters will be sufficient in these cases. The true value of real-time monitoring will 
be to immediately identify areas of possible damage after large seismic events and to warn of 
sudden changes in conditions that can lead to falls of ground, face bursting or rockbursts. From 
the available data, however, no clear precursors to rock instability could be found to date and 
further experimental monitoring will be necessary to justify the expense of real-time, mine-wide 
closure monitoring systems. It should nevertheless be emphasised that stand-alone continuous 
closure meters do provide substantial additional information on rock mass behaviour and their 
use throughout the mining industry should be widely encouraged.      
             
 
 
6.1 Suggestions for further work 
 

• The original objective of the project was to install prototype closure systems in two 
different geotechnical areas. Due to the problems experienced with the RMT system and 
the request from SIMRAC to collect data at one site only, no data could be collected 
from a Carbon Leader site. Although limited data from the Carbon Leader Reef is 
available, monitoring with a large number of closure instruments in a single area should 
be conducted to supplement some of the findings for the VCR. 
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• As the current work focussed on deep gold mines only, the use of closure monitoring 

systems to warn of unstable hangingwall conditions and possible backbreaks in shallow 
platinum and gold mine panels should be investigated. 

 
• Although significant evidence exist that the closure ratio can be used to identify different 

geotechnical areas and the particular risks, e.g face bursting, associated with each area, 
the hypothesis that the closure ratio might be used to warn of an increase in risk of face 
bursting in a particular area is still unproven. Further measurements in areas prone to 
face bursting are necessary to investigate this hypothesis. This should include further 
measurements on the VCR.           

 
• In terms of further development of closure monitoring equipment, it is clear that in-stope 

cabling is not viable and alternative methods such as radio communication must be 
investigated. Malan et al (2000) suggested the building of a number of prototypes using 
RF technology. These concepts should be further tested in underground conditions. 

 
• Some of the practical issues associated with a mine-wide closure system need further 

addressing such as measuring the distance to face and the responsibility of moving the 
meters forward on a regular basis. 

 
• The spatial variability of closure across panels needs to be further investigated. As 

mentioned above, it appears that the closure ratio is relatively independent of position 
along the stope face. This requires further validation.         
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