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Executive summary

Introduction

Numerical modelling of rock-mass response to underground excavations is of vital importance for the
decision-making process in designing and running a mine. Likewise, seismic monitoring with state-of-the-
art local seismic systems is indispensable as a means for quantifying hazard and as an indicator for
potential instabilities in the rock-mass due to mining activities, geological structures and other hazard-
enhancing factors. The concept of integrating observational data with mining-oriented numerical
modelling has emerged as the next logical step in the development of more reliable computer-based
methods for treating the problems of rock-mass stability, damage evolution and the on-set of sudden
material failure.

The most important feature of an integrated numerical model is the ability to take real data, as provided
by a seismic monitoring system, and to use this data as an additional input for solving a forward problem
about the evolution of the physical state of the modelled rock-mass.

Restrictions imposed on numerical models by the integration paradigm

Not every numerical model currently in use in the South African mining industry is suitable for integration
with real seismic data. The basic requirements to be met by an integration-ready numerical model of rock-
mass response to mining are:

! It must be designed to simulate the evolution with time of the physical state of the rock-
mass.
1 It must be equipped with the capability of converting the parameters of a real seismic

event into a corresponding model-compatible input in the form of an additional loading on
the rock-mass.

It must allow for an unambiguous identification and quantification of Aseismic events (
among the model-generated data.

Structure of an integrated numerical model

The functionality interrelations between the different components of a software package designed to
implement the general principles of integrating real seismic data with mining-oriented numerical modelling
can be illustrated by the following diagram:
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Review of numerical models potentially useful for integration

A study was performed aimed at revealing the potential for upgrading to integrated models of the software
packages currently in use by the South African gold mining industry. Special attention has been paid to
the ability of different models to emulate the basic patterns of mining-induced seismicity. In particular, it
was concluded that the ability of a model to reproduce the power-law behaviour of the size-distribution of



local seismicity is not a decisive factor in selecting the models which are best-suited for integration. On
the other hand the deviations from the above-mentioned linear trends seem to be more informative about
the state of the rock and an integration-ready model should be capable of emulating such characteristic
deviations from the underlying power-laws.

Clustering in time and migration of seismicity

The observed temporal and spatio-temporal patterns of mining-related seismicity cannot be simulated by
purely static stress modelling or by model types referred to as cellular-automata. At the core of the
concept of integrating seismic monitoring with numerical modelling is the requirement for synchronizing
the time-stepping of the numerical solution with the pace of the actual elapsed time. This motivates the
requirement that an integrated model should be able to reproduce the main features of the local
seismicity in the time domain. Studies involving existing numerical models such as DIGS , MAP3di , PFC
, Point Kernel and the Integrated Damage Rheology Model (IDRM) have been carried out to explore the
patterns of model-generated data in the time domain as well as to search for signatures of seismic
migration.

Control of errors in monitored and modelled data.

Errors are present both in observed and model-generated data-sets. The concept of integrating seismic
monitoring with numerical modelling highlights the requirements for error-control in all components of an
integrated seismic system. The problems related to the origin and quantification of statistical and
systematic errors have been studied in the light of the corresponding requirements and limitations
imposed both on the monitoring systems and on the numerical integration-ready models.

Integration-ready models
A numerical model of rock-mass response to loading is suitable for functional integration with real
seismic data when:

1 It implements a reasonable approximation of the fundamental relationships between the
parameters describing the physical state of the rock-mass.

1 It is designed to solve a forward problem about the evolution of the physical state of the
modelled rock-mass under the given initial and boundary conditions.

1 It can convert the parameters of a real seismic event into a corresponding addition to the

loading applied at the correct moment of time.

It can itself simulate seismic activity in a quantifiable way so that a calibration to the
observed local seismicity would be possible.

It must have an adequate resolution in size, location and time for model-generated
seismic events.

The computer code of the numerical solver must run sufficiently fast on available
computers to allow data-generation ahead in time.

Recommendations to the developers of integrated models
Some recommendations for developing and using integrated models for the needs of the mining industry
can be made, namely:

! Spacial care must be taken in specifying the initial state of the modelled rock-mass. This
implies that a suitable stress-modelling module may be added as a part of the integrated
software.

The quality of the data provided by the local seismic monitoring system must be
adequate.

The geometrical discretization of the model must be done in an artefact-free manner and
in accord with the available computer resources.

The loading on the modelled rock-mass due to the existing and planned mining must be
evaluated as accurately as possible.

The reaction of the rock-mass surrounding the modelled domain to the (non-linear and
inelastic ) processes which occur in the modelled material must be properly included in
the numerical procedure. In practice this may require a combination of boundary element
methods with finite-differences or finite elements schemes.

The model must be designed with the capability for quantifying the perturbations to the
physical state of the modelled rock-mass caused by real seismic events in the area so
that corresponding modifications to the existing loading conditions could be made at the
appropriate moment of time.

In a situation when an integrated numerical model can both accept real seismic events as
an input and can itself simulate seismic activity, special care must be taken for avoiding
double-counting of seismic events.

The design parameters of an integrated model must include sufficient flexibility for the



calibration of model-generated events to the observed seismicity.

Expected outcome from the use of integrated models

The integration of numerical models with real seismic data will improve the reliability of forecasts of the
stability of rock-mass while mining. In particular, the data generated by an integrated model should allow,
after a proper analysis , to make definite statements about:

The elastic and plastic deformations within the modelled rock-mass at a particular
moment of time.

The distribution of static stress, the localization of stress concentrations and their
migration with time.

The level of micro-seismic activity.

The over-all stability of the rock-mass within a given interval of time as well as the
formation and localization of damaged zones in the material.

The integration of seismic monitoring with numerical modelling is essential to improve the assessment of
seismic hazards and the understanding of large scale rock-mass deformation.

Other Outputs:
During the course of this project some useful tools and algorithms have been developed:

The Aseismic skeletonf method of analysing catalogues of seismic events for revealing
any underlying seismogenic geological structures.

The methodology for identifying and quantifying connected spatial clusters of model-
generated failures in the rock-mass.

Direct spin-offs for industry:

The work carried out as part of project GAP603 has stimulated directly a number of initiatives that are
being pursued to construct numerical tools that can be used to effect the integration of seismic
observations with numerical modelling. Specific examples of these efforts are as follows:

$

The computer code MAP3D developed by Mining Modelling Pty Ltd has been extended to
include interface and solution capabilities that allow observed fault slip episodes to be
interactively included in a modelling/ review cycle.

A new Integrated Damage Rheology Model (IDRM) is under development by ISS
International Ltd. This model will allow integration of observed seismic events as well as
the forward modelling of mining-induced seismic activity. The model is designed to include
elastodynamic effects as well as progressive creep activity in the rock-mass.

A boundary element based code termed Point Kernel is being investigated by the CSIR
Division of Mining Technology to capture slip episodes, identified by ongoing seismic
records, and to perform forward extrapolations of expected seismic activity. This code
differs from MAP3D in that an attempt is made to construct slip patches in the rock mass
in a general manner that does not require traditional fixed element shape functions.

A special purpose boundary element code called MINF has been developed at the CSIR
Division of Mining Technology to simulate seismic activity associated with panel advances
in tabular mining.
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Glossary

The following Glossary offers short, simple and context-oriented explanations of the terms
related to numerical modelling of rock mass response to loading due to mining. The reader who
may require the corresponding rigorous definitions is referred to the specialised mathematical

literature on the subject.

Term Description

Algorithm Detailed, step-by-step description of the numerical procedure for solving a
mathematical problem. An algorithm can be implemented into computer
code by means of a programming language such as FORTRAN, C, Java
etc.

Asperity A region of a fault where a high stress drop can occur relative to the
surrounding regions.

b-value A common reference to the absolute value of the slope of the Gutenberg-
Richter plot of cumulative frequency vs. magnitude for observed seismic
events in a given region.

Barrier A region on a fault where slip is restricted or halted.

Boundary Element
method (BEM)

A numerical technique for solution of problems in solid mechanics that
involves only the significant boundary surfaces in the problem region.

Boundary Integral
Equation Method (BIEM)

An alternative name for the Boundary Element method.

Boundary Value
Problem (BVP)

The term refers to Partial Differential Equations (PDE) and covers all
additional conditions which need to be specified to guarantee the
uniqueness of the solution.

Boundary condition

In a BVP: requiring that the unknown function or its derivatives assume
prescribed values at the points of the boundary which encloses the domain
of the partial differential equation.

Calibration

The procedure of bringing one or more of the modelled quantities
maximally close to their observed counterparts by tuning the variable
parameters of the model.

Cellular model

A class of numerical models in which individual components (“cells”)
interact with each other according to defined rules.

Constitutive relations

The relationships which govern the response of some measured physical
quantity to a variation of the state variables. In the context of solid
mechanics the constitutive relations usually relate stress to strain.

Continuum models

A class of models that represent the region of interest as a continuous
medium whose properties may vary from point to point but where no break
occurs in the displacement field.

Cost function

A function of some independent variables which usually has a single local
minimum. Finding the position of this minimum in the space of the
independent variables is the objective of optimisation.

Damage rheology

The laws which govern the temporal evolution of material deformation due
to loading and damage.

Delaunay mesh

a grid of triangles connecting a set of points on a surface with the property
that the circumcircle of each triangle does not enclose any other point of
the mesh. The Delaunay triangulation ensures that the generated triangles
are as “equiangular” as possible for the given set of points.

Deterministic algorithm

A set of rules for solving a mathematical problem which leads to a unique
solution for a given set of initial and boundary conditions.

Deterministic model

A description of the behaviour of a system in which key variables assume
unique values that are computed according to a set of rules that are not
subject to alterations by random chance.

Dirichlet problem

The problem of finding the solution of a partial differential equation for
given prescribed values of the function on the boundary

Discontinuum models

A class of numerical models that simulate the interaction between discrete
solid elements or which solve the interaction between assemblies of
fractures in the region of interest.
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Term

Description

Displacement
discontinuity

A general term to describe the jump in the displacement vector across the
surface of a crack in a solid material.

Displacement
discontinuity method
(DDM)

A particular form of the boundary element method in which the
displacement discontinuity is solved on specified crack surfaces.

Distinct element
method (DEM)

A particular type of discontinuum model in which the interaction of an
assembly of polyhedral blocks or particles is analysed.

Dynamic modelling

A numerical model of some physical process in which the state of the
modelled system changes with time. A typical example of dynamical
modelling is the numerical treatment of seismic waves.

Elastic modulae

The material constants in the expression for the density of the elastic
energy as a function of the strain invariants. In the case of a linear elastic
body the elastic modulae are the coefficients in the linear relationship
between stress and strain.

Element

A small surface patch of volumetric region chosen to represent the local
variation in the slip or displacement in the numerical solution of a problem
in solid mechanics.

Energy dissipation

The part of the mechanical work done on a solid which is irreversibly
transformed into non-mechanical forms of energy e.g. heat, chemical
energy etc.

Empirical As opposed to theoretical: derived directly from the observations and
measurements performed on concrete physical systems (usually
laboratory samples).

Entropy A thermodynamical quantity which measures the portion of the internal

energy which cannot be converted to work done by the system.

Equations of motion

For a system of material particles: the equations relating the rate of
change of linear momenta to the net forces acting on material particles.
For a continuum: the equations which govern the time evolution of the
state variables (e.g. the local strains).

Euler’s approach (to the
equations of motion of
continua)

The description of the motion of a continuum relative to fixed points in
space.

Excess shear stress

The difference between the resolved shear stress and the shear resistance
at a particular point of a specified discontinuity surface.

Fault slip

A loose reference to the jump in the shear discontinuity across an
assumed fault surface.

Finite element method
(FEM)

A general numerical analysis technique for solution of fluid mechanics,
diffusion and stress analysis problems.

Forward modelling

The methods for finding the (unique) solution of a problem for specified
values of the model parameters and for fixed initial and boundary
conditions.

Frequency-magnitude
plot

A plot of the cumulative frequency of seismic events in a designated region
against the magnitude of these events.

Fundamental solution

The influence of unit excitation in an elastic medium, expressed as a
function of the distance between the excitation point and the observation
point in the medium.

Global minimum

For a function of one or several independent variables defined in a domain
D: the point in D for which the function assumes its minimum value.

Gouge A generic reference to fine particulate material, on the interface of a
discontinuity or fault surface that is generated by slip at the surface.

Grid size The dimension of a unit “zone” or “element” forming the basis of a
numerical solution method.

Hybrid model A combination of two or more categories of numerical modelling methods

Integration In the context of numerical modelling for the needs of the mining industry:

enabling a numerical model to use as a direct input real data from a
seismic monitoring system through converting the seismic source
parameters into a corresponding additional loading on the modelled rock-
mass.
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Term

Description

Inverse modelling

The methods whereby a given solution of a certain problem is employed to
find one or more of the following:

- model parameters

- initial conditions

- boundary conditions

Lagrangean variables

The description of the motion of a continuum by following individual points
of the moving medium.

Matrix

A rectangular table of numbers. Square matrices have equal number of
rows and columns. Matrix of a single column and n rows is called vector of
length (or dimension) n. The basic algebraic operations are defined for
matrices and vectors of compatible dimensions. Matrix notations offer a
convenient way of writing systems of simultaneous linear equations.

Mixed boundary value
problem

The problem of finding the solution of a partial differential equation for
prescribed values of the unknown function on part of the boundary and
prescribed values of the normal derivative on the reminder of the
boundary.

Neumann problem

The problem of finding the solution of a partial differential equation for
given prescribed values of the normal derivatives on the boundary.

Non-linear physical
system

One for which the response to an external loading which is the sum of two
components is not equal to the sum of the responses to the individual
loading components.

Optimisation

For a given (cost-) function: the problem of finding its (local or global)
minimum.

For a numerical model: the problem of formulating and minimising an
appropriate cost-function of the model parameters.

Particle model

A form of distinct element model in which the basic units are spherical
particles that interact with their neighbours through specified contact forces
and in which each particle is allowed to move according to the laws of
Newtonian mechanics.

Percolation model

Any model of connected clusters which are generated on some lattice for a
fixed occupation probability. Percolation models exhibit critical behaviour
and, consequently, scaling laws. Large percolation clusters have fractal
geometry.

Percolation threshold

The critical value of the occupation probability for which a percolation
model can have an infinite cluster (a clusters which spans across the
whole lattice).

Random mesh

A network of interconnected links between points placed randomly on a
plane. The concept can be extended to higher dimensions.

Rheology

A generic term used to designate the rules governing creep-like behaviour
in a medium or across discontinuity surfaces.

Seismic event

The occurrence of an abrupt movement in the rock mass.

Seismic migration

The movement, over a period of time, of observed clusters of seismic
events through space.

Seismic monitoring

Automated detection and recording of the temporal and spatial location of
seismic event activity in a given region.

Slip interface

The assumed narrow region of intense local movement between two
relatively intact regions.

Slip weakening

The function describing the decrease in bond strength at a discontinuity
interface as a function of the relative slip.

Static modelling

A numerical model of a system at equilibrium in which the physical state
does not change with time. A typical example of static modelling is the
computation of the stress filed in a loaded material.

Stiffness

A generic term used to describe the proportionate change in stress at a
given location in relation to some characteristic movement at that location.

Stochastic process

A sequence of events (or the mathematical equivalent of real events) in
which the next event cannot be predicted with absolute certainty.

Stochastic model

A numerical model which employs a computer generated stochastic
process for evaluating some or all of the relevant quantities.
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Term

Description

Stress drop

The decrease in the resolved shear stress following a decrease in strength
and accompanying slip at a given position on a discontinuity surface.

Tessellation

A generic term used to describe a space-filling or “tiling” pattern.

Validation the procedure whereby the output of a numerical models is compared
against the observed or expected behaviour of the modelled physical
system.

Verification of a numerical model: to establish the degree to which the model is a

truthful representation of the physical reality. Strictly speaking a model can
never be fully verified.
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(From: Mendecki, A.J., van Aswegen, G. and Mountfort, P. A Guide to Seismic Monitoring in
Mines. In: A Handbook on Rock Engineering Practice for Tabular Hard Rock Mines,
A J Jager and J A Ryder (eds.), published by the Safety in Mines Research Advisory Committee

(SIMRAC), 1999)

Parameter, relevant formula

Description

Magnitude, m

m = log(A/T) + C

A/T - the maximum displacement over
associated period in the P- or S- wave
group

C - corrections for path effects, site
response and source region

Magnitude is a relative measure of the strength of a seismic
event based on measurements of maximum ground
displacement at a given frequency at multiple seismic sites.
A unit increase in magnitude corresponds to a 10-fold
increase in amplitude of ground displacement. Gutenberg
and Richter related seismic energy and magnitude derived
from P-waves recorded at large distances from the source
at 1sec period as logE(ergs) =2.4m + 5.8

Seismic moment, M, [Nm]
And

Moment-magnitude, m

m = 2/3 logM - 6.1

A scalar that measures the coseismic inelastic deformation
at the source. Since seismic moment is proportional to the
integral of the far field displacement pulse it can easily be
derived from recorded waveforms. A relation that scales
seismic moment into magnitude of a seismic event is called
moment-magnitude.

Seismic moment tensor

M Ciwl Oyav = AoydV , where
\% \%

Ci - elastic constants

Agy - strain change at the source

Aagj - stress change or change in

moment per unit volume

i =

AG =1tr(M;)/(34 +2G), where

A - the second Lamé constant
G - rigidity

The most general description of the processes at the
seismic source V is by the distribution of forces or moments
equivalent to the inelastic deformation. One can describe
the inelastic processes at the source as the stress-free
change of size and shape of an elastic body without
alteration of the elastic properties of the region. If change in
size and shape can be expressed as a change in strain Aegy,
then the equivalent stress change, or change in moment per
unit volume is proportional to the strain change. The total
moment integrated over the source volume is the seismic
moment tensor, M;. For long waves compared to the source
size, the whole source volume V can be considered to be a
system of couples located at, say, the centre of V, and the
moment tensor components can be defined by the equation
at left. The moment tensor measures the inelastic
deformation at the source during the seismic event and its
value at the end of the source process measures the
permanent inelastic strain produced by the event.

The seismic moment tensor can be decomposed into
isotropic (or volume change) and deviatoric components
providing an additional insight into the nature of the
coseismic strain drop.

For a homogeneous body, the coseismic volumetric
change, A0, can be calculated from the second equation at
left.

The eigenvalues and corresponding eigenvectors of the
deviatoric component of the seismic moment tensor
describe the magnitude and orientation, respectively, of the
principal moment axes (neglecting gravity) acting at the
source. These principal moment axes are uniquely
determined by moment tensor inversion. Principal moment
orientation data can provide sufficient information to find the
best stress tensor.

Radiated seismic energy, E, [J]

The portion of the energy released or work done at the
source that is radiated as seismic waves. Seismic energy is
proportional to the integral of the squared velocity spectrum
in the far field and can be derived from recorded
waveforms. Radiated seismic energy increases with stress
drop, seismic moment and with the traction rate i.e., stress
oscillations at the source.
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Parameter, relevant formula

Description

Corner frequency, fy, [HZ]

And

Source size, |, [m]

| = Cy / fo

¢, = 2500 for S-wave in hard rock

The frequency at which a source radiates the most seismic
energy observed as the maximum on the source velocity
spectrum or as the point at which a constant low frequency
trend and a high frequency asymptote on the recorded
source displacement spectrum intersect. The corner
frequency is inversely proportional to the characteristic size
of the source.

Stress drop, Ag, [Pa]

Ao = ¢, Mf,®

c, ~ 1.8 x 107° for S-waves in hard rock
Ao = GAe, and Ae - strain drop

Stress drop estimates the stress release at the seismic
source. Although it is model dependent it provides
reasonable estimates and a fair comparison amongst
different sources from the same region recorded by the
same seismic system.

Source area, [m‘]
A = M/(Gu)
u - average displacement at the source.

The area of coseismic inelastic deformation over the planar
source.

Source volume, [m°]
V=M/Ac

The volume of coseismic inelastic deformation of the order
of Aa/G.

Apparent stress, [Pa]
o, =GE/M=E/(AOV) or
o, = E/(UA).

Apparent stress is recognised as a model independent
measure of the stress change at the seismic source.

Apparent volume, [m’]
Va =M(c30,) = M2 /(c,GE)
Cs - scaling factor = 2.

The apparent volume scales the volume of rock with
coseismic inelastic strain of an order of apparent stress over
rigidity. The apparent volume V, is less model dependent
than the source volume V.

Energy index, El

logZ 4

The notion of comparing the radiated energies of seismic
events of similar moments can be translated into a practical
tool called Energy Index (El) — the ratio of the radiated

energy of a given event (E) to the energy E(M ) derived

from the regional logE vs. logM relation for a given moment
M.

Since logE(M) =c +dlogM , then E(M) =10°*4199M where

¢ and d are constant for a given AV and At.

In general d-value increases with the system’s stiffness and
c increases with stress.

A small or moderate event with El > 1 suggests a higher
than average shear stress at its location. The opposite
applies to the El < 1 case.

Seismic strain,

Os (AV,At) +3M /(2GAV) and
Seismic strain rate, [s"]
[(AV, At) =0 /At

Seismic strain measures strain due to cumulative coseismic
deformations within the volume AV over the period At. Its
rate is measured by [ .

Seismic stress, [Pa]
Og(AV,At) = 2GZE /XM

Seismic stress measures stress changes due to seismicity.

Seismic stiffness modulus, K [Pa]
Ks(AV,At) = og / Og= 4G2AVSE /(EM

Seismic stiffness measures the ability of the system to resist
seismic deformation with increasing stress. The stiffer
systems limit both the frequency and the magnitude of
intermediate and large events but have time-of-day
distribution with larger statistical dispersion, thus are less
time predictable.

Seismic viscosity, [Pa - s]
Ns(AV,At) = og / Og

Seismic viscosity characterises the statistical properties of
the seismic deformation process. Lower seismic viscosity
implies easier flow of seismic inelastic deformation or
greater stress transfer due to seismicity.
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Parameter, relevant formula

Description

Seismic relaxation time, [s]
Ts(AV,At) =ns IG

Seismic relaxation time quantifies the rate of change of
seismic stress during seismic deformation processes and it
separates the low frequency response from the high
frequency response of the system under consideration. It
also defines the usefulness of past data and the
predictability of the flow of rock. The lower the relaxation
time, the shorter the time span of useful past data and the
less predictable the process of seismic deformation.

Seismic Deborah number
Deg(AV, At) = 15 / flowtime, where
flowtime is a design parameter not
necessarily equal to At.

Seismic Deborah number measures the ratio of elastic to
viscous forces in the process of seismic deformation and
has successfully been used as a criterion to delineate
volumes of rockmass softened by seismic activity (soft
clusters). The lower the Deborah number the less stable is
the process or the structure over the design flowtime - what
may be stable over a short period of time (large Des) may
not be stable over a longer time (lower De;).

Seismic diffusivity, [m?/s]

2
Ds(AV,At) =(AV)? /14,
or in a statistical sense
dg = (X)?/t.

Seismic diffusivity can be used to quantify the magnitude,
direction, velocity and acceleration of the migration of
seismic activity and associated transfer of stresses in space
and time. There is an inverse relationship between the
diffusivity Ds and the friction parameters.

Seismic Schmidt number
Scsp(AV, At) =15 /(pDg) or
Scey =115 /(pds)

where p is rock density.

Seismic Schmidt number measures the degree of
complexity in space and time (the degree of turbulence) of
the seismic flow of rock. Note that seismic Schmidt number
Scsy, encompasses all four independent parameters

describing seismicity: f,?, M, E

Time to failure, (t; - t)

dQ/dt = k(t; —t)7

Q - measurable quantity
t - current time

te - time of failure

K, - constants

2V,

®ENAY Yy_ _k
_1 _ diffusion (tf - t)oc
Sc,  viscosity

observations

observations = model o

This concept describes the behaviour of materials in the
terminal stages of failure. It views instability as a critical
point, then precursors should follow characteristic power
laws in which the rate of strain or other observable,
measurable, quantity Q is proportional to the inverse power
of remaining time to failure. Observed oscillations in Q of an
increasing frequency as the failure approaches are part of
the solution to time-to-failure equation with a complex
exponent, where the imaginary part relates to discrete scale
transformation and introduces log-periodic oscillations
decorating the asymptotic power law. The observations Q
can be a combination of different seismic parameters that
would exhibit power law type increase before failure. For
well behaved data sets the time at failure t; can be
estimated from the times of three successive maxima (ty, t,,
t3) of the observed process

te = (t3 —tyt3)/(2t, —t; —t3).
Note that, in theory, t; —t, <t, — 4.
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Parameter, relevant formula

Description

Seismic moments, volume mined and
relative stress

O

1
P T
I I

If a volume of rock, V,, is mined out at time t; and if the
altered stress and strain field can readjust to an equilibrium
state through seismic movements only, the sum of seismic
moments released within a given period of time would be
proportional to the excavation closure and in the long term
att=t.
M =GV,

to
where M is the scalar seismic moment. The relative stress
level at the time, t, in a given volume of rock AV surrounding
the excavation, can be calculated from the difference
between GV,, and the cumulative moments released to

date:
t

o, (t)=(GV,, - M)/AV.

to

Seismic moments and volume of
elastic convergence
XM = yGV,

The amount of strain energy stored when mining in elastic
rock is directly proportional to the volume of elastic
convergence, V.. It has been found that the total amount of
seismic moment resulting from mining within a large area
and time period is related to the change in elastic
convergence V. The proportional constant gamma, vy, has
been found to vary between about 0.03 and 1.0. There is
some evidence that vy is a function of the geotechnical area
being mined.
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1.Introduction

1.1. Formulation of the problem
The needs of the mining industry for effective and safe production have stimulated research
and development effort in two strategic directions:

. design and exploitation of seismic monitoring systems
. numerical modelling of rock-mass response to loading.

To this date there has been very little cross-pollination of ideas and methodologies between the
designers of seismic monitoring systems on the one side and the developers of numerical
models of mining-induced seismicity and related phenomena on the other. As a result the
modern seismic monitoring systems use little more than the most basic model assumptions
about the seismic source dynamics and the properties of the medium supporting the
propagation of seismic waves. At the same time the existing numerical modelling tools use the
available real seismic data merely as a touch-stone for model validation through visual
inspection or calibration and seldom for model optimisation.

The development of seismic monitoring systems seems to proceed independently from the
progress in the numerical modelling of mining-induced seismicity. It is true that the analysis of
seismic data depends on model assumptions but these are about the propagation of elastic
waves in heterogeneous media. A monitoring system is designed to register and analyse
seismic events as they occur and not to attempt an explanation of the processes in the rock-
mass leading to such behaviour.

Explaining and predicting constitute the realm of physics-based models which reformulate the
questions asked about the state of the rock into mathematical problems and implement
numerical algorithms for solving them. In the process of solving such mathematical problems,
specific information about the physical state of the material under study can be obtained either
by referring to a particular moment in time or to a sequence of time steps. When such
information is properly interpreted it constitutes model-generated data.

1.2. Model - data interaction

A physics-based model of rock-mass response to loading in the conditions of active mining is
designed to be a reflection of the real-world situation. This reflection always turns out to be
somewhat distorted due to simplifying model assumptions and input incompleteness. The
measure of this distortion determines the usefulness of a particular model as a provider of
answers to specific questions in a given situation.

1.2.1. Visual inspection

It is not always straightforward to even assess the distortion introduced by a model to say
nothing of controlling and minimising this distortion to an acceptable level. The assessment is
usually done by comparing the real data with the model-generated data. A simple visual
inspection of the model-generated data in comparison with the data provided by the local
seismic network is the first step in deciding whether a given model is at all applicable to the
concrete situation in the context of the mining design and production plans. Although the visual
inspection of numerical models is based on a passive and quite limited interaction between the
monitored and the modelled data it is still an indispensable tool for discarding unsuitable models
and for turning the efforts of the numerical modelling practitioners in the right direction.
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1.2.2. Calibration

Once a particular type of numerical model has been chosen as the most appropriate for a given
mining situation it needs to undergo the process of calibration. This involves a new level of
interaction between the model-generated data and the data collected through observation of the
real system. To begin with, data interpretation is needed as a bridge between the numerical
output of the model and the values of the real physical quantities which are measured and
recorded by the monitoring system. A numerical model uses variables whose values are pure
numbers. In contrast the observable physical quantities have values in accordance with the
chosen system of units. The lack of units (such as kg for mass or sec for time) in numerical
models is compensated by supplying each model variable with a physical interpretation (i.e.
pointing to the physical quantity it corresponds to) and with a scale coefficient for comparing the
numbers generated by the numerical procedure with the corresponding measured quantities.
Calibration is the procedure whereby the scale coefficients of the model variables are
determined. The calibration of a model is performed by comparing a sample model output with
a selected subset of the observed (monitored) data. The scaling of the modelled data makes it
possible to plot it on the same graph with the corresponding observed data thus making the
deviations introduced by the model visible. In all cases of practical interest to the mining industry
there would be not just one such plot but several: one for each modelled quantity and its
observed counterpart. The calibration must bring the model closer to the reality it describes.
This is achieved by varying some of the parameters in the model in order to minimise the
discrepancies between the modelled data and the corresponding observed values. Therefore a
model must be subjected to a thorough sensitivity analysis first and only then it can be
calibrated.

1.2.2.1. Sensitivity analysis

The formulation of every numerical model includes a number of variable parameters which
cannot be specified a priori. As a result of this one and the same numerical model can generate
different sets of data according to the values chosen for the variable parameters. The
sensitivity analysis must reveal the way in which the modelled data values respond to
changes of the parameters.

A complete sensitivity analysis could be prohibitively expensive and in practice it is only the
effect of some parameters which has to be studied before a calibration of the model can be
attempted. Those are the parameters which, when varied, lead to significant changes in the
performance of the models and for that reason are called critical parameters. As a first stage
in the sensitivity analysis the response of the model to all its parameters is measured and the
critical parameters are identified. The next stage of the sensitivity analysis involves the detailed
study of the response of the model to the simultaneous and independent variation of all critical
parameters. This process could require significant time and effort especially when the number of
critical parameters is more than three.

1.2.2.2. Practical issues of model calibration

There are different approaches to calibration. The simplest approach is to consider one
observed quantity and to tune the model by varying its parameters so that the modelled variable
would have the same numerical value as the observed one. Such “one-point calibration” is not
likely to greatly improve the model and in practice a simultaneous minimisation of the
differences between several pairs of modelled-monitored quantities is needed. This process is
related to the mathematical problem of multivariate optimisation in which the (global or local)
minimum of a function of many variables needs to be found. The final stage of the calibration of
a numerical model is performed on the critical parameters only.
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1.2.3. Model optimisation

In the context of model improvement the calibration can be regarded as a form of optimisation
where the function to be minimised (the cost function) is a measure of the discrepancy
between the modelled data and the monitored data. The cost function of a model depends on
the variable model parameters but this dependence is not known analytically and the cost
function of a model can be evaluated only through running the model itself. This makes it
impractical to attempt a model optimisation by means of the standard algorithms for functional
optimisation. There is a more fundamental difference between model optimisation and the
mathematical problem of finding the minimum of a function though: the output of a model and
hence the optimisation cost function is determined not only by the values of the variable
parameters but also by specifying a set of additional restrictions known as initial and boundary
conditions. The initial conditions of a model refer to the physical state of the rock-mass at a
given moment of time while the boundary conditions correspond to the loading. The lack of
detailed knowledge about the initial and the boundary conditions is the main reason for the
discrepancy between the modelled and the monitored data. So, just as model sensitivity
analysis was a necessary precondition for performing calibration, a study of the response of the
modelled data to variations in the initial and boundary conditions is needed for carrying out
model optimisation.

Optimisation is the procedure of minimising the discrepancy between model-generated
data and monitored data through varying all factors affecting the performance of the
numerical model

It may seem that the above definition of model optimisation covers all avenues along which the
process of bringing a model closer to reality may follow. This is not the case since the concept
of optimisation just as the lower-level concept of calibration is based on a passive form of
interaction between modelled and monitored data:

. the model runs for certain values of the parameters and under given initial and
boundary conditions;
. the model-generated data is collected and compared with the corresponding data

provided by the seismic system. The degree of the discrepancy between
modelled and monitored data is evaluated;

. the values of one or more parameters are changed: the prescribed values and
possibly even the type of initial and boundary conditions are changed and the
model is run again.

In this scheme the monitored data plays the role of a touch-stone and does not influence in any
way the performance of the numerical model. In static modelling the object of interest is the
state of equilibrium certain rock-mass assumes under a given load and a direct comparison of
modelled data with a real data stream provided by a seismic system is not possible: there is no
seismicity in static models. The situation is different for dynamical numerical modelling based
on continuum mechanics, fracture dynamics, damage rheology and thermodynamics. The
common feature of the models in the above group is that they employ equations of motion and
thus are capable, at least in principle, to simulate the evolution of the physical stet of the
material in real time. In other words, physically based dynamical models of rock-mass
response to loading can produce datain the form of a stream of values similar in
structure to the output from the seismic monitoring systems.
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1.3. Integration of seismic monitoring with numerical
modelling

1.3.1. Forward and inverse modelling

Two types of mathematical problems can be formulated within the framework of a physics-
based dynamical model:

. Forward problem: Given are the properties of the material, the initial state and the
loading conditions. Find the evolution of the physical state of the rock-mass.
. Inverse problem: Given is the evolution of the system as a time-series of physical

states and either the material properties or the loading conditions but not both.
Determine the properties of the material if the loading conditions were given or
determine the loading conditions if the material properties were given.

The forward-type of problems are well defined and have usually a single, unique solution since
continuum mechanics is a deterministic theory. The practical applications of forward
modelling are obvious: this is the only physically acceptable method of making
predictions about the response of the material to given loading conditions. When the
governing equations are essentially non-linear the system can exhibit instabilities: infinitesimally
small variations in the initial state and/or the loading conditions could lead to significant changes
in the evolution of the system resulting in chaotic behaviour. The reliability of the predictions
based on forward modelling strongly depends on the accuracy of the initial and the boundary
conditions. This problem casts a shadow of doubt on the feasibility of predicting seismicity even
in principle.

Predicting seismicity is such a thorny issue that any definite statement made about it is certain

to meet with vigorous opposition. Nevertheless it is possible to restrict the context in which one
considers the predictability of seismic phenomena and to look for some causative relationships
limited to relatively small space-time regions. This is precisely the situation with mining-induced
seismicity. Here are some arguments in this respect:

. The processes in rock-mass subjected to loading are fully covered by the
theoretical framework of contemporary physics at least at the microscopic level.

. Predictive statements need to cover relatively short periods of time and can refer
to a limited volume of rock.

. The loading conditions are partially under control as they can be estimated from
the design of the mine, the records of the local seismicity and the current
production rates.

. Some information is available about the material properties of the rock under
study and, possibly, about existing geological structures.

Inverse modelling is much more difficult than forward modelling because:

. There are infinitely many different formulations of inverse problems hence there
is no universal approach to solving such problems

. There are no guarantees that a particular inverse problem will have a solution or,
even if the existence of a solution can be established, it may turn out that it is not
unique which is as bad as not having a solution at all.

. The numerical methods for solving inverse problems are more complex and
computationally expensive than the methods for solving forward problems
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In spite of the difficulties listed above formulating and solving inverse problems is an important
component of the whole complex of mining-related modelling as a provider of information about
the material properties of the rock-mass and the loading conditions needed for running the
predictive part of the numerical model.

1.3.2. The concept of integration

The demand for a greater reliability imposed on the numerical models of rock-mass response to
loading dictate a further development of the ideas and practice of model optimisation. The road
to go is in the direction of increasing the role played by the real data supplied by the seismic
monitoring systems for reducing the discrepancy with the model-generated data. This can be
achieved by developing predictive models capable of taking direct numerical input both from a
catalogue of seismic events and from an in-lined seismic system. The input from real events has
to be quantified and converted to either loading (boundary conditions) or to initial conditions
according to the concept of the numerical model. In addition, the assimilation of real events in a
running model can further specify the local material properties and the state of damage of the
rock-mass immediately after a seismic event. The implementation of these ideas in functional
software constitutes an integration of seismic monitoring with numerical modelling.

A numerical model of mining-induced seismicity is truly integrated with the local seismic
network when:

. it is designed to take as direct input all the available information about the
seismic events recorded in the area prior and during the time-window of the
model-generated data

. it uses this input to systematically improve the predictive power of the
model.

There is very little experience in the creation and exploitation of integrated seismic models in
the above sense. Yet even at this stage it is possible to outline some of the fundamental
principles which should be embedded in such systems. The assimilation of real seismic data in
a running numerical model and the dynamical interaction between monitored and modelled data
can be achieved only in dynamical, forward-in-time numerical models in which the pace of time
is scalable to that of physical time. The integration of seismic monitoring with numerical
modelling requires a synchronisation between real, observed events and their modelled
analogues (e.g. loss of cohesion, local loss of stability, material failure etc.).

1.3.3. Restrictions imposed on models by the integration paradigm

Not every numerical model of mining-induced seismicity can be upgraded to an integrated
version capable of absorbing the information provided by the local seismic monitoring system in
real time. Here are some of the requirements which have to be met by numerical models if the
latter are to be integrated with real seismic data:

. The numerical model must run in time steps which are re-scalable to the pace of
the actual (physical) time

. The numerical model must include a procedure or procedures for converting real
events of particular location, time of occurrence and size characteristics into
corresponding additional loading of the system.

. The numerical model must allow for an unambiguous identification of “seismic
events” among the generated data.
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The above conditions must be regarded as necessary for models which are to be integrated
with real data. To illustrate how restrictive the above requirements really are it suffices to
mention that numerical packages do not include forward-modelling in physical time cannot be
integrated with monitoring systems.

The class of models which are best suited for upgrading to an integrated system are those
based on dynamical evolution equations. Such models treat problems referring to the physical
state and processes in a certain volume of rock-mass in given surroundings for specified initial
conditions and under a prescribed external loading. This presupposes a definition of the
rock-mass under study as a physical system. In the context of the problems of interest to the
mining industry, such a definition should include:

. a clear description of the set of states in which a given volume of rock-mass can
exist under the specified conditions
. a list of the relevant degrees of freedom of the physical system, such as: the field

of local strains, the field of stresses, the distribution and the degree of local
damage of the material, temperature etc.

. a formulation of all relevant macroscopically observable quantities which must
serve as a bridge between the model-generated data and the data provided by
the seismic monitoring system.

. a clear and unambiguous definition of seismic events within the numerical model.
The definition must provide for the extraction of seismic source parameters for
the purpose of model calibration.

1.4. Structure of an integrated seismic monitoring-modelling
system

The integration of seismic monitoring with numerical modelling does not smear the differences
between the two main components of an integrated system: the monitoring complex and the
numerical modelling software.

The structure of a seismic monitoring complex can be considered as well established. It
comprises of the network of seismic stations, the software for on-line processing of seismic
events and the seismic database.

In contrast, the structure of the numerical modelling part of an integrated system is less rigidly
determined and can undergo significant evolution following the progress in the theory of
damage rheology, rock-mass stability, energy dissipation in fractured solids, granular flow and
other related areas of fundamental and applied physics. Another source of influence on the
composition of the modelling software is the progress in the development of new numerical
methods for solving difficult mathematical problems such as systems of non-linear partial
differential equations, ill-posed integral equations, large unstructured and dense linear systems,
variational problems in infinitely dimensional (functional) spaces etc.

The functionality of an integrated seismic system must be facilitated by appropriately developed
graphical software. In fact, the development of graphical tools for seismicity-oriented modelling
is so vital, that it could be attributed to a third domain of the integrated system. The complexity
of seismic data makes it extremely difficult for visualising and beyond the scope of
general-purpose graphical software. Even more difficult is the visualisation of the state variables
of a given volume of rock. On the other hand it is the evolution of the physical state of the
system under study which, if properly monitored, could reveal the patterns preceding the loss of
stability in the material. It is highly desirable, therefore, to develop specific graphical tools for
visualising strain distribution, stress distribution, damage and other relevant quantities. When
building an integrated seismic monitoring-modelling system one must not regard the
development of graphical tools as a mere convenience and part of the product packaging but
rather as an essential data-interpretation and monitored-modelled data interaction facilitator.
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The functional inter-dependence between the components of an integrated monitoring-
modelling system is shown on the following chart:
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Figure 1.1

The interaction between the model and the real data stream goes along two channels: from one
hand, the monitored data is juxtaposed to the modelled data for optimising the model
parameters and from the other hand the real seismic events affect directly the running of the
forward solver by modifying the boundary conditions (the loading).

The integration of monitoring and modelling implies that the real data input will, to a certain
extent, drive the numerical model. On the other hand, the same model is driven by the pre-set
initial and boundary (loading) conditions and itself is capable of generating the model-analogues
of seismic events. The question arises of whether the model-generated seismic activity would
not be in conflict with the input from real events. To understand better the situation one can
imagine that the model is “perfect” in the sense that it generates seismic activity with almost
exactly the same spatial, temporal and size distribution as the observed local seismicity. In that
case an integration of the model with the monitoring system would lead to a “double counting” of
seismic events and will drive the model away from the observed data instead of bringing it
closer to it. One may, of course, argue that such a model would not need integration being itself
the perfect predictive tool so badly needed in the mines. Quite apart from the fact that the
considered scenario is not likely to materialise in the foreseeable future, the above analysis
highlights the possibility of double counting in the integration process. A procedure would be
needed in each integrated model whereby such double counting would be eliminated. The
concrete approach to solving this problem would depend on the structure of the model.
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2.Review of numerical models potentially useful for
integration

2.1. Generic modelling methods

This literature survey is focussed on determining the ways in which seismic data can be
integrated with numerical modelling programs. There is very little data on the subject of
integration and so the review has been broadened to evaluate techniques and methods that
may be used to accomplish the integration. Examples where some seismic parameters have
been extracted from numerical models are presented. The focus has been to consider the
reproduction of the power law statistics encapsulated within the Gutenberg-Richter law. The
different types of numerical techniques that are able to represent seismicity in some way are
discussed.

If the modelling techniques are able to represent seismicity, they may not be readily accessible,
and model output parameters may have to be processed in order that they can be related to
observed seismic parameters and patterns. Methods for deriving seismic patterns from
numerical modelling outputs are described for different modelling techniques. The processing
techniques are broadly grouped into methods for obtaining size, space and time distributions
even though the methods and the outputs are generally interlinked.

Finally, methods and issues relating to the comparison and integration of modelled and
observed seismicity are discussed. Initially the concepts of validation and calibration of models
are explored to determine how to decide on a successful implementation of the integration. The
common features of a number of techniques from the simplest visualisation tools to more
complex back analyses and recalibrations to models that can explicitly include seismicity as
input are considered in the context of integration.

2.1.1. Discrete Models

This class of model would incorporate so-called "lattice" or "cellular” representations such as
Cundall's distinct element code 3DEC or the particle assembly code PFC3D. Again, the large-
scale nature of the problem and issues of scaling and the choice of the basic particle or block
size have to be assessed. A copy of the PFC3D program was purchased to assist in this study.

Lattice or discontinuum models rely on simple Newtonian mechanics to update interacting
particle or block positions in an evolutionary manner. In full dynamic mode, the critical time step
that is necessary for the stable integration of the equations of motion of all interacting particles
is determined by the smallest mass of particle and by the stiffest contact between particle pairs.
This generally makes a fully dynamic simulation prohibitively time consuming for large
assemblies of particles. However, in dynamic mode the PFC does, in principle, allow seismic
events to be simulated. The building blocks of these events are individual particle bond
breakage events which may cause subsequent neighbouring breakage as the inter-particle
forces are redistributed. Attempts to use this facility to develop synthetic moment-magnitude
statistics in laboratory scale samples have been successfully initiated at Keele University, UK
(Hazzard, 1998).

The large scale application of codes such as PFC3D to problems comprising as many as one
million particles are probably impractical at present. This then poses the question as to whether
the PFC approach can be applied in some hierarchical or embedded form to sub-regions of
interest. This should be one of the topics of investigation in trials with PFC3D together with the
problem of accumulating moment-magnitude statistics. A second area of investigation should
centre on the feasibility of including observed seismic activity in the model and the implications
of this on subsequent mining activity. This, in turn, implies that the suitability of PFC for
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performing a series of mining step analyses together with the representation of known seismic
deformations has to be assessed.

The most common discrete model in seismic modelling is the block-spring or Burridge-Knopoff
model. These can be one-dimensional (Shaw, 1995, Rundle and Klein, 1993, Jordan, 1999) or
two - dimensional (Ito and Matsuzaki, 1990). The fault is represented by a series of blocks
connected by springs to a rigid plate (see e.g. Figure 2.3.1). The plate is moved along at a
displacement rate related to the tectonic field. Seismicity is represented by considering the
repeated slip response of each of the sliding blocks. Cochard and Madariago (1996) note that
discrete models of the Burridge-Knopoff type exhibit moments that are proportional to the slip
length for the large events. This is due to the flat springs linking the fault elements to the driving
block leading to the fault slip becoming independent of fault length for large events. Thus
complexity is limited, as is the case for models of fault slip with rate independent friction laws.

Shaw (1995) considers the effect of different friction laws on the block - slider model, shown in
Figure 2.1.1. In these models, the frictional resistance is provided by either velocity or slip
weakening friction laws. The model is able to demonstrate complexity on a number of scales.
The frequency — magnitude response depends on the size of the slip zones and thus does not
scale over the entire range of fault slips. The smallest events are limited by the size of a single
block and the moment is proportional to the product of the stress drop and the cube of the slip
zone length. The largest events activate the entire fault and are independent of the stress drop
so that their equivalent seismic moment scales in proportion to the length of the largest event.
Velocity weakening models show similar response to slip weakening models and both models
exhibit power law response with b = 1 for small fault slips. Both models show a “bump” of large
events that extend above the rate extrapolated from the small events (Figure 2.1.2). The
differences at larger scales occur due to the selection of the slip weakening or viscosity
parameters that alter the size distribution over different size ranges. Shaw (1995) also
emphasises that the model considers a single fault only, whereas natural systems consist of
fault sets. The two dimensional model of Ito and Matsuzaki (1990) exhibited clustering of the
slip zones and a b- value close to 1 for certain choices of parameters (Figure 2.1.3)

Fjg. ]: Schemalic. representation of a portion of the two-
dimensional mechanical model of earthquakes [after Otsuka, 1971]

Figure 2.1.1 Two dimensional block-slider model (Ilto and Matsuzaki, 1990).
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Figure 2.1.3 a: Clustering and b: size distribution of events for a 2-D slider block model
(Ito and Matsuzaki, 1990).

Similar block slider models, but with a friction law that only permits a transition between discrete
static and dynamic friction values, have been applied to model seismicity by Rundle and Klein
(1993). With a constant failure threshold, the model exhibited power law response with an
exponent that was independent of the driving velocity and can be considered to result in a state
of self organised criticality. Randomisation of the failure threshold caused the power law
response to alter with increasing velocity (Figure 2.1.4). For slow plate velocities there were
relatively more small events and the model evolved to produce power law scaling as the velocity
was increased.
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Figure 2.1.4 Change in power law statistics due to change in velocity boundary
conditions (Rundle and Klein, 1993).

Wilson et al. (1996) used a lattice model consisting of a lattice pattern of bonds that could be
broken is sufficient tension was applied. The entire model was given an initial distribution of
tensile strengths and loaded in tension. Frequency magnitude plots were obtained (Figure
2.1.5), but were stepped due to the discrete nature of the fractures and the finite sized grid. The
initial distribution of strengths affected the fracture pattern and the shape of the frequency
magnitude plots. When the initial strength distribution was uncorrelated, the frequency -
magnitude data did not show power law scaling. Input of a fractal representation of the strength

resulted in power law scaling.
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Figure 2.1.5 Two methods for obtaining power law statistics from a lattice type model
(Wilson et al., 1996). top: Counts of lattice breaks; bottom: box counting method

The block - slider models have a number of advantages for modelling of earthquake statistics,
including the reproduction of Gutenberg- Richter statistics, characteristic size events that
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dominate the cumulative slip, complex space-time patterns of seismicity, and the propagation of
pulse type events. The models have disadvantages in that they are unable to model large scale
dynamic effects, the loading using tectonic velocities may be unphysical, the friction laws are
often ad hoc and the output complexity may be altered by the choice of the grid size (Jordan,
1999).

Morrison et al. (1993) considered the problem of mining towards a fault using the UDEC
discrete element code. The continuously yielding joint model was applied on the fault to permit
stress locking and stick slip response. The fault exhibited a range of slip event sizes, but the
number of events was too low to permit the use of a frequency magnitude plot or to attempt to fit
a power law.
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Figure 2.1.6 a: PFC model of a triaxial test with dots representing fractures (light dots
indicate early initiation times and dark dots occurred later) and b: frequency magnitude
statistics showing the dependence of the b-value on the processing procedure (Hazzard,
1998).

Discrete models can be used to model dynamic slip on fault planes. When the analysis is
dynamic, the seismic parameters must be calculated from the energy released (Cundall and
Lemos, 1990). This can be done in two ways. Firstly as the incremental work done by far field
loads less the work done by joint friction and less the elastic strain energy. The second method
considered the energy released to be the sum of the kinetic energy, the work done by damping
and the work done by absorbing boundaries. Both methods produced similar results in studies
of the slip on a fault (Cundall and Lemos, 1990).

Lattice models of solids consisting of bonded particles have been applied to the modelling of
faults containing gouge by Mora et al. (1997) The two-dimensional model consists of two blocks
with a rough interface being driven past one another. Grains within the blocks are modelled as
groupings of 3-10 bonded round particles. The model consists of 128 x 128 particles. The
model exhibits multi-linear power law distributions of event magnitudes. The presence of gouge
is found to enrich the distribution of event sizes. Without gouge, only events of a characteristic
size are observed.
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A discrete element method, in which the rock material is represented by a set of circular
particles, was applied to the modelling of acoustic emissions arising from tunnel breakout by
Potyondy and Cundall (1998). The acoustic emissions were defined to occur once the stress on
an inter-particle bond had exceeded the specified strength level. The method was extended by
Hazzard (1998) who modelled the acoustic emission processes observed in a variety of
laboratory tests (Figure 2.1.6).

2.1.2. Continuum models

This class of model is exemplified by finite element or finite difference programs such as
ABAQUS, ELFEN or FLAC3D. It must be accepted that compromises are required at the
present time to represent regional deformations covering volumes of the order of one cubic
kilometre. A rough calculation shows that if the area of interest is a cube with a side length of
one kilometre, then one million zones are required to achieve a nominal resolution of 10m. The
biggest problem is the manner in which seismic activity would be simulated. Continuum
representations require the specification of some form of strain softening to reflect stress drop
effects. If this occurs in the solid rockmass then the resulting shear band is usually defined with
a thickness of at least three grid zones. This implies a thickness of at least 30m using the
assumed grid size of 10m. An alternative scheme is to postulate the existence of ubiquitous
joint sets with given orientations. Ideally the joint set orientation would have to be introduced
adaptively as seismic information is incorporated progressively into the model. Some numerical
experiments will need to be performed to determine whether such behaviour can be
incorporated “on the fly” in codes such as FLAC. It is not clear whether meaningful seismic
event statistics could be generated in this manner. It should be noted that in many cases,
material damping is incorporated in the model as an expedient device to reduce spurious
instabilities that may accompany material failure. The effect of this damping on the true
“physics” of the problem is unclear.

A simulation of seismicity in a tectonic plate was performed by (Lyakhovsky et al., 1997a, b)
using a finite difference solution technique. The rock was modelled using a continuum damage
model (Lyakhovsky et al., 1997a, b). The damage is related to a scalar parameter based on the
deviatoric strain invariant. The damage accumulates due to an increase in the deviatoric strain
and the rate of accumulation decreases as the mean strain increases. A logarithmic decrease in
damage with time is introduced to model the healing observed in experiments of the rate and
state dependent nature of friction. The extension of a tectonic plate is modelled. The
assumption of a random initial damage state is necessary for localisation of the damage into
large-scale shear zones. Modelling of a strike slip zone with an initial, localised, damage zone
generates a series of earthquake cycles with distinct inter, pre, co and post seismic periods
(Lyakhovsky et al., 1997a, b). The seismic features resulting in the strike slip zone with an
initially random damage zone depend on the rate of healing. High values of the healing
parameter leads to regular fault geometries and a characteristic earthquake size. Low healing
results in a disordered fault network that exhibits Gutenberg -Richter statistics. Certain
parameter choices lead to switching between the two types of response.

The finite difference method has also been applied for modelling seismic wave propagation and
interaction with existing fault zones (Coates and Schoenberg, 1995). Solution of 3-D dynamic
wave propagation problems in elastic media requires efficient solution techniques such as the
staggered grid finite difference method (Graves, 1996). Seismicity can be explicitly included in
continuum models using the staggered grid approach by using the moment tensor solution of a
known event and applying the relevant point forces and the event source position (Graves,
1996). Only waveforms were considered to be important and no events were triggered by the
induced waves and so no frequency magnitude statistics were presented.

Acoustic emissions associated with bond failure in laboratory tests and seismicity on a mine
scale can be simulated with the finite element method (Tang, 1997). The method uses a linear
elastic finite element code where each element is assigned a random strength and stiffness
(Figure 2.1.7). After failure the strength is reduced and the stiffness is set to a negligible value.
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An event is defined to occur when an element fails. The method is applied to an uniaxial
compression test and the failure of the pillar between two underground excavations. The model
exhibits power law response for small events, but the number of large events is limited.
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Figure 2.1.7 A statistical finite element model with random element properties (Tang,
1997)

Other means of applying the finite element method to multiscale problems may lie in the
hierarchical methods that have been developed recently (e.g. Oden et al, 1999). These
methods are based on the hybrid element formulation and can represent different material
behaviour on a number of scales.

A method for introducing seismicity into a model of the lithosphere was presented by Sornette et
al. (1990). The rock is assumed to yield at some failure criterion dependent on the stress and
the strain. The average stress is assumed to be constant within the tectonic plate under
consideration. The deformation of the plate is related to the time dependent applied stress by
means of a global balance equation that assumes that the average stress in a volume is
constant. This leads to a diffusion equation relating the rate of change of stress to the gradient
of the strain. Earthquakes are introduced as nonlinear corrections to the strain gradient i.e. they
are considered to be noise that is superimposed onto the overall level of strain. The strain
gradient depends on the strain, the average stress and the gradient of the average stress and
thus introduces nonlinearity into the model. The noise includes inhomogeneities and anisotropy
of the geometry and composition. The noise is assumed to be uncorrellated and non-
conservative i.e. it is not governed by any global law, other than the assumption that the
average noise is zero. This approach, with a global conservation law on average, and non
conservative noise terms are the minimum requirements for a system to exhibit self
organisation.

An alternative approach was taken by Sornette et al. (1990) in which the faults were explicitly
introduced as internal boundary conditions. The organisation that results from each approach is
different. In the approach with superimposed noise, the changes to the strain and time fields
introduced that are characterised by a power law distribution that features long range
correlations in time and space. In the internal boundary condition approach, a fractal structure of
faulting develops that is controlled by a power law that is different to the input law. The
underlying conservation law is seen as the crucial component in causing the power law (self
similar) fluctuation of the strain field. The nonlinear feedback in the strain field forces the effects
of a local change to be distributed through space and time, and not to die off locally. Thus an
initial disturbance (an earthquake) spreads out through time and space. The introduction of
dissipation would lead to a limit to the distance and time that are affected by the disturbance.
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The presence of self organised criticality in the model leads to the power law distribution of the
frequency of the average energy of earthquakes. The way in which the average energy is
determined by Sornette et al. (1990) is not clearly defined. An equivalent value of b = 1 for the b
parameter in the Gutenberg Richer frequency magnitude relation is obtained.

Another method for producing a numerical simulation of seismicity was presented by Salamon
(1993). A rectangular region of the rock mass is assumed to contain a set of random flaws. The
locations, orientations, and sizes of each of the flaws are specified using a Monte-Carlo
technique. Mining progresses within the block of potential events, with each flaw visited after
each mining increment. The stresses in the rock mass are calculated from the analytical solution
for mining of a single panel. When the driving shear stress exceeds the frictional and cohesive
resistance, the flaw is considered to have produced a seismic event. Equivalent seismic
parameters, such as moment, kinetic energy, seismic efficiency, can then be calculated. Four
assumptions were made regarding the flaw activations and interactions. There is no interaction
between flaws, flaws that experience tensile stresses are ignored, flaws that have been
triggered may not be re-activated, and flaws that are mined out are not triggered. The major
assumption, that is not listed, is that the slips do not alter the stress state within the elastic
continuum. The model therefore produces a catalogue of events, but there is not cumulative
inelastic response generated by the events.

The model was applied to the problem of mining a single panel dipping at 20 degrees, and
having a dip length of 100m. The panel was mined for a span of 2500m at 2.5m increments.
Correlations with observed mining seismicity were obtained by altering the flaw density, the
random distribution and the friction coefficients. The events are found to cluster around the
mining face. A correct choice of the input parameters, based on a flaw density of 16 000 flaws/
km leads to correspondence of the simulated slip distances, and stress drops with data from the
ERPM mine.

2.1.3. Boundary Element Models and discrete fault planes

This generic category of model exploits the proposition that off-reef deformations can be
considered to be concentrated on distinct discontinuity surfaces (faults, joints, burst fractures).
This is compatible with general seismological methodology. In this case, it is natural to assume
that some form of boundary element code (MAP3D, FRANC3D, FRACMAN, 3DIGS) could be
adapted to represent the off-reef seismic behaviour. Questions that are unresolved though are
whether elastodynamic effects should be explicitly treated and the extent to which
discontinuities on multiple (fractal) length scales can be represented by these models.

The discontinuities can be pre-specified as random flaws, joint sets, faults or inter-connected
random meshes as might arise in describing a bonded granular material. The interaction
between discontinuities can be resolved by explicit joint constructs in Finite Element or Finite
Difference codes (e.g. ELFEN, WAVE/ NUWAVE) or by treating the discontinuities as small
strain dislocations as in boundary element programs (MAP3D, MINSIM, 3DIGS, FRANC3D,
FRACMAN, POLY3D). When using a finite element or finite difference formulation, it is
necessary to represent the whole space or to erect suitable bounding surfaces or to use special
mapping functions for infinite element shape variation. The formulation is inherently inertia
sensitive and is able therefore to simulate dynamic effects directly with the usual proviso on the
choice of time step size to ensure numerical stability. An important limitation of this approach, in
the context of the integration of seismic activity, is the difficulty of including adaptively the
observed seismic strain information. This will require some form of re-meshing the model to
include explicit discontinuities. Alternatively some form of damage tensor is required to allow a
continuum inelastic strain tensor to be included in the model. This is a challenging requirement
in three dimensions.

The boundary element codes must be carefully distinguished as being either static or dynamic.
Most of the readily available codes (as listed previously) are static and, consequently, the rock
mass is implicitly assumed to have no inertia (zero density/ infinite wave speed). This apparently
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gross assumption is of little consequence in the analysis of stress redistribution caused by
mining or due to specified joint or fault slip increments. In certain cases, it may even be
legitimate to represent the rheological behaviour of the rock mass by postulating that the slip
rate of a discontinuity is related to the driving shear stress by a fluidity parameter. This allows
the simulation of pseudo-seismic event sequences. This viscous behaviour is included in the
computer codes MAP3D and DIGS. It has not yet been demonstrated whether realistic moment-
magnitude statistics can be generated by the surface fluidity formulation. The boundary element
formulation does offer some advantages in only requiring the active discontinuity surfaces to be
represented and can readily accommodate the subsequent addition of extra surfaces which
might represent observed seismic activity.

A second variety of boundary element formulation does allow elastodynamic movements to be
analysed. This can be readily derived from the Stokes solution for a time-dependent point force
in an infinite elastic medium but the method is difficult to implement numerically. Extreme care is
required in the selection of time step and shape function representations. An initial feasibility of
implementing some form of dynamic boundary element code that is periodically invoked in
conjunction with a static code (continuum, lattice or boundary element) should be investigated
to address the issue of multiple time scales (e.g. Ben-Zion and Rice, 1993).

A considerable amount of research has been focussed on modelling of the behaviour of single
fault planes. For example, the time and space distributions of slip on a single fault have been
studied using an elastodynamic formulation of the boundary integral method in two (Cochard
and Madariago, 1996) and three dimensions (Fukuyama and Madariaga, 1998, Madariaga et
al., 1998). The fault surface is assigned rate and state variable friction laws in which the friction
depends on the amount of slip, and the velocity of the slip. In these implementations, the friction
decreases linearly with distance and with the inverse of the slip velocity.

In the two-dimensional model of Cochard and Madariago (1996) a random stress state that
increased slowly with time was applied. They observed “seismic” slips if the fault slipped more
than the characteristic minimum length chosen for the friction laws. Two time scales were
observed, one related to the selected rate of increase in the tectonic stress and the second is
determined by the ratio Ax/ 3 where Ax is the element length and B is the shear wave velocity.

The rate dependent friction laws cause complexity in the response of the fault set within a
homogeneous medium. The complexity introduces events that are smaller than the entire fault
length due to premature locking and healing of the slip. The partial stress drops are associated
with the rate dependent friction and cause disorganisation of the fault behaviour. If rate
independent friction laws were used, full stress drops would occur across the fault, unless some
heterogeneity of the frictional properties was specified. Seismic events are defined as regions
of slip, and followed an L2 scaling law in which seismic moment scaled as the product of the
partial stress drop and the square of the length L of the zone that slipped. The frequency
magnitude data does not show Gutenberg-Richter behaviour. The frequency magnitude
distribution can also be obtained directly from the numerical results and is shown for two
different element sizes in Figure 2.1.8. Each analysis shows that there is a different distribution
for small and large events. The distribution for larger sizes reflects the events in which the
influence of the boundaries dominates the response of the fault.
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Figure 2.1.8 Frequency magnitude statistics for a 2-D strike slip fault (Cochard and
Madariaga, 1996).

The distribution of fault slip in time and space on a two-dimensional strike slip fault was studied
by Tse and Rice (1986) using a series of line-screw (Mode lll) dislocations. The fault exhibited
periodic earthquake formation that was attributed to the quasi-static assumption and the simple
rate dependent slip law.

Rice (1993) applied a boundary element formulation to model a single fault plane. A quasi-static
approach was used, with a viscous damping term to approximate the dynamic effects. The
response was found to be related to the size of the elements. Larger elements failed
independently, whereas smaller elements had to co-operate and fail in clusters. The critical
element size depends on the parameters of the rate dependent friction law. The correct solution
of the stresses at the edges of a spreading fault source requires very small elements and the
space-time distribution was found to be periodic, not complex. Oversized elements were able to
act independently. A conflict arises between the requirement for smaller element size to ensure
numerical accuracy and ability of the oversized elements to represent the complexity that is
observed in real seismic data, even though the stress distribution was not modelled properly.

Ben-Zion and Rice (1993) and Rice (1993) indicated that random element strengths are
required to produce self organised criticality, or scaling behaviour. Variations in strength of more
than 10% of the average strength were required in order to activate self-ordered clusters. The
size distribution found by Ben-Zion and Rice (1993) showed a linear log Frequency - log
Moment response for small and intermediate events and constant size, or characteristic,
earthquakes at large magnitudes. This is because the larger events are unstoppable and the
maximum earthquake size is only limited by the size of the model. They found that the
numerical frequency-magnitude distribution depended on the parameters that were selected for
the rate and state dependent friction laws.

A distribution of asperity strengths was required by Lachenicht and van Aswegen (1999) in
order to compare the results of a boundary element model with the distribution of seismicity
resulting from mining towards a fault. The strength distribution of asperities was specified to be
a power law determined from the observed power law of seismicity. The regions of the fault
surrounding the asperities were modelled with a viscoplastic friction model. The modelled
seismicity exhibited similar b-values and energy - moment relationships to the observed data.

Models consisting a number of interacting slip planes have been developed by Robinson and
Benites (1995) and Spottiswoode (1999). The model of Robinson and Benites consists of a
three-dimensional boundary element formulation with elements that are allowed to slip
whenever the pre-existing strength is exceeded. The friction parameters vary from 0.1 to 0.2
resulting in a stress drop of 10% of the static stress. A model of two parallel strike slip faults
generated 500 000 events over a simulated time period of 28 900 years (Figure 2.1.9a). The b-
value depended on the fault parameters, but is close to 1 for the selected values (Figure
2.1.9b).

In Extended MINSIM models, off-reef seismic activity is "condensed" onto the reef plane using
special constitutive constructs. An initial example is Spottiswoode's MINF routine with "capped"
stress levels ahead of the stope face. A somewhat different approach is to follow the proposal
by Salamon to represent off-reef features as "virtual" random flaws that are assigned according
to postulated orientations and density. These "flaws" are triggered by the mining induced
stresses sweeping past them as on-reef mining increments are simulated. This approach needs
to be calibrated using local gold mine seismic data.

It may be possible to extend the capped stress model of Spottiswoode to allow for the
representation of off reef deformations as equivalent “plastic” strains in a boundary element
formulation. In this case it would be possible to analyse near-field discontinuity interactions
directly using the actual discontinuity surfaces (without any loss of accuracy) and to determine

38



far-field influences by the use of plastic volumetric strains. A hybrid model of this type is similar
in spirit but different in implementation to the multipole method introduced by Peirce and Napier.
The multipole method, however, seems to be limited to 2D applications because of the
proliferation of influence kernel functions required in 3D. It would appear that a more effective
strategy in 3D would be to represent the off-reef strain as a high order variation field whose
influence can be evaluated by numerical means. The strain field could be constructed by the
multipole strain moment expansion technique. This strategy could be more effective than the
“equivalent crack” approach proposed by Napier and could be readily tested initially in two
dimensions. This approach would also allow a very flexible means of including seismic
information adaptively either as explicit discontinuities or directly in moment tensor form. The
extension to elastodynamics is not yet formulated.

Spottiswoode (1999) considered a number of planes parallel to a tabular stope excavation. A
spectral boundary element approach was used to facilitate the solution of a large number of
elements. In this approach, fast Fourier transforms methods are used to compute the inter-
element influences very efficiently. Each plane can fail when the Mohr Coulomb failure
threshold is exceeded. A growth rule is applied that only permits slip at the element with the
highest excess shear stress and any subsequent slips must be associated with elements on the
boundary of the current slip. The elements experience viscoplastic slip (creep) once the element
has failed and the stress state has dropped to a seismic residual value. The model indicates
power law response over certain size ranges, with a b-value of 1 at intermediate sizes (Figure
2.1.10).
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Figure 2.1.9 a: model of two parallel faults. b: Frequency magnitude statistics (Robinson
and Benites 1995).
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Figure 2.1.10 Frequency magnitude statistics for model of multiple layers parallel to a
tabular stope (Spottiswoode, 1999).

2.1.4. Static vs. dynamic modelling
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In the context of integrating seismic activity with numerical modelling, it is necessary to consider
when inertial effects, controlling wave propagation through the rock mass are important,
2.computer memory capabilities but are extremely flexible in allowing variable material
properties to be accommodated. It is possible that future developments in computer parallel
processing technology may relieve the memory constraints associated with these methods.

2.1.5. Stochastic vs. deterministic models

An essential feature of the integration of numerical modelling with seismic monitoring is the
ability to be able to simulate the statistical patterns of seismic activity. This will generally require
that the numerical model has some form of “cellular’ structure in which individual elements
interact with one another and coalesce to form damage regions covering many size scales. This
can only be achieved to a limited extent by current computer tools. One future aspect of studies
of integration of seismic activity with numerical modelling will be the formulation of
computational methods that can accommodate the representation of damage on many length
scales. In this respect, the “renormalisation group” methods of statistical physics can be
expected to provide useful guidance in the formulation of these models.

2.2. Numerical models currently being developed for use in
SA mining Industry

2.2.1. MINSIM/MAP3D

The computer programs MINSIM and MAP3D are widely used in South Africa for the analysis of
stress distributions in the vicinity of tabular mine openings. MINSIM is a boundary element code,
based originally on Salamon’s “Face Element Principle” (Salamon, 1964) which uses the
displacement discontinuity method to solve tabular excavation and fault slip interaction
problems. MAP3D (Wiles, 2000) has a number of more general features than are catered for in
the MINSIM code, including the ability to model cavities, multiple material zones, and limited
volumetric plasticity. In addition to MINSIM and MAP3D, a number of generically similar
computer tools have been employed for the analysis of stress patterns near deep level
openings. These include, specifically, the programs MINAP and MSCALC developed by Crouch;
the basic principles are described in detail by Crouch and Starfield (1983). In the context of
exploring the integration of seismic monitoring with numerical modelling, it is important to
highlight certain broad attributes of these computer programs rather than attempting a detailed
comparison between each particular code.

2.2.1.1. Boundary element basics

All boundary element methods rest on the assumption that any solution can be expressed as a
linear superposition of fundamental solutions. The fundamental solution provides the response
to a local excitation, at a given time and position in space, at all other points in space and at all
succeeding times. By using such a fundamental solution and classic results from vector
analysis, a boundary integral representation can be established in terms of the values of key
variables defined on the surfaces surrounding the medium and on any special surfaces (such as
fractures) within the problem region. The computational advantages of such a surface
representation are clearly manifest in the analysis of steady state, three-dimensional problems.
These advantages are reduced as the controlling surface area is increased relative to the
volume and if transient problems are to be solved. In addition, the fundamental solutions may
only be known for simplified approximations to the actual medium behaviour (such as linear
isotropic elasticity). Despite these shortcomings, the boundary integral method provides a very
useful tool in the analysis of stress distribution problems in solid mechanics. The particular
approach, referred to as the displacement discontinuity method (DDM), is ideally suited to the
analysis of tabular excavation and fault interaction problems although detailed numerical
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difficulties may arise in its implementation and efficient solution, particularly with regard to
intersecting or acutely angled discontinuities.

The implementation of the DDM for the solution of tabular excavation or fault sliding problems
requires that the excavation or fault surface be divided into discrete areas termed “elements”.
Each element is assigned a “shape function” which controls the variation of the displacement
discontinuity density within the element. Boundary conditions must be matched at one or more
“collocation” points within each element or must be satisfied in some average sense over the
element area. In the simplest approximation, the discontinuity vector is assumed to be constant
over a flat polygonal element and the boundary condition is enforced at a single representative
point within the element. In the solution of tabular mine problems, it is often assumed that each
element has a square shape and that the boundary condition is matched at the center of the
element. This scheme is used by the current versions of the MAP3D, MINSIM and MSCALC
codes in the solution of discontinuity problems.

In order to highlight some of the properties of the constant element assumption, consider the
expression for the normal stress, 7,,, induced by a single square element of side 2a, centred at

the origin of the x-y plane. This is given by the formula

G
Tzz(xiy):mlizz D; (2.2.1)
where G is the shear modulus and vis the Poisson’s ratio of the assumed isotropic rockmass.
D? is the value of the normal (z direction) displacement discontinuity component across the

element. (This is interpreted as the stope closure in tabular mining problems). The quantity | is
the Newtonian potential, integrated over the surface area of the element:

= dedn (2.2.2)
-a -a r
where r? =(x=&)? +(y -n)? +z? . 1,,, =0°l/9z? represents the second derivative of this

function, evaluated in the limit z - 0, and is given by:
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Equation (2.2.3) determines the normal stress component induced by the element with a normal

DD component Df. General relationships for the full stress tensor, induced by the DD vector
(Dy, Dy, DY), are documented by Crouch and Starfield (1983). Equation (2.2.3) reveals a

number of interesting properties relating to the DD method that are not always appreciated.
Specifically, it can be observed that if x =+a or y = ta, the expression contains apparently

singular terms. However, on closer inspection it can be seen that these terms cancel in pairs.
This in turn implies that some care must be taken in implementing the influence computation
procedures in any computer code. Setting y = 0 in equation (2.2.3) gives the expression for the
stress induced by the element along the x-axis:

_2y(x+a)*+a? 2y(x-a)? +a’
- a(x +a) a(x—a)

(2.2.4)

1zz |y=0
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Consider a position x =a + ¢ close to the edge of the element. For |£| <<a, equation (2.2.4)

tends to
iy |veo - =2/ € (2.2.5)

Equation (2.2.5) demonstrates that the stress becomes infinite adjacent to the edge of the
element and changes sign on each side of the edge. (In the present case a positive value of Df
represents stope closure). The induced stress component 7,, changes from infinitely positive

(tension) to infinitely negative (compression) as x changes from a position just inside the
element (e < 0) to a position just outside the element (¢ > 0)). It is important to note that this

singularity is much stronger than the \/E crack tip singularity encountered in fracture mechanics
analysis (Lawn and Wilshaw, 1975). Furthermore, it is not possible to integrate the expression
(2.2.1) for r,, over the area of the element. In fact, the point value 7,,(0,0) should be

interpreted as the average stress induced over the element. The presence of the strong
singularity represented by equation (2.2.5) also means that considerable care must be taken in
interpreting stress values at points near element edges and displaced normal to the plane of the
element. This has particular importance in attempting to perform seismic modelling integration
by inserting near-reef strain influences to represent observed seismic activity.

The integration of seismic activity and numerical modelling can be simplified enormously if the
seismic behaviour is associated with discrete, non-intersecting fault planes. In these cases it is
possible to adapt most of the displacement discontinuity boundary element codes currently in
use to perform basic integration studies and to attempt to predict future seismic activity.
Specifically, the following steps can be followed if seismic information in a given mining area is
reviewed at regular time intervals.

1. Translate the observed seismic activity over the review period into the required slip vectors
acting over one or more fault plane areas.

2. Assign the slip to an already identified fault plane area or create a new fault plane. Re-
compute induced stress values in the areas of interest.

3. The slip assignment can be carried out easily if the existing planes are pre-gridded into
square elements. This ensures that no element overlap or intersection occurs.

4. To predict future activity, it is necessary to determine the slip propensity (measured, for
example, by the excess shear stress level) on the currently unslipped portions of each fault
plane. The actual slip can be computed and used to estimate potential event magnitudes.

5. Return to step (a) for the next review period.

The simple procedure outlined in steps (a) to (e), allows observed fault related seismic activity
to be incorporated adaptively into the modelling framework. This scheme will, however, need to
be extended if, at any stage, the inserted slip values are incompatible with the pre-existing
stress states at the identified event positions. This will arise if incorrect assumptions have been
made about the field stress orientation or if additional deformation has occurred that is not
reflected in the modelled configuration. In general, it may be found that it is also necessary to
cater for intersecting fault planes, occasional fault-reef intersections and the effect of structures
such as dykes. It should be noted as well that the integration process in steps (a) to (e) relates
mainly to large event activity. Detailed procedures for the integration of local stope face damage
will probably require more complex numerical approaches such as that used in special purpose
boundary element programs or nonlinear continuum codes.

2.2.1.2. Simulation of seismic activity using the displacement
discontinuity boundary element method

One advantage of the displacement discontinuity method is that nonlinear behaviour at slip
interfaces (friction sliding or cohesion breaking) can be incorporated readily into the solution
procedure (Ryder and Napier, 1985). In particular, it is straightforward to introduce simple
“creep” relaxation laws into the solution procedure. For example, the shear slip rate on
mobilised fault elements can be assumed to be proportional to the difference between the local

42



driving shear stress and shear resistance acting on the element, provided the shear stress
exceeds a defined strength “barrier”. This, in turn, allows the simulation of intermittent rapid slip
episodes on a fault surface having a distribution of intact and creep elements. More elaborate
rate laws can be used that involve velocity-dependent friction and slip healing. At present these
relationships must be regarded as speculative at the mine scale although they may be
empirically descriptive at the laboratory scale. Nevertheless, it seems that a multiple, interactive
assembly of discontinuity surfaces can provide a good geometric representation of large-scale
rock mass deformation for the purposes of integrating seismic activity with numerical modelling.
The main challenge is to demonstrate the validity of postulated slip constitutive relations and to
be able to identify the orientation and extent of existing and induced fracture surfaces.

The integration process requires that observed seismic behaviour must be incorporated in some
manner into the modelling framework and that this should also be capable of inferring
subsequent deformation processes. Most observations of seismic behaviour involve the
determination of event locations and, in some cases, the nature of the event source. This can
be expressed in terms of the seismic moment tensor defined as

M; =G(D;n; +D;n;)A (2.2.6)
where D; are the components of the slip vector, G is the shear modulus and A is the area of slip.
The scalar moment M, is defined with respect to the average slip D by

M, = GDA (2.2.7)

Knowledge of the six independent components M; of the symmetric moment tensor is
insufficient to allow equation (2.2.6) to be solved uniquely for the D; and n; values since

ni2 =1. However, if some rule is available to fix the orientation of the slip plane, the

components of the displacement discontinuity vector can be assigned and the stress induced by
the event can be determined by appropriate influence relationships. In a local coordinate
system, x,y,z, and assuming constant values of the DD vector (D, Dy, D), the stress induced
within the slip region is given by

At,, l,+U, -u, 0[D,]

G : , ,
ATyZ = ﬁ _VI,xy |‘ZZ +V|’XX 0 Dy (228)
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where | is given by equation (2.2.2). Let the 3 X 3 influence matrix in equation (2.2.8) be
designated by K. For a square-shaped slip area of side g this is equal to

1-v/2 0 0]
=821 o0 00 (2.2.9)
91 o 0 1

It is interesting to note that for a circular shaped slip area of radius R, the influence matrix is
equal to

43



1-v/2 0 O]
21T
Kzﬁ 0 1-v/20. (2.2.10)

0 0 1

For equal slip areas, g = J7R , and the ratio of the influence coefficients for the square area to
the coefficients for the circular area is approximately equal to 1,015. If the pre-existing stress at
the source location is TUP, the total stress is given by

r; =17 +Ar, (2.2.11)
where Ar; is computed using equations (2.2.8) and (2.2.9) or (2.2.8) and (2.2.10).

In cases where additional slip is to be estimated in some proposed position relative to an
existing population of discontinuities and mined regions, some law must be used to determine
the equilibrium stress condition. The simplest rule is to assume that the equilibrium shear stress
at a potential site is equal to the frictional sliding resistance. For example, if slip is in the local y-
coordinate direction, on a flat, square crack whose normal is in the local z-direction, it is
required that

= —e(rs?Z +CK D, ) =-ur

Ty,

(2.2.12)

zz

where 7,, is the normal stress across the crack (compression negative), i is the coefficient of

friction and e is a slip indicator variable equal to the sign of the slip component D,. C and Ky,
are, from equations (2.2.8) and (2.2.9), given by

G

C=—1> (2.2.13)
4m(1-v)

and

Ky, =8v2(1-1v/2)/V/A, (2.2.14)

respectively. Solving equation (2.2.12) gives

Dy|=eD, =7, /CKy, (2.2.15)
where the excess shear stress (or stress drop) 7, is given by

T, =-€Ty, + Ur,, (2.2.16)

Now, from equations (2.2.13) and (2.2.14), it can be seen that CK,, =aG /A where a
depends on the element shape and on Poisson’s ratio, v. The energy release, AE, is given by

AE :%Are D,|=A%?12 /120G (2.2.17)

The scalar moment My is given by

M, =GAD.|=A%?r_/a 2.2.18
0 y e
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Finally, combining equations (2.2.17) and (2.2.18) gives
AE =M1, /2G (2.2.19)

Equations (2.2.17) to (2.2.19) are equivalent to the basic relationships of elementary seismology
(see Scholz, 1990). However, it should be noted that the assumption of a constant slip leads to
a value of a which over-estimates the average slip by a factor of approximately two when
compared to the average slip computed for a penny shaped crack (Brune model). (This error is
reduced if the slip variation is smoothly reduced to zero near the edges of the patch). In
addition, considerable care must be exercised in assigning crack slip elements to designated
spatial positions in order to avoid spurious singular stress interactions. In general, it will be
necessary to use point influences (Section 2.2.2) or to ensure continuity at crack intersection
lines by means of higher order discontinuity variations. These detailed difficulties have to be
resolved in the actual scheme that is designed to integrate seismic observations with numerical
modelling.

2.2.2. MAP3Di/Point KERNEL
2.2.2.1. MAP3Di

Map3Di is an advancement of the standard MAP3d programme that permits the superposition of
external field loading effects onto a standard Map3D model. The field loading can arise from
thermal heating, fluid pressure, non-linear behaviour, etc. In addition, the magnitudes of the
external effects can be determined from many forms of in situ monitoring including for example
fluid pressures (e.g. well drawdown, dams, hydrofracturing), heating (e.g. natural heating,
nuclear waste storage), and deformations (e.g. monitored with extensometers). Another
important source of in situ field loading information arises from seismic activity. By definition, the
presence of seismicity indicates that the rock mass is yielding to load and hence deforming in
some way. The seismicity could indicate shearing on a fault plane or 3D material non-linearity
possibly resulting from a weak lithological feature. The deformations indicated by the seismicity
can be superimposed onto the Map3D mine model, thereby redistributing the stresses to
accommodate the deformations.

The field loading information is specified as ride and dilation components on a segment of a slip
plane, and/or deformation of a 3D zone. Slip or dilation on a fault plane would be applied by
subdividing the known extent of the fault into small planar zones and then specifying the slip or
dilation components in each zone. If the seismic observations suggest that entire volumes of the
rock mass are deforming and other parts are not, the whole rock mass can be divided into up
into small 3D zones with the deformation components specified in each zone based on the
observed seismic strain deformations. The overall stress state is then updated to accommodate
the contribution of the integrated field loading. Note that the Map3D model can contain all of the
regular features including excavations, stiff dykes, faults etc. The effects of the field loading and
all of these other features will be superimposed to provide a final composite prediction of the
stresses, strains and displacements throughout the rock mass.

The wealth of information that comes from seismic monitoring is enormous. Seismic monitoring
provides the volume and spatial distribution of information on the rock mass response that can
be obtained in no other way at reasonable cost. Map3Di provides a mechanism to directly use
this information for model calibration and assists in applying Terzaghi’'s Observational Approach
to Design (??7). Owing to the real-time nature of seismicity, it becomes practical to traverse the
mine/monitor/redesign loop for every increment of mining. Thus, instead of spending years
making visual observations to develop a history of rock mass response, there is potential to
calibrate the model much more quickly. Perhaps the most important part of this is that it
provides the possibility of adapting to changing rock mass conditions.
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The applications of Map3Di to the modelling of seismicity in mines could result in improved
accuracy of prediction of spatial seismic hazards. The calculation of the redistribution of
stresses due to the occurrence of large events allows the assessment of the extent that a large
event might diminish the seismic hazard and should improve the temporal prediction of seismic
hazard as a result of the superimposition of measured displacement onto modelled
displacement for both historic and planned mining steps. If direct linking could be provided
between a seismic database and a super fast computer, Map3Di modelled stresses could be
updated in “real time”, where the time step would be controlled by the feed of seismic data and
the ability of the system to update the model. General boundary element limitations, discussed
in section 2.2.1 still apply and include the limited ability to model the spatial temporal distribution
of seismicity.

2.2.2.2. Point Kernel

The point kernel method is a combined meshed/meshless methodology that builds on the mine
analysis program MINSIM and incorporates the fracturing processes in a meshless
representation. Planar features such as tabular orebodies, and geological discontinuities can be
modelled conveniently by means of displacement discontinuity elements in the same way as the
standard MINSIM. It is then proposed that the rock mass contains an additional set of
discontinuities for which the displacement components are known. These correspond to slips on
pre-existing planes, and new fractures or slip planes that may form. The multitude of different
scales implies that element intersections and geometrical discretizations will consume much of
the already scarce computation resources and new approaches must be sought. A move to
meshless methodologies has been taken in computational fluid dynamics (Oden et al. 1999) —
another field where the consideration of nonlinearities on multiple scales is required. The
integration of seismic information with numerical modelling codes emphasises the need for
meshless methods as predefined mesh structures will be unable to cope with the introduction of
measured nonlinearities at arbitrary positions in space and time.

The basis of the point kernel method is the assumption that each surface in space can be
represented by a “virtual” element, of known orientation, size and with a given displacement
discontinuity. The influence of these discontinuities become an effective load to the mine layout
and hence reduces the memory requirements if the loading points are decoupled from the
layout solutions. The influence on the stress state o in the global axis system of any virtual

element centred at any other point P can be expressed as
Aoy (P)=-T(Qy, Py )D; (Q)n;(Q)AS, (2.2.20)

where the Di(Q) is the displacement discontinuity and the virtual element is assigned an area
AS, and normal n; as shown in Figure 2.2.1. The influence matrix I'(Q;, P ) is defined in

Crouch and Starfield (1983) and is not presented here.

P
L J

Virtual element

Figure 2.2.1. Schematic of a virtual element at point Q transmitting influence to point P.

As the displacements at the virtual elements are assumed to be know, the sum of the influences
at all M cracks at points Q; on the center of the N existing mine elements P, provides the
influence matrix of all the virtual surfaces. This method is an approximation, but the concept of a
meshless model, using only virtual elements, introduces considerable savings in the
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computational and programming effort required for the housekeeping functionality that is
otherwise needed to track new elements and intersections with pre-existing elements.

Two types of virtual elements can be defined. Passive elements are associated with known
displacement discontinuities. These can be inputs from external data such as fault slip
components obtain from structural mapping, or as the first step towards integration with seismic
systems, the observed data can be imported into the model to condition the solution to take
account of information about the actual rock mass response. Thus, explicit failures on structural
features can be included into a purely elastic model. Stress will be distributed in such a way that
new failure surfaces may be highlighted allowing improved predictions of future seismic events.

This step, however, can be seen as merely an advanced post processing of the seismic data
unless the modelling can be allowed to predict forward. Thus, the introduction of active
elements that have rheological properties that permit failure and slip in the future is required to
be able to provide input for mine planning.

The displacement discontinuities on passive elements can be calculated from the moment
tensor of seismic events or the slip plane directions must be assumed e.g. determined from
known geological structures, assumed to be vertical, or in the calculated direction of maximum
shear.

Active virtual elements require some assumptions regarding the constitutive response and the
rheology. It is postulated that the rate of shear slip on a virtual element is proportional to the net
shear stress acting at the point Q, associated with the element. The point effect reflects the
influence of a “virtual” element centered at the point in question. The self—effects have been
chosen to reflect a square, constant displacement discontinuity element.

2.2.3. DIGS

DIGS (Discontinuity Interaction and Growth Simulation) is a computer program that is designed
to solve plane strain interacting crack problems. The original concept for this code (Napier,
1990) was to provide a tool which would enable the fracture zone ahead of a deep level gold
mine stope to develop according to simple growth initiation rules. This would, in principle, allow
the impact of factors such as the primitive stress field, backfill and pre-existing discontinuities
such as joints and parting planes to be assessed. The use of the DIGS code has highlighted the
role of parting plane slip in extension fracture initiation and has illustrated how fracture zone
deformations can alter the in-stope hangingwall clamping stresses. Specific difficulties in
applying the explicit growth model include the numerical treatment of fracture intersections that
may lead to very small crack segments and wide variations in crack element sizes. Additional
problems arise in solving closely parallel or acutely angled fractures.

In order to alleviate these numerical difficulties an alternative version of the original DIGS code
(the “tessellation” model) was developed in which fracture paths are constrained to lie on the
arcs of a predefined random mesh. A number of studies have established that the nature of the
random mesh plays a strong role in determining the overall material response. If the mesh is
generated according to a Voronoi polygon scheme, the average number of mesh branches
meeting at each junction is equal to three. In this case, simulation of uniaxial loading of a
rectangular rock sample leads to the formation of an inclined shear zone and plastic “hardening”
(no load shedding) at the onset of failure. The rounded grain pattern of the Voronoi mesh leads
to qualitatively “plastic” behaviour. Alternatively if the random mesh is generated as a Delaunay
triangulation, the average number of mesh branches that meet at a junction is equal to six. In
this case, uniaxial loading of a rectangular shaped sample leads to strong load shedding and
axial splitting after the point of initial failure; a qualitatively “brittle” response. Additional studies
have shown that the use of a Voronoi mesh, with internal triangles in each polygon, is also
effective for the simulation of load shedding behaviour. Further work carried out by Sellers
(1997) has addressed the progressive formation of the fracture zone at the edges of a small
span stope that is incrementally enlarged. Sellers (1997) has demonstrated the importance of
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parting planes in generating fractures ahead of the stope face and has shown as well that
undulations of the parting plane surface can amplify the rate of closure with respect to the stope
face advance.

Napier and Malan (1997) have implemented a time-dependent slip model in the DIGS
tessellation model. This allows the simulation of classic primary, secondary and tertiary creep
behaviour for the response of a dead-weight loaded sample covered by a random Delaunay
mesh. A fraction of the mesh segments are chosen to be initial “flaws” having zero cohesion and
which can creep in shear when the load is first applied. As time advances, additional loading
accumulates on the intact crack elements. Once these elements start to fail, a sporadic cascade
process is initiated which leads, eventually, to the ultimate catastrophic failure of the sample.
This sequence has clear correspondences to theories of earthquake initiation and to the
generation of mine seismic activity. Some applications are described in Section 3.1.4.

Despite the encouraging qualitative attributes of the DIGS code for the representation of seismic
deformation mechanisms, it is apparent that a number of limitations exist. One limitation is that it
is not obvious how to extend the random mesh scheme to three dimensions. In particular, it can
be anticipated that a three dimensional tetrahedral mesh would be inappropriate for the
representation of relatively smooth, extensive slip surfaces. Computational difficulties in treating
multiple three dimensional interacting fracture surfaces are also formidable. It appears that the
best alternative to using a pre-defined mesh in three dimensions, is to allow for the incremental
development of fracture growth surfaces in the sense of the original DIGS code.

It is important to note that in the simulation of seismic behaviour, using the DIGS code, results
can be sensitive to the density of the tessellation mesh. This sensitivity can be reduced by
introducing a slip-weakening failure rule that defines, effectively, a specific energy for the
fracture process. However, this does not fully resolve the grid size problem. It must be noted, as
well, that this problem is endemic to most numerical procedures used to analyse material failure
although this is seldom reported.

2.2.4. The Integrated Damage Rheology Model (IDRM)

A realistic numerical model of rock-mass response to extreme loading has to include some
treatment of material damage. The study of damage evolution must provide some insight on the
physical processes leading either to instability and material failure or to healing and restoration
of cohesion. Unfortunately the physical theory of damage is incomplete at present. One of the
reasons for this is that it spans several length scales from macroscopic down to molecular level
and the relevant physical variables are macroscopically unobservable. Nevertheless it is
possible to construct a state-function of a system which includes both directly observable
variables and macroscopically unobservable parameters such as some measure of damage. In
fact the free-energy approach to mining-oriented numerical modelling seems to be the only
physically consistent way of combining the dynamics of deformable solids with damage
evolution and stability analysis: in other words , the whole complex of fundamental equations
which is known as rheology. The treatment of damage adds a new aspect to the rheological
behaviour of solids since the damage itself has the effect of an induced loading. Therefore it is
more proper to use the term damage rheology for the appropriate physical concept to be
embedded in a realistic numerical model of rock-mass behaviour.

From a theoretical point of view, a numerical model is specified by postulating the expression for
the free energy of the system as a function of the relevant state variables and material
constants. In the case of damage-rheology models, the free energy will depend on the
invariants of the deformation tensor and on one or more damage-related parameters. The
partial derivatives of the free energy are treated as "thermodynamical forces" and enter in the
dynamical equations of motion for the medium. The external loading corresponds to the
boundary conditions needed for the uniqueness of the solution. The dynamical equations of
deformable solids are solved in real, physical time in either Lagrangean variables or in the
Eulerian formulation of the mechanics of continua. Thus the basic requirement for the
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integration of seismic monitoring with numerical modelling can be met: the clock of the
numerical model can, in principle, be synchronised with the pace of the physical time.

A great advantage of the outlined general formulation of a damage rheology numerical model is
that it is sufficiently general to allow for non-linear material response in a most-natural way. In
general , the internal energy of a deformable solid and through it the free energy will depend on
the elastic modulae which are not constants but state-dependent functions of the damage
distribution. The response of the material to loading is determined not only by the instantaneous
value of the load but by the past history of loading. The evolution of damage can include
material healing in addition to material degradation which corresponds to the actual behaviour o
rock-mass.

On the ground of the presented arguments it can be concluded that damage rheology numerical
modelling is the correct choice for building an integrated seismic system.

The IDRM (Integrated Damage Rheology Model) (Lyakhovsky, lichev, Agnon, 2001; lichev and
Lyakhovsky, 2001) software is an integrated system for numerical modelling of damage
evolution, elastic and plastic deformations as well as the occurrence of sudden material failure
leading to the formation, localisation and propagation of cracks within solids subject to some
prescribed external loading. The IDRM solves a forward problem in actual (calendar) time and
is designed to assimilate the damage associated with real events both from a seismic catalogue
and as they occur in real time. The damage evolution and the material rheology are derived
from fundamental physical principles as opposed to models with random input. The resolution of
the time-clock of the model is determined by the speed of propagation of seismic waves and the
spatial discretization scale.

2.24.1. Physical basis of IDRM

IDRM considers either a homogeneous or a heterogeneous solid which occupies some finite
volume. The IDRM volume is discretized by a set of tetrahedral elements. The nodes of the
tetrahedra are treated as material points of mass determined by the local density of the material
and the volumes of the tetrahedra to which the node belongs. The variations of the stress field
materialise in forces acting on the nodes. The latter subsequently move according to the laws
of mechanics. The resulting displacements induce corresponding changes in the stress field via
the variation of the free energy of the system. The (Helmholtz) free energy of the system is a
thermodynamical function which depends on all relevant state variables and produces, through
its partial derivatives, all macroscopically observable physical characteristics of the material
body. The IDRM body is treated here as a thermodynamical system. The free energy is the
difference between the internal energy and the product of the entropy and the temperature:

F=U-ST

In the case of interest for the IDRM the internal energy will be equal to the elastic potential
energy of the solid body (the considered volume of rock).

The Free energy of a system determines the states of stable equilibrium according to the
general variation principle: the physical equilibrium state minimises the free energy as
compared to all (conditions permitted) virtual states. The system can exist in a stable state only
when the free energy is a convex function of the strains. Material failure is identified with the
loss of stability due to a loss of convexity of the free energy of the system. In IDRM, the
convexity of the specific (per element) free energy is tested at every time-step and the
beginning of a seismic event (crack formation, slip...) is marked by a loss of convexity of the
elastic potential energy.

The free energy of a physical system depends on state variables some of which can be “hidden”
in the sense that they are associated with microscopic degrees of freedom and hence not
directly observable. IDRM is based on the introduction of one such hidden variable, denoted by

o and describing the local state of damage in the rock-mass. The damage variable (or just
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damage) a is a dimensionless (pure number) quantity taking its values in the interval [0,1].

Damage equal to zero corresponds to intact rock while damage equal to one means completely
destroyed material (gauge, powder...). The damage parameter is simply an estimate of the state
of damage in a given location and at a given time on a scale from 0 to 1. It is possible to
associate the damage parameter with the local density of microscopic cracks (after a suitable
normalisation).

The state of damage in a solid affects:
* the elastic modulae of the material
* the state of strain in the material
* the state of stress in the material

It is therefore necessary to include the degree of damage in the free energy of the system. In
IDRM this is done by postulating the density of the elastic potential energy after Lyakhovsky and

Myasnikov :
1(A )
U :;(Elf iy — eyl

where A and y are the Lame parameters, y is a new elastic module which vanishes from intact

rock and Iy, | are the two strain invariants. The dependence on the damage variable is in the
elastic modulae:

A=A,(1-a)+ Ao +..

H=Ho(1—a)+ pa+..

y=y,a+..

The response of the material to loading is not Hookean and non-linear due to the term I1\/E.

The effect of this term does not vanish even when the strains are small as long as the material
is (partially) damaged and y is not zero.

IDRM does not use ad hoc constitutive relations but generates them by means of the free
energy according to the fundamental relationship:

! 0¢;

The evolution of damage follows from one of the fundamental principles of non-equilibrium
thermodynamics i.e. that the rate of entropy production should be maximum (corresponding to a
maximum dissipation power). This lads to the following equation:

da oF

—=-C—

dt Ja
Where C is positive and controls the temporal scale of the damage (and HEALING) process.

The rheological law incorporated in IDRM is:
dof 1(oF 1 oF )
Tt Z(agij 30849,
where goi,- are the irreversible (viscous) strains.

The velocities of the nodal particles are determined from the equation of motion:
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_+fi = p_'
2x; dt

2.2.4.2. Material Stability and Seismic Events in IDRM

Due to the damage-dependent elastic potential energy the above constitutive relations are non-
linear and break down when the free energy losses its convexity. The loss of convexity of the
free energy signals the beginning of a damage event accompanied by stress-drop in the failed
elements as well as with induced (co-seismic) stress-drop in other elements. The latter is a
process which could be localised in space and finishes with the restoration of the convexity of
the free energy. Due to the full access to the stress and strain fields provided by IDRM one can
extract information about the modelled events in full detail. IDRM writes the catalogue of
damage events it generates. This model-generated data needs further processing in order to
filter out the actual model-analogues of seismic events from the acoustic noise which would
remain below the sensitivity threshold of the seismic monitoring system. In other words, IDRM
like all similar models of seismic activity requires an unambiguous and quantitative definition of
what is too be interpreted as a modelled seismic event. Further the said definition of modelled
seismic events must be sufficiently flexible to allow for a calibration of the running model to the
observed level of local seismicity. IDRM is equipped with such a definition of a modelled seismic
event.

Key to the definition of seismic event within IDRM is a cluster-analysis of the model-generated
data on element failures due to damage above the critical level and a loss of stability. Not every
failed element is treated as a source of a seismic event. Instead, the set of all simultaneously
failed elements is analysed and all connected clusters (see the corresponding entry in the
Glossary) of such elements are identified. A seismic event is a connected cluster of “mass”
above certain minimum value. The damaged elements which do not belong to connected
cluster of sufficient size are treated as contributing to the acoustic noise.

The above definition of IDRM-generated seismic events allows for tuning the frequency and size
of the modelled events to the observed local background seismicity level and achieve a
maximum efficiency of the integration of real events into the running model.

2.2.4.3. Typical Problems treated by the IDRM

1. Damage evolution and local seismicity of rock-mass subjected to a constant strain rate
loading. The strain rate is converted to a velocity field on the boundary nodes.

2. Damage evolution and local seismicity of rock-mass subjected to a time-dependent (e.g.
blasting determined) strain rate loading. The strain rate is converted to a velocity field on
the boundary nodes.

3. Damage under constant or confining stress or under variable stress distribution due to
mining activity.

4. Mixed problems: prescribed velocities on some of the boundary nodes and prescribed
traction values in the remaining boundary nodes. The prescribed values could vary with
time in accordance with the real mining rates.

The above list of practical problems which can be successfully treated with the help of the IDRM
is far from complete. The criterion for correctness of the formulation of an IDRM problem is that
the boundary conditions guarantee the uniqueness of the solution of the corresponding partial
differential equations.
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2244, Integration of real seismic events in IDRM

The occurrence of a seismic event is associated with certain damage of the material in the
neighbourhood of the seismic source. This coseismic damage is estimated from the
corresponding displacements and passed to the IDRM in the particular moment of time as a
sudden increment to the damage variable. This is how the real events can modulate the
damage evolution in the running IDRM thus bringing it closer to reality. There is a difference in
the methodology of assimilation for real seismic events which occur within the IDRM volume or
in the immediate vicinity from the treatment of events located far from the IDRM volume. The
latter are converted into corresponding loading passed to the boundary of the IDRM via a
second, much bigger boundary-element shell. In this context one can say that the functional
scheme of IDRM implements a hybridisation between the finite-element code of damage
rheology and the boundary element method used to evaluate the loading conditions due to an
ongoing mining activity and the local seismicity.
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3. Examples of the simulation of seismicity patterns by
different numerical models

3.1. Size distribution

In the two dimensional elastodynamic boundary integral method (e.g. Cochard and Madariago,
1996) slip length and stress drop can be obtained directly from post processing of the numerical
results. The seismicity resulting from the gradual increase of tectonic stresses applied to study
the response of a single strike slip fault was expressed in terms of histograms of the slip length.
The seismic moment can be obtained as

M-uDL,
where p is the shear modulus, D is the average slip, and L is the length of the slip zone.
Stress drop and moment are plotted against length as shown in Figure 3.1.1b and c. The
frequency magnitude distribution can also be obtained directly from the numerical results and is
shown for two different element sizes in Figure 3.1.1. A similar method can be applied in three
dimensions (Robinson and Benites, 1995, Lachenicht and van Aswegen, 1999). Robinson and
Benites (1995) calculated the total moment for an event that slips over a number of elements as
a summation of the products of the area of each element that slips and its accompanying slip
deformation. Lachenicht and van Aswegen (1999) define the area of slip as the region having a
slip deformation that is greater than a given tolerance.
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Figure 3.1.1 Effect of element size on frequency magnitude statistics (Cochard and
Madariaga (1996) using 513 grid points (top) and 1025 grid points(bottom)

In cellular or discrete models, the number of broken bonds is known and can be used to
calculate equivalent moments. However, other methods are required to measure the clustering
of events on a larger scale. A box counting method was applied, but not described in detail by
Wilson et al. (1996) to obtain frequency magnitude plots from cellular automata. Correlation
integral methods (e.g. Turcotte, 1992) have been used for special correlation of acoustic
emissions (Hirata et al., 1987) and could be applied to obtain seismicity from the space-time
distribution of plastic strain in continuum models.

Ben-Zion and Rice (1993) prefer to consider the potency P that is defined as the moment
divided by the shear modulus (M/G) instead of the moment itself as there are difficulties in
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determining a unique shear modulus. The defined the magnitude of the events form the
empirical relation

M= (2/3) |Og10 (P) + 3.6

where P is given in units of km?**cm. Then the frequency magnitude plot is found by relating
log+o P to logqo A where A is the fracture area.

Particle based models are created using a distinct element code in which a rock is represented
by an assembly of thousands of individual particles bonded together at points of contact.
Cracks are induced in the rock mass during loading when particles separate and the connecting
bonds are broken. The models are run dynamically with low damping, which allows seismic
waves to emanate from the cracks. The particles move independently of one another and
interact only at contacts. They are assumed to be rigid (non-deformable) but deformation (or
overlap) can occur at the contacts. Contacts are assumed to exist only at a point and not over
some finite surface area as would be the case with fully deformable particles. The forces and
displacements on the particles are calculated from the force-displacement law and the law of
motion. A typical code is PFC3D (ltasca), which uses the distinct element method (DEM). The
model is a dynamic process where disturbances can propagate through the system at some
speed that depends on the physical properties of the system.

Models can be created to imitate many different situations and processes, however in PFC
some steps of the model creation are always the same. In general, a PFC model of rock
consists of a collection of particles bonded together in a dense assembly. The micro-properties
of the particles and bonds can be adjusted to simulate the desired rock type. The various
micro-properties that can be specified are shown in Table 3.1.1. These micro-properties
influence the macro-properties (e.g. strength and stiffness) of the modelled ‘rock’.

Table 3.1.1 List of parameters used in PFC3D modelling.
Parameters

minimum radius

maximum radius

normal stiffness scale factor
shear stiffness scale factor
density

friction

normal bond strength scale factor
shear bond strength scale factor
bond strength deviation

damping coefficient, a

Hazzard (1998) presented a detailed study on the ways in which seismicity could be obtained
from discrete element methods, in particular the Particle Flow Code. This work indicated that
there were five methods of determining the event size in order to present the frequency
magnitude plots.

1. Kinetic Energy of each bond breakage. This method produced too many small events as no
clustering was considered.

2. Examination of wave forms. A numerical equivalent “seismic system” consisting of a set of
velocity measuring points was used to locate events and the event parameters were
evaluated with the methods used by in situ seismic systems. The method permits a number
of bond breakages to be considered as a single event and this introduces larger clusters.
The methods is limited by the requirements for lots of data output and also the need for a
“seismic system” for analysis.

3. Kinetic Energy of clusters of bond breakage. Clusters of bonds were considered together,
but it was difficult to determine the events making up a single cluster.
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4.

Probability of Event with Magnitude > M,

External Kinetic energy release rate. The time series of kinetic energy was used to evaluate
the magnitudes. The method was easy to apply and considered larger clusters, but includes
too many events as one cluster. Figure 3.1.2 compares the b-values obtained from the two
methods and shows that the external methods (e.g. method 4) produce lower b-values as
they consider the effect of bond breakage for clusters of elements.

Kinetic Energy of bond breakage with space time cluster windowing. A procedure was
developed for post-processing the results and determining all events within a given space-
time window. The size of the window was calculated as being of the order of 5 particle
diameters and the time length was determined from the time taken for the shear wave to
cross that distance. Figure 3.1.3 shows that the clustering algorithm reduces the b-value.
Advances were included that re-initialise the space-time window at every new event in the
cluster to allow for the development of growing, localised failure zones. The method
produced improved clustering and consequently a lower b-value, but the b-value is found to
depend on the window size, as shown in Figure 3.1.4
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Figure 3.1.2 Frequency-magnitude plot for AE magnitudes derived from kinetic energy of

the

sample (Method 4), compared to magnitudes derived from individual bond breakages

(Method 1) (After Hazzard 1999).
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Figure 3.1.3. Frequency-magnitude plot resulting from the syn-processing crack
combination algorithm (Method 5). The plot resulting from each crack being considered
individually is shown for comparison (Method 1) (After Hazzard 1999).
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Figure 3.1.4 Comparison of frequency magnitude curves for all of the events recorded in
Test | clustered using different space windows (Hazzard, 1998).

To study the response of PFC3D in a model that is more representative of a mining situation, a
cubic set of particles of side length 80mm, which contains 71019 balls, was mined with 1 mm
face advanced in 40 mining steps. As shown in Figure 3.1.4, mining was at the middle of the
cube where finer balls are present. The ball sizes vary from 0.63 mm to 1.2 mm. The balls are
finer where the stope is and gradually increased away from the stope both in the hangingwall
and the footwall.

Four different ways of mining were considered:

1. Excavate the area (since this process is dynamic, excavating the area immediately
produces shocking effects in the system).
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2. (a) High damping (freeze the system)
(b) Excavate the area
(c) Low damping (allows the fracture to occur)
3. Decrease the ball stiffness gradually with time.
4, Decrease the forces gradually on the particles with time around the stope.

The model was loaded up to 80 MPa with a confinement of 40 MPa with the first method
explained above. If the cracks occurred within some specified time and space window they were
clustered together to form larger events. The event magnitudes were calculated by representing
each crack’s kinetic energy history by a Gauss shaped curve where the peak of the curve is
equal to the peak kinetic energy associated with the crack and the width of the curve is related
to the rise time (the time from the bond breakage to time of the peak KE). The Gauss curves for
the cracks within each cluster were then summed to get the peak kinetic energy and therefore
magnitude of the event (Hazzard, 1998).

Figure 3.1.4 PFC3D model used for mining model.

If each bond breakage is considered a single acoustic emission then no calculations are
required to obtain the AE locations in PFC. A simple function can be written that records the
exact location and time of each bond breakage and these can be recovered after the model has
been run.

Each bond-breakage in PFC can be assigned some event magnitude. When a bond breaks,
the particles fly apart until they are stopped by local confinement. The maximum velocity of the
particles can then be used to calculate the kinetic energy of the ‘event’. A FISH algorithm for
determining the kinetic energy of events was devised by Peter Cundall at Itasca. The method
works as follows:

A bond breaks and the initial kinetic energy of the two connected balls (KEO) is stored in
memory. At every subsequent time step the kinetic energy (KE) of the two particles is
calculated. KEO is then subtracted from this value to get the change in KE (AKE) at each step
The maximum AKE over some time interval is stored as the energy associated with that crack.

The only parameter that needs to be set is the length of time for which the KE should be
recorded after each bond breakage. Hazzard (1998) found that on average the maximum AKE
occurred within 6 time steps of bond breakage. Most of the events exhibited rise times close to
this value however some had much longer rise times up to a maximum of 27 steps. These long
rise times are attributed to reflections causing constructive interference and a second peak
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larger than the first so that the maximum AKE was recorded at a significantly later time. To
ensure that all peaks were recorded, a recording window of approximately twice the maximum
observed rise time (50 steps) was used in this study.

The energy magnitude (Me) of an event can be calculated from the log of the emitted energy by
(Hanks and Kanamori, 1979),

M, = logE - 4.8
1.5

where E is the kinetic energy in Joules.

This is emphasised further by observing a frequency-magnitude or b-value plot for all of the
events recorded during loading of the sample. This plot corresponds to the Gutenburg-Richter
relation

LogN = a - bM

where N is the number of earthquakes with magnitude greater than M and b is the slope of the
straight part of the curve, usually close to unity. Figure 3.2.2 was constructed by plotting the
cumulative number of events versus the event magnitude and then fitting a best-fit line to the
straight part of the curve using a least-squares routine.

Figure 3.1.5 illustrates the b-values obtained from different space windows for the same time
window. Changing the time window makes little difference to the b-value for this model. More
information can be obtained from Hazzard (1998) for determination of time and space windows.
It is interesting to note that all curves have the common asymptote in Figure 3.1.5. It was
observed from the model that larger balls have a tendency to generate bigger magnitude events
indicating a possible dependence on the grid size of the simulated results.
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Figure 3.1.5 Cumulative frequency — magnitude plot from PFC3D stope models using
different space windows for clustering.

Finite element and finite difference models consider the entire rock mass as a continuum.
Failure can be modelled using softening constitutive models, but relating the failure to seismic
events remains a problem. The ELFEN explicit finite /discrete element code allows discrete
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fracturing by splitting elements internally or along their sides and introducing new, internal,
boundaries into the finite element mesh. Pre-existing joints sets can be inserted into the model
and will become active if the stress state exceeds a Mohr—Couloumb strength criteria. A two
dimensional model of a stope was set up to investigate the frequency magnitude statistics. Pre-
existing joints sets were included and simulate the observed jointing and mining induced
fracturing in a carbon leader stope. The model consists of 50m of mining in 0.8m mining steps.
The stope is supported with discrete stope support elements that model the force displacement
response of typical elongate support elements. Backfill elements were inserted so that backfill
was always kept a distance of 3m from the face. A detail of the model, showing the jointing,
elongates and backfill is shown in Figure 3.1.6a. The rock mass, between the joints, was
assumed to be elastic with relevant material properties for each of the stratigraphic layers. The
magnitude of seismic events was calculated from the energy release in a manner similar to
method 4 of Hazzard (1998) explained above. Frequency-magnitude plots of a time series of
energy release peaks, corresponding to simulated mining in 2D, demonstrates power law
behaviour in different size ranges as shown in Figure 3.1.6. The effect of plastic and viscoplastic
continua and three-dimensional modelling should also be investigated, together with different
schemes for identifying event clusters, based on the distribution of plastic strain and joint slip
contours.

cumulative frequency
B 8 = g

Figure 3.1.6 a: Detail of a finite/discrete element model of a tabular stope and b: The
frequency-magnitude curve based on incremental kinetic energy release.

Boundary element solvers, are able to efficiently process interacting assemblies of displacement
discontinuity elements. In the current project, the 2D displacement discontinuity program DIGS
is assessed to determine its suitability for generating seismic recurrence behaviour. To study
some of the concepts, the excavation of a parallel sided mining panel was simulated in 100
steps of 5m up to a total mined span of 500m. The stope was modelled using the classic tabular
slit approximation with limited interpenetration of the crack surfaces to represent total closure.
The surrounding rockmass was assumed to be covered by a random mesh of pre-existing
planes of weakness. The mesh was generated as a Delaunay triangulation. Test runs were
carried out using two mesh densities having average grid sizes of 26.5m (std. dev. = 6.6m) and
11.0m (std. dev. = 2.7m) respectively. The mesh grids which were inclined at + 10 degrees to
the horizontal mining excavation were assumed to be weak “parting” planes having a sliding
friction angle of 30 degrees and zero cohesion. The other mesh grids were assumed to have a
pre-failure cohesion of 25MPa and intact friction angle of 45 degrees. The cohesion was
assumed to vanish when the grid was mobilised and the residual sliding friction angle was set to
30 degrees. In addition, it was assumed that after a mesh grid is mobilised, all subsequent slip
movements are controlled by a viscous relaxation rule in which the rate of slip is proportional to
the net shear stress acting across the crack. The mining rate is then determined by the number
of time relaxation steps that are allowed to occur within each excavation step. In the present
analysis this rate was chosen arbitrarily to be four relaxation steps per mining step.
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Special attention must also be given to the manner in which the energy release rate and
inferred “seismic” effects are computed. Since the mining simulation is artificial in respect of the
assumed large excavation advances of 5m, it was considered to be inappropriate to include the
energy release that is directly related to the closure of the stope as the excavation step is
introduced. A two-stage procedure was adopted in which the off-reef tessellation structure was
first “frozen” and the change in closure corresponding to the panel span increase of 5m was
determined. In the second stage, the off-reef mesh structure was “unfrozen” and allowed to
move in response to the first stage closure, for a specified number of time relaxation steps. The
strain energy release in each time step was computed on all mobilised grid elements. For the
case of sliding elements, this takes the form

1
Es =5 r.|Ds|dS (3.1.1)
A
where Es is the total energy release over the time step, A is the total mobilised crack area, 7, is

the difference between the shear stress and the shear resistance on each crack at the start of
the time step and Ds is the shear slip occurring during the time step. If it is assumed that the slip
in any one time step is concentrated in a specified region on a well clustered group of cracks, it
can be inferred that this slip constitutes a coherent “event” with moment M, given by

M, = GADq (3.1.2)

where G is the shear modulus and 55 is the average slip. Hence, the energy release Es is
related approximately to the moment by

Es =M,T, /2G (3.1.3)

If the cumulative number of events N having a moment greater than M, is expressed by a power
law then, in view of the proportionality between Es and My expressed by equation (3.1.3), it can
be postulated that

logN = a - b logEs (3.1.4)

Figure 3.1.7 shows a typical simulated response of the computed off-reef energy release
increments when the stope width is 1m and the mining depth is 4000m. Figures 3.1.8a and
3.1.8b show plots of logN against logEs for mining simulations with stope widths of 1m and 0.5m
respectively. In each figure, three cases are shown corresponding to mining depths of 3000m,
4000m and 5000m. From Figures 3.1.8a and 3.1.8b it is clear that the power law relationship
given by equation (3.1.4) provides a reasonable representation of the energy release statistics.
It is also interesting to note that with increasing depth, the slope of these plots (parameter b in
equation (3.1.4)) becomes less negative indicating an increased probability for larger size
energy release “events” to occur. Contrasting Figures 3.1.8a and 3.1.8b, it is also interesting to
observe that the parameter b is increased significantly when the stope width is reduced.

These results appear to be qualitatively satisfactory but rest on many ad hoc assumptions
relating to the shape and dimension of the tessellation mesh, the assumed mechanism of the
time relaxation process and, particularly, the mining step excavation procedure. Figure 3.1.9
compares the cumulative mobilised fracture length for two simulation sequences with a coarse
mesh and a fine mesh. It is apparent that the mobilised fracture length is proportional to the
mesh grid density. In Figure 3.1.10, the off reef energy is plotted against the mobilised fracture
length for a number of simulation runs, using both coarse and fine mesh tessellations. This plot
indicates a rough proportionality between the cumulative energy release and the mobilised
fracture length.

These trends are disconcerting and indicate a lack of robustness in the 2D tessellation model
for the mesh sizes used in these studies. It is clearly necessary to establish whether the fracture
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length (and released energy) becomes asymptotically stable as the mesh density is increased.
Define the stope width to be w, the average mesh size to be g and the mining step size to be to
be s. In the analyses presented here it should be noted that s/g = 0.5 and 0.2 for the fine and
coarse mesh simulations respectively. Specific questions relating to the energy release and
fracture length results must, however, be answered in the case when s/g >> 1, w/g>> 1 and

s =w . In addition, it is necessary to evaluate the effect of geological fault set orientations on
these results. The investigation of cases where s/g >> 1 places a great demand on the
computational capacity of existing simulation procedures, particularly in three dimensions. It is
therefore suggested that special strategies for carrying out fine level simulations should be
investigated such as the concept of advancing an active region surrounding the mining face with
the remaining inelastic deformations “frozen” except for larger scale fault structures. This
proposal in turn demands some insight into the scaling structure of the large scale weaknesses.
Seismic information such as presented by Finney (1999) will be essential in calibrating these
models.

Slow mining- fine grid- elastic
(off-reef energy)

150 1
130 1
110
90 1

70 -
50 -
I
101 ok,

50

Energy release increments

-10 -

0 100 150 200 250 300 350 400

Time

Figure 3.1.7 Typical off-reef energy release increments observed in the simulation of
mining a parallel-sided panel.
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Figure 3.1.8 Plots of cumulative frequency against energy release increment size in
mining a parallel-sided panel at different depths. (a) Stope width = 1.0m. (b) Stope width =
0.5m.

64



9000 1

8000 1 FINE GRID
7000
6000 A
5000 -
40007 COARSE GRID
3000 -

2000 A

Cumulative fracture length

1000 A

0 T T T T T T T T T 1
0 20 40 60 80 100 120 140 160 180 200

Time

Figure 3.1.9 Comparison of cumulative fracture length, as a function of time and
excavation span, for two different tessellation densities.
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Figure 3.1.10 Cumulative off-reef energy release plotted against cumulative fracture
length for different mining depths and mesh grid densities.

The ability of boundary element models to represent seismicity using energy based seismic
magnitudes has been shown in Figure 3.1.8. However, as the DIGS tessellation program is
based on the displacement discontinuity method, it is interesting to determine the moment
magnitudes based on the average element slip. The method involves the construction of a grid
of triangles (tessellation) around the region of interest. Applying a Delaunay tessellation
procedure ensures randomness of the triangulation. Each side of the triangle is the site of a
potential fracture and is assigned a failure criterion. Specification of different failure criteria in
different regions permits the consideration of different strength materials. The mining is
modelled as conventional boundary elements within the tessellated region. If the stress state
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due to mining at any of the potential fracture sites exceeds the specified strength, the site will
activate and a displacement discontinuity element will be placed at the site. The element may
respond to further stress changes based on specified residual strength criteria. For fine mesh
simulations, it is necessary to consider many thousands of intersecting elements. Special
techniques can be employed in 2-D numerical simulations to solve these problems (see Pierce
and Napier, 1995). However, it has proved to be possible to only solve problems that have
limited mine spans, in the order of tens of metres.

A computer program was written to post process the output from a tessellation analysis to
provide parameters that relate to the parameters that are used to describe seismic data. The
parameter of interest was the seismic moment related to each cracking event. An event is
assumed to be either a slip on a pre-existing fault, or the emplacement of a new crack. The
seismic moment M, can be expressed as

M, = GAD (3.1.5)

where G is the Shear modulus, A the area of the slip and D is the average slip. An equivalent
parameter must be determined for the numerical modelling results. The shear modulus of the
intact rock is known. The area of the slip must be related to an assumption regarding the crack
shape. In the two-dimensional plane strain model, the width out of plane is 1m. The crack can
be assumed to be an infinite slit and then the area A can be related to the crack length L as

A=Lx1Tm (3.1.6)
or, the crack could be considered to be penny shaped, in which case the area
A=T112/4. (3.1.7)

The slip can be determined easily from the current magnitude of the displacement discontinuity
and can be obtained directly from the boundary element output. In order to determine the slip on
a crack related to a particular mining step n, the change in slip is calculated as

dDD" = DD" - DD (3.1.8)

where DD" is the average shear displacement discontinuity at mining step n, and DD"* is the
average shear displacement discontinuity for the previous mining step. The numerical moment
is obtained by substituting equations 3.1.6 and 3.1.8 into equation 3.1.5. Then

Mo (num)" = GLADD" (3.1.9)

The cumulative frequency of events having a moment greater than or equal to a particular value
can be plotted on a log-log scale to represent the numerical equivalent of the Gutenburg-Richter
relationship.

The fracture pattern resulting from a tessellation analysis of a carbon leader stope after 28
mining steps of 1 m, is shown in Figure 3.1.11. The stope has a strong hangingwall layer,
overlain by a weak layer representing the Green Bar. The footwall layers are all an intermediate
strength. The material properties are given in Table 3.1.2. All sites in a horizontal layer have the
same strength and there is no random variation of the strength of the sites.

The moments were calculated for all fractures using equation 3.1.9. The parting planes were
assumed to slip in an aseismic manner and so slips along the partings are not included. The
frequency magnitude plots for mining steps 7 to 24 are shown in Figure 3.1.12. The plots are
reasonably linear indicating that there is a power law response occurring, even though there is
no specified logarithmic variation in strength distribution. This is a significant outcome that
suggests that the tessellation approach is suitable for the numerical representation of seismicity.
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The slope of the line is related to the b-value of the Gutenburg Richter relationship, but cannot
be compared directly due to the different definitions of the components of the seismic moments.
As the mining progresses, there are relatively more smaller events and the plot becomes more
linear. The maximum moment increases to a maximum and then tends to oscillate, as shown in
Figure 3.1.13.

The limit on the maximum value of the moment is probably a result of relating the moment to the
element length. In the model, the minimum and maximum element lengths are limited in size by
numerical modelling considerations. Application of a scheme that considered the connections
between sliding cracks to determine an effective sliding length would produce a different
frequency magnitude relation.

A second tessellation analysis, using a different fracture criterion was tested to confirm the
frequency - moment relationship. The model, shown in Figure 3.1.14, has a selection of weak
flaws randomly spaced throughout the mesh. All other crack sites have a specified tensile
strength and an effectively infinite compressive strength. The results are very similar to those of
the Mohr Coulomb analysis. This suggests that the tessellation approach does provide a
frequency moment relationship based on a power law. The cumulative frequency of fractures is
lower and is related to the lower fracture density. The relative increase in smaller fractures at
longer spans is also evident.
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Figure 3.1.11 Result of tessellation analysis of Carbon Leader stope using Mohr Coulomb
failure criteria.

Table 3.1.2 Material properties for Carbon Leader tessellation

Rock type UCS |Cohesion Friction angle tensile
strength

MPa |MPa initial  [mob MPa

Hangingwall 320 18 52 30 5

Quartzite

Footwall 200 18 43 25 5

Quartzite

Greenbar 180 18 32 20 5
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Figure 3.1.12 Frequency - Moment plots for the tessellation analysis of a Carbon Leader
stope using Mohr Coulomb failure criteria.
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Figure 3.1.13 Maximum moment with span for the tessellation analysis of a Carbon
Leader stope using Mohr Coulomb failure criteria.
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tension crack model of failure.

Table 3.1.3 Material properties used in tessellation using weak flaw and tension

CR

Figure 3.1.14 Result of tessellation analysis of Carbon Leader stope using weak flaw and
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crack model
Flaw CohesionC ¢ Cn @n Tensile
Cohesion strength
MPa MPa deg MPa deg MPa
HW Quartzite 5 1E5 52 10 30 5
Green Bar 5 1E5 32 10 20 5
Green Bar Parting 30 30
FW Quartzite 5 1E5 45 25 5
Parting Planes 40 40
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Figure 3.1.15 Frequency - Moment plots for the tessellation analysis of a Carbon Leader

moment

stope using weak flaw and tension crack model of failure.
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The tessellation approach of modelling, using displacement discontinuity elements, has been
shown to produce a power law distribution of equivalent seismic moments, and is therefore
suitable for consideration as part of a package that integrates numerical modelling with seismic
data. The technique must still be evaluated in three-dimensional analyses. The numerical
counterpart to the seismic moment can be defined in a number of ways and so the magnitude of
the numerical b-value will not necessarily correspond with that observed from seismic data.

Modelling the frequency-magnitude relationship - MAP3D on geological structure

Objectives:
Initial investigation to determine whether a boundary element numerical code is capable of
generating a power law seismic event size distribution along a geological structure.

As part of SIMGAP 303 “Mine layout, geological features and seismic hazard”, an engineering
method is being developed and tested to evaluate the seismic potential of geological structures
as a function of mine layout. Theoretical aspects and objectives of the engineering method are
outlined in detail in Lachenicht and van Aswegen (1999) and Lachenicht (in prep.). Initial
investigation aimed to determine whether a boundary element numerical code is capable of
generating a power law seismic event size distribution along a geological structure.

In summary, application of the method firstly permits layout options to be optimised against

proposed design principles, and secondly, utilising a calibrated model, the seismic potential

along the geological structure can be statistically estimated for future progressive mining. The

engineering method explicitly incorporates the simulation of discrete seismic events through

time. This is achieved through the concept of the ‘asperity model’ implemented into a numerical

simulation where the distribution of strength on a geological structure is divided into two

categories (Dragoni, 1990), namely:

« ‘failed’ areas creeping in a continuous and aseismic fashion according to a viscoplastic flow
law

» ‘asperity’ areas of high strength, failure of which would result in abrupt slip, producing
discrete seismic events

All the event characteristics are recorded through time by the numerical model, allowing for the

calculation of the seismic event source parameters, and the eventual analysis of seismicity.

The mechanics of the simulation of discrete seismic events incorporates:

e the ‘asperity model’

» viscoplastic displacement loading of asperities

» aslip-function representing unstable asperity failure

e quasi-static analyses (inertial effects are ignored)

The mechanics of the simulation of seismicity as a result of the occurrence of discrete seismic

events through time is a function of the spatial heterogeneity of asperities. This controls:

» the resulting co-seismic deformation

e the frequency-magnitude relation

e seismic radiation

e triggering of the failure of adjacent asperities through the ensuing co-seismic deformation
caused from static stress changes of the discrete seismic event

A model calibration process is integral to the successful application of the method. The detailed
calibration incorporates strength heterogeneity across randomly distributed asperities, i.e. a
power law strength distribution is imposed across the asperities. This strength distribution is
altered on an iterative basis until the b-value of the modelled Gutenberg-Richter frequency-
maghnitude relation approximates the observed relation.

In order to set up the numerical simulations, software code was developed to generate and
randomly distribute a number of asperities along a surface (Hofmann, 1999). The software
permits different types of asperities to be specified to represent, for example, asperities of
different strengths. The number of asperities assigned to each category is decided outside of
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the software, for example using a power-law distribution of strengths of asperities. For each type
of asperity, grid-elements along the surface are selected at random (using an appropriate
random number generator), and the positions thereof are written to file and directly incorporated
in the engineering analysis.

Problem statement:

The analysis method outlined (original modelling methodology) utilises a boundary element
numerical code and is essentially a comparative tool useful for delineating effects on the
modelled event size distribution resulting from design layout changes. The method is based on
the principle of assuming a power law strength distribution of asperities in such a way as to
roughly emulate the observed power law seismic event size distribution (asperity sizes are
constant), i.e. assuming a ‘power law’ results in the generation of a ‘power law’.

The fundamental premise of this assumption is derived from observations of nature. Scholtz
(1998) refers to fault populations that have a power law length distribution in which the exponent
of the (cumulative) distribution is approximately —1. The contact area between two fractal
surfaces follows an unique power law (Chakrabarti and Stinchcombe, 1999). Seismic events
occurring in nature are observed to adhere to a power-law size distribution known as the
Gutenberg-Richter relation (Scholtz, 1990).

Results from an asperity method developed by Kemeny and Hagaman (1992) showed a very
realistic pattern of earthquake rupture, with reasonable source parameters, the proper
magnitude-frequency behaviour, and the development of characteristic earthquakes. The
simulation method implemented was based around an imposed distribution of asperity sizes
and strengths.

One could argue that asperities of a constant strength, randomly distributed across a geological
structure would naturally result in different size asperities forming (power-law distribution?) from
the natural density dispersion of asperities. The question arises, would this generate a power
law seismic event distribution.

Thus, is it possible for a boundary element model to generate a power law seismic event size
distribution without prior assumption of a power law strength distribution across the asperity
spectrum? If this is true, firstly what factors present within the model attribute to the power law
seismic event size distribution, and secondly, how does the modelled event size distribution
compare to actual seismic observations.

Initial concept:

In order to test this hypothesis, the modelling methodology and analysis routines built around

the asperity model need to be redesigned. This revised modelling methodology could then be
tested through the modelling of an actual case study, comparing the modelled to the observed
over identical time periods.

The revised modelling methodology consists of:

* Incorporate the relevant geological structures and appropriate mining sequence into a three
dimensional boundary element model (Map3d)

« Place constant size asperities randomly over the structures surface

» Cover approximately 30% of the structures surface area with asperities in order to constitute
a seismogenic structure (Gusev, 1989) (Figure 3.1.16)

« The remainder of the structures surface is assigned a constant viscosity and failure strength,
and is assumed to creep aseismically

« All the randomly placed asperities are assigned a constant strength value
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Figure 3.1.16 Randomly placed asperities (constant strength)

» Where asperities touch each other as a result of the random placement the sides are glued
together, i.e. increased size asperities are created from the randomly placed asperities
without incorporating any clustering procedures. Figure 3.1.17a,b shows an example of the
resultant asperity placement over the structure surface. It can be noted that a size
distribution of asperity sizes, consisting of many small asperities and few large asperities,
naturally results from the randomly placed asperities.
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Figure 3.1.17a Resultant asperity placement over the structure surface — asperities
(variable size) and surrounding gouge.
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Figure 3.1.17b Resultant asperity placement over the structure surface — asperities only.
¢ Delineate and filter observed seismic events occurring along the structure.

* Analyse the observed seismic events creating the structures cumulative frequency
magnitude relation over the specified time period.
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¢ Numerically run the mining steps for the identical time period of the observed data.

« Implement filtering methods for the modelled data calculating a cumulative frequency-
magnitude relation resulting from the failure of the asperities through time.

* Analyse the modelled cumulative frequency-magnitude relations and compare to the
observed data.

The initial random distribution of asperities on a fault and their clustering highlight the analogy
with the percolation model and critical phase transitions.

Some physical systems can exist in different phases. Crystals can melt , liquids can crystallise
or evaporate. Some ceramic materials behave as insulators at room temperature but , if
immersed in liquid nitrogen they suddenly become superconductors. The general properties of
these processes are:

1. They occur only for certain values of the physical parameters controlling the behaviour of
the system such as temperature, pressure, concentration etc. The values of the control
parameters for which a given physical system undergoes a phase transition are called
critical values.

2. Near the phase transition point the correlation length of the physical system diverges as a
(negative) power of the distance of the control parameter to the corresponding critical value.
Similar power-law behaviour near a phase transition is observed for other physical
quantities. The corresponding exponents in these power laws are called critical exponents.

3. One of the central facts in the theory of phase transitions is that while the critical exponents
are unique for each concrete system, there are many seemingly different types of physical
systems which share the same values of the critical exponents. For such systems it is said
that they form a class of universality.

4. The power-law behaviour of the observable quantities of a physical system near a phase
transition point is directly related to the phenomenon of scaling (the preservation of the form
of a function when the argument is scaled by a factor). It is an observed fact that many
quantities related to seismic activity exhibit scaling.

A concept of a considerable following is the belief that many real physical systems are
spontaneously driven to a critical state by their internal complexity. This statement is known in
the literature as Self-Organised Criticality (SOC). Apart from some very attractive theoretical
aspects to SOC it is of little practical importance to the mining industry.

One way of studying critical phenomena is on simple mathematical models. One such model
with wide-ranging applications is the percolation model. It is perhaps the simplest system which
can undergo a phase transition. The model is formulated on a regular lattice. The role of the
control parameter is played by a real number p called the occupation probability. For a given
value of the occupation probability one can generate many instances of the lattice system by
assigning either 0 or 1 to the sites of the lattice according to the rule: the value of 1 is assigned
to the current site with probability equal to p. If a site is not assigned the value 1 it is set to zero.
Obviously the control parameter p must be a number between zero and one.

The main objects of interest in the study of percolation models are the connected clusters. A
connected cluster is a set of occupied sites in which each site has at least one nearest
neighbour which is also occupied. An infinite cluster (or spanning cluster) is a connected cluster
which includes occupied sites from the opposite ends of the lattice. The model is said to
percolate for a given value of the control parameter (the occupation probability p) if it has a
spanning cluster. Obviously the model does not percolate for p=0 or even for p>0 but very
small. On the other hand the model will certainly percolate for p=1 or p<1 but very close to 1.
The question is: how does the probability for forming a spanning cluster vary with p? It turns out
that the variation of this probability is not a smooth and monotonous increase from zero to one.
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Instead the percolation model exhibits a phase transition with the corresponding critical point
being the percolation threshold , that is the value of the occupation probability for which the
model can for the first time generate a spanning cluster. For a two-dimensional site-percolation
model the percolation threshold is near the value 0.5927.

The implications of the above result for modelling the distribution of asperities on a fault is that
the control parameter of their density distribution must be below the percolation threshold
unless one wants the asperities to percolate and form clusters which span the whole fault or
system of faults.

Observations:

The case study analysed is that of the northern portion of the Rautenbach dyke at Great
Noligwe mine, Anglogold. Figure 3.1.18 shows the Map3d three-dimensional model built
including the mining steps surrounding the dyke and the geological structure itself. The dyke is
a narrow, steeply dipping structure (approximately 80 degrees).
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Figure 3.1.18 Map3d three-dimensional model of the Rautenbach dyke and surrounding
mining

Figure 3.1.19 shows a plot of the cumulative frequency-magnitude relation derived from the
observed data in the immediate vicinity of the Rautenbach dyke. The data was accumulated
from applying a spatial filter of 40m into the hangingwall and footwall along the interpreted dyke
surface and an event filter of greater than magnitude 1 (increase the accuracy of the data
utilised).

Size Distribution - Rautenbach Dyke
g R
82 15 LN
25 MRS
()
S5 05 ¢
o
- 0 ’o
0 1 2 3 4
Mo Mag

Figure 3.1.19 Cumulative frequency-magnitude relation derived from observed data along
the Rautenbach dyke

Analysis results:
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The resulting modelled data is analysed firstly by subtracting filter runs in order to derive the co-
seismic slip occurring for each time step, and secondly through separating individual events
along the structure per time step (model step). The resultant discrete seismic events are
influenced by the lower limit of slip utilised. That is to say, if a lower filter limit of 1mm is utilised,
an increased number of smaller events and fewer larger events are delineated. For a lower limit
of 0.1mm the smaller events get absorbed into larger events, affecting the event size
distribution. This problem occurs as a result of the overall analysis methodology utilising large
time steps (originally designed as a practical engineering analysis tool). Hence, the time
stepping of the occurrence of small events is lost in the analysis results.

Application of the original filtering method presented possible problems — the presence of
varying block sizes possibly affected the subtraction, sorting and filtering routines.

During the analysis the following filtering methods were tested:
¢ Original method:
- Delineate events by filtering across the structure surface for co-seismic slip>0.1mm.
— Moment calculation:
Mo = doaverage * dVsource volume
Where:
Mo = seismic event moment (Nm)
doaverage = average stress change of asperities failing over event source volume (Pa)
dVsource volume = event source volume (m3)
This is implemented for each discrete event derived from the filtering method
implemented.
*  New method 1:

— Filtering across the structure surface for co-seismic slip>1mm. This permits an increased
number of smaller events to be separated from the overall deformation across the
structure. A new filtering method is applied resulting in the quantitative values associated
with each event being output to separate files for analysis.

— Moment calculation:

Mo = doaverage * dVsource volume
Where:
Mo = seismic event moment (Nm)
doaverage = average stress change of asperities failing over event source volume (Pa)
dVsource volume = event source volume (m3)
This is implemented for each discrete event derived from the filtering method
implemented.
¢ New method 2:

— Filtering across the structure surface for co-seismic slip>1mm. This permits an increased
number of smaller events to be separated from the overall deformation across the
structure. A new filtering method is applied resulting in the quantitative values associated
with each event being output to separate files for analysis.

— Moment calculation:

Mo = p * Yin (Ai * ui)

Where:

Mo = seismic event moment (Nm)

v = rigidity (3e10 Pa)

Ai = Area of grid block i (m2)

ui = coseismic slip of grid block i (m)

n = number of grid block delineated for the seismic event

This is implemented for each discrete event derived from the filtering method
implemented.

From the seismic event data, cumulative frequency-magnitude relations are derived for each
method tested.
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Firstly the results are analysed to determine whether a power-law seismic event distribution is
present, and secondly compared for the different methods applied. Lastly, the modelled results
are compared to the observed seismic event size relation to obtain an initial estimate of the
differences between the modelled and observed.

Figure 3.1.20 shows the cumulative frequency magnitude relation derived from the application
of the original method. Slight indications of a power law event distribution are present. Two
problems are identified with this analysis. Firstly the filtering method could be experiencing
problems as a result of the variable size asperities present — the method was designed to be
utilised for a constant block size. Secondly the slip filter value of 0.1mm is too low to permit
delineation of smaller events i.e. they are absorbed into the larger events.

Frequecy-Magnitude Relation - Original Method
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Figure 3.1.20 Cumulative frequency-magnitude relation — original method

Figures 3.1.21a & b show the cumulative frequency magnitude relations derived from the
application of new methods 1 and 2. Much stronger indications of the presence of a power law
seismic event distribution are present. This results from the increased filter value of 1mm and
secondly the improved filter method adequately catering for the variable block sizes present
within the analyses undertaken.
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Figure 3.1.21a Cumulative frequency-magnitude relation — new method 1
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Log (cumulative frequency)

Frequency-Magnitude Relation - New Method 2
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Figure 3.1.21b Cumulative frequency-magnitude relation — new method 2

Figure 3.1.22 compares the two methods. It can be noted that both methods result in similar b-
values. The offset in the moment magnitude range results from the moment calculation method
and can be simply adjusted for through the application of a factor.
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Figure 3.1.22 Cumulative frequency-magnitude relation comparison —new methods 1 & 2

Figure 3.1.23 compares all three methods confirming the problems associated with the original
method (altered b-value, magnitude range offset and limited power law distribution).
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Figure 3.1.23 Cumulative frequency-magnitude relation comparison — all methods

Figure 3.1.24 compares the modelled results of methods 1 and 2 to the observed data. This
shows encouraging first results in terms of the overall observed power law response of the
structure, although a substantially different b-value is observed.
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Figure 3.1.24 Cumulative frequency-magnitude relation comparison — modelled versus
observed

The power law event size distribution emulated through the model results from a combination of:

« the failure of different size asperities through time and the resultant static stress changes

¢ the random asperity locations

» the inherent asperity size distribution formed from the random asperity placement (strength
heterogeneity)

e the viscoplastic flow of rock across the structures surface loading asperities

« the viscoplastic deformation retardation as a result of asperity placement

« the normal and shear stress changes spatially and temporarily occurring over the structures
surface

Figure 3.1.25 shows the co-seismic slip resulting from the seismic events occurring across the
structure surface at a particular time step. This co-seismic slip is derived from the failure of
different size asperities failing at different locations over the structure surface for that particular
step. This demonstrates the aforementioned concepts.

ep 12 year 98 step 12 85718799 |

*

Co-seismic slip

B

z

Figure 3.1.25 Coseismic slip occurring over the Rautenbach dyke for a particular model
step

Conclusions and future work:

The major conclusions from the initial work undertaken are:
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« Boundary element codes are capable of generating a power law seismic event size
distribution along geological structures without the prior assumption of a power law strength
distribution.

¢ The analysis methods applied affect the modelled cumulative frequency-magnitude relation:
— The minimum co-seismic slip utilised to delineate individual events controls the number

of individual smaller events.

— The original filtering method resulted in incorrect results due to its inability to adapt to
variable size grid blocks.

— The different moment calculation methods applied (new methods 1 and 2) showed a
constant offset in the cumulative frequency magnitude relation. This can be adjusted for
through the application of a factor to the calculated moment. The calculated b-values
were similar.

¢ For the parameter assumptions utilised in the analyses conducted, a significant difference
was observed between the modelled and observed b-values of the cumulative frequency-
magnitude relation. However, the spread of the data over the magnitude range was of a
similar order.

A number of outstanding issues remain that should be answered as part of future work on the

integration method. These include:

« Different random distributions of asperities over the structure surface must be tested and its
affect on the resultant cumulative frequency-magnitude relation documented.

» Different material properties for both asperities and surrounding gouge must be tested and
the resultant effects documented.

e The filter methods must be rechecked and analysed for different size asperities.

» The effect of including a different base grid size must be documented.

» The effects of different asperity ‘glueing’ procedures must be analysed.

» The effect of clustering asperities should be analysed, i.e. asperities not directly adjacent to
each other ‘gravitate’ together.

« The effect of inserting a limited ‘power law strength distribution’ in addition to the random
asperity placement and subsequent ‘glueing’ of asperities must be documented. This could
possibly be closer to a natural underground environment.

¢ Additional model calibration strategies are currently being investigated.

« The affect of excluding ‘glueing’ adjacent asperities together. Will a power law be generated
from the failure of constant size and strength asperities through time?

« Alter the time-steps utilised in the model to enable individual events occurring through time
to be clearly delineated.

Lastly, the important question to be answered is, ‘Can the seismicity generated from a model
roughly emulate the observed after model calibration?’ That is to say, can the modelled and
observed cumulative frequency-magnitude relations form similar power law distributions with
similar b-values?

To attempt to answer the most important of these questions, namely, ‘can the modelled and
observed cumulative frequency-magnitude relations form similar power law distributions with
similar b-values?’, a case study analysis of the TauTona 336 area case study has been
performed.

Background information — TauTona 336 area

The area of interest includes a series of longwalls situated in TauTona Mine, referred to as the
TauTona 336 area. Two lagging longwalls are mining a pillar created between two previously
mined longwalls. In so doing, the longwalls are mining directly towards a fault (the Break fault).
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Figure 3.1.26 TauTona 336 area (Break fault) case study
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Figure 3.1.26 shows the inferred Break fault surface (geological interpretation) and the historic
mining layout and sequence used for the numerical analysis. For the purpose of the analysis the
mining sequence is broken down into quarterly mining steps.

The aim of the analysis is to attempt firstly to understand and secondly to simulate the seismic

response of the Break fault as a result of the approaching longwalls situated in the highly
stressed pillar.

Analysis of the seismic data on the Break fault

The seismic events were selected, within the analysis time frame, along the three-dimensional
geological structure from the seismic database (events located 40m in the hangingwall and
footwall along the inferred surface). Figures 3.1.27 and 3.1.28 show the E-M Relation and
Gutenberg-Richter cumulative frequency-magnitude plots derived from seismic data recorded
along the Break fault.
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Figure 3.1.27 E-M Relation along the Break fault

Cumulative Frequency-Magnitude Relation
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Figure 3.1.28 Cumulative Frequency-Magnitude Relation from the Break fault

The relation utilised to calculate the moment magnitude in Figure 3.2.28 is:
Magnitude (Mo) = 2/3 log10(Mo) — 6.1

Where Mo is the moment source parameter calculated in the seismic database.

Experiment design overview

In both case studies partially calibrated models are utilised. It will not always be possible to
attain a fully calibrated model when undertaking design analyses. The purpose behind this
exercise is to test the degree of correspondence between the modelled and observed
frequency-magnitude relations within the limits of the model calibration.

In accordance with the analysis methodology implemented (Lachenicht and van Aswegen,

1999), model calibration is attained when:

= Quantitative deformation values occurring along the structure roughly approximates
observed deformation values,

» Rough correspondence is attained between the modelled and observed contours of
deformation across the structure in both space and time.

Deformation is chosen as the calibration parameter. This is due to the fact that deformation
values can be easily and relatively accurately inferred from the seismic data. In addition, it is the
simplest parameter to numerically emulate whilst ensuring that the model is deforming at the
correct locations during the correct time frame. This provides the foundation for more complex
analyses as viscoplastic displacement loading forms the fundamental driving mechanism for the
analysis and interpretation of seismicity.

The model deformation values are derived from a heterogeneous strength model. The detailed

concepts behind the calibration procedure are outlined in Lachenicht (in prep.). The procedure

utilised to calibrate the model is:

» The Break fault surface and appropriate mining sequence are incorporated into a three
dimensional boundary element model (Map3d)

» The surface is divided into a grid consisting of square blocks

= Different analysis time spans, fault strength and fault rheological properties are tested until
an initial correlation is attained between the modelled and observed fault deformation
through space and time (iterative process)
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» The homogeneous strength model is initially used to calibrate the model due to its simplicity,
but once a degree of correlation is achieved, the procedure can immediately be extended to
encompass asperities and hence the explicit simulation of seismicity:

» Constant size asperities are randomly distributed over the Break fault

= Approximately 30% of the Break fault is covered with asperities

» The remainder of the Break fault is assigned a constant viscosity and failure strength, and is
assumed to creep aseismically

» Where asperities touch each other, within individual planes, as a result of the random
placement, the sides are glued together, i.e. increased size asperities are created from the
randomly placed asperities without incorporating any clustering procedures. Figure 3.1.30
shows the resultant asperity placement over the Break fault’s surface. It can be noted that a
size distribution of asperity sizes, consisting of many small asperities and few large
asperities, naturally evolves from the randomly placed asperities.

* In addition to the natural size distribution derived from the random asperity placement, an
additional strength distribution is assigned to the asperities in accordance with the asperity
size. This increases the strength of the larger asperities, and hence the spread of the
modelled seismic data.

67798799 _|

- BN
Figure 3.1.30 Resultant asperity placement over the Break fault’s surface

The detailed comparisons between the modelled and observed deformation values along the
Break fault, through both space and time, are included in Lachenicht (in prep.), and only the
seismic events derived from the partially calibrated models are examined in this report.

Experiment results
Observed seismic data

An analysis of the cumulative frequency-magnitude relation derived from the observed seismic
data selected along the Break fault yields the plots shown in Figures 3.1.31 and 3.1.32. Figure
3.1.31 shows the cumulative frequency-magnitude relation analysed using a robust straight line
fit (Vetterling et al., 1986) over a selected portion of the relation. Figure 3.1.32 analyses the
relation utilising the Aki method (Aki & Richards, 1980). The line fits yield b-values of 1.17 and
1.12 respectively.
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Figure 3.1.31 Observed seismic data analysis — Robust straight line fit
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Figure 3.1.32 Observed seismic data analysis — Aki method

Case study 1 - modelled seismic data

Table 3.1.4 lists the parameter assumptions utilised in the numerical analyses to achieve the
partial model calibration for case 1.
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Table 3.1.4 Case 1 - parameter assumptions utilised to attain partial model
calibration

Parameter

Parameter Assumption

Gouge Constitutive Model (Break fault)

Mohr-Coulomb

Gouge friction (Break fault)

25-18 degrees (strain softening)

Gouge viscosity (Break fault)

1e16 Palsec

Gouge cohesion (Break fault) 0 MPa
Gouge Young's Modulus 40GPa
Gouge Poisson’s Ratio 0.2

Asperity distribution (Break fault)

Random / Spatial clustering (80x80m
blocks)

Asperity strength distribution
(Four asperity sizes from spatial clustering)

Friction 45-18 (size 1)
Friction 48-18 (size 2)
Friction 51-18 (size 3)
Friction 54-18 (size 4)

k-ratio 0.5 (constant in all directions)
Vertical in-situ stress gradient 0.027 MPa/m

Host rockmass Constitutive model Elastic

Host rockmass Young’'s Modulus 70GPa

Host Rockmass Poisson’s Ratio 0.25

Time interval

3 months / model step

Modelled mining sequence

As specified in Figure 2.1

Closure of excavations

In excess of 2m closure permitted

Additional structures

Not included for simplicity

The comparison of the modelled versus observed deformation for case study 1 essentially

yiel

An analysis of the cumulative frequency-magnitude relations derived from the modelled seismic

ds:

The deformation along the Break fault is under estimated in the model. This could be a

function of the displacement taper function
displacement (apparent strain method).

applied when estimating the observed

The deformation along the Break fault occurs predominantly lower in the footwall than
indicated from the observed seismicity. This could be a function of z location error.

data of case study 1 yields the plots shown in Figure 3.1.33 and 3.1.34.
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Figure 3.1.33 Case study 1: modelled seismic data analysis — Robust straight line fit
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Figure 3.1.34 Case study 1: modelled seismic data analysis — Aki method

The line fits yield b-values of 1.26 (versus 1.17 from the observed data) and 1.49 (versus 1.12
from the observed data) respectively. Hence, the difference in b-values between the modelled
and observed data is 0.09 (robust line fit) and 0.37 (Aki method). Practically, b-values derived
from seismic data sets can be interpreted as being significantly different if differences between
b-values of the order of 0.1 are calculated. Hence, the modelled cumulative frequency-
magnitude relation of case 1 can be said to be significantly different to the relation derived from
the observed seismic data.
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However, when examining the relative differences between the relations, it is of interest to note
that the b-value derived from the modelled data is higher. This is indicative of a stiffer system
(Mendecki, van Aswegen and Mountfort, 1999), and is in accordance with the earlier
deformation comparison.

The relative differences between the two methods are highlighted in Figure 3.1.35 using a least
squares fit (0.2 bin ranges).
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Figure 3.1.35 Case study 1: comparative modelled and observed data b-values

3.1.1. Case study 2 - modelled seismic data

Table 3.1.5 lists the parameter assumptions utilised in the numerical analyses to achieve the
partial model calibration of case study 2.
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Table 3.1.5 Parameter assumptions utilised to attain the partial model calibration

Parameter Parameter Assumption

Gouge Constitutive Model (Break fault) Mohr-Coulomb

Gouge friction (Break fault) 30-15 degrees (strain softening)

Gouge viscosity (Break fault) 4e15 Palsec

Gouge cohesion (Break fault) 0 MPa

Gouge Young’s Modulus 40Gpa

Gouge Poisson’s Ratio 0.2

Asperity distribution (Break fault) Random / Spatial clustering (80x80m
blocks)

Asperity strength distribution Friction 45-18 (size 1

(Four asperity sizes from spatial clustering) | Friction 48-18 (size 2
Higher friction areas where model versus Friction 51-18 (size 3

~— — N

observed asperity failures significantly Friction 54-18 (size 4

differ (iterative basis)

k-ratio 0.7(east-west)/0.3(north-south)
Vertical in-situ stress gradient 0.027 MPa/m

Host rockmass Constitutive model Elastic

Host rockmass Young’'s Modulus 70Gpa

Host Rockmass Poisson’s Ratio 0.25

Time interval 3 months / model step

Modelled mining sequence As specified in figure 13.1 and 13.8
Closure of excavations Maximum of 1m closure permitted
Additional structures Portion of the Grey fault intersection with

the Break fault

The comparison of the modelled versus observed deformation for case study 2 essentially

yields:

» The deformation along the Break fault is roughly emulated in the model. Various parameters
in the model are changed to allow the overall system to soften sufficiently, and hence
increase the modelled deformation along the Break fault.

« The deformation along the Break fault still occurs predominantly lower in the footwall than
indicated from the observed seismicity. Again, this could be a function of z location error.
However, in this analysis, this deformation is restricted due to the growth of higher friction
areas (stronger asperities).

An analysis of the cumulative frequency-magnitude relation derived from the modelled seismic
data of case study 2 yields the plots shown in Figure 3.1.36 and 3.1.37.
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Figure 3.1.36 Case study 2: modelled seismic data analysis — Robust straight line fit
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Figure 3.1.37 Case study 2: modelled seismic data analysis — Aki method

The line fits yield b-values of 0.85 (versus 1.17 from the observed data) and 0.94 (versus 1.12
from the observed data) respectively. Hence, the difference in b-values between the modelled
and observed data is 0.32 (robust line fit) and 0.18 (Aki method). Again the difference between
the modelled (case 2) and observed b-values can be interpreted as being of significance.

However, examining the relative differences between the relations, the b-value derived from the
modelled data is lower. This is indicative of a relatively softer system (Mendecki, van Aswegen
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and Mountfort, 1999). This is again in accordance with the earlier deformation comparison — the
reduction in the overall system stiffness in order to permit increased deformation to occur along
the Break fault. However, the resultant frequency-magnitude relation comparison indicates that
the modelled system stiffness degradation was excessive, dropping the b-value to below that of
the observed. This occurred even though a relatively good qualitative comparison was achieved
between the modelled and observed deformation along the Break fault.

The relative differences between the modelled and observed b-values are highlighted in Figure
3.1.38 using a least squares fit (0.2 bin ranges).
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Figure 3.1.38 Case study 2: comparative modelled and observed data b-values

3.1.2. Case study 1 versus case study 2 — Relative changes

Figure 3.1.39 compares the b-values derived from case study 1 and case study 2. The relative
changes are indicative of a stiffer system (case1) versus a softer system (case 2), and are in
accordance with the comparative changes made to the model during the model calibration
exercises.
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Figure 3.1.39 Comparison of b-values derived from case studies 1 & 2

Conclusions

The main objective of the analyses undertaken was to determine whether modelled and
observed cumulative frequency-magnitude relations could form similar power law distributions
with similar b-values. A direct comparison between the b-values derived from the two modelled
case studies and the observed data indicate the b-value differences to be significant (>0.1).
From this one could conclude that although the model generated power law distributions, the
model is not capable of generating b-values that approximate the observed data.

However, a more detailed analysis showed that through tuning/calibrating the model parameters
to improve the emulation of the inferred observed deformation, the modelled b-value was
significantly changed (softened system). The resultant b-values from the two case studies
bracketed the b-value of the observed data. Thus, through an intensive calibration effort, it is
possible that the model (intermediate solution) could reproduce the observed b-value. However,
as a result of the effort required to correctly calibrate the model it doesn’t represent a practical
tool. The method is optimally utilised on a comparative basis from a partially calibrated model.

Lastly, it is of interest to note that the relative changes to the modelled b-value and estimated
mmax resulting from 'softening’ the system are in accordance with observations. That is to say,
'stiffer’ systems results in an increased b-value, lower mmax and an increased frequency of
smaller events (Mendecki, van Aswegen and Mountfort, 1999). The corresponding relationships
will be examined in greater detail in future reports (parametric studies).

Introduction
The case study of TauTona mine 336 area investigated whether a boundary element numerical
code was capable of generating a power law seismic event size distribution along a geological

structure and compared modelled and observed cumulative frequency-magnitude relations
along the Break fault. A specific conclusion of this study was that through an intensive
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calibration effort, it is possible that the model could reproduce the observed b-value. However,
as a result of the effort required to correctly calibrate the model it doesn’t represent a practical
tool. The method is optimally utilised on a comparative basis from a partially calibrated model.

Further studies were undertaken with the objective of moving towards defining the relative
effects of changing the model parameter assumptions on the modelled seismic event size
distribution. The long term objective is to delineate the parameter assumptions that control the
resultant power law distribution. Specific aspects dealt with in this study are:

. Seismic data selection sensitivity

. Modelled material properties sensitivity

. Seismic event delineation method sensitivity (modelled data)
. Alternative seismic event simulation methods

. Asperity size distribution sensitivity

. Comparison between frequency magnitude relations

(all of the modelled and observed seismic event data analysed originate from the Break fault at
TauTona mine).

Seismic data selection sensitivity

A general problem associated with seismic monitoring is that of location error. In the analyses
undertaken, the seismic data utilised is assumed to be associated with the Break fault, i.e. a
specific geological structure. However, this data is subject firstly to location errors and secondly
could be spatially intermixed with data derived from alternative sources — such as events
occurring in the direct vicinity of mining faces. Different spatial filter windows were selected
around the estimated position of the Break fault surface in order to test the robustness of the
cumulative frequency-magnitude relation derived from the data. Firstly data was selected
around the surface of the Break fault using a 40m hangingwall and footwall search distance,
and secondly using a 20m footwall and 150m hangingwall search distance.

Conclusions:

» The robustness of the frequency-magnitude relation should be improved if data is gathered
between long time intervals. The data utilised in the analysis of the Break fault was gathered
over a period of approximately two years, representing a relatively short time interval in
terms of the long term fault response — potentially affecting the robustness of the cumulative
frequency magnitude relations derived from the data.

« If data is gathered for the specific purpose of examining the response of a specific structure,
depending on the sensitivity of the seismic monitoring network, the data could firstly be
subject to a location error, and secondly be intermingled with data derived from alternative
sources. As such, sensitivities of different spatial windows must be tested in order to
delineate the robustness of the frequency magnitude relation derived from the data.

Modelled material properties sensitivity

As part of the analysis of the seismic response of the Break fault, modelled seismic events have
been generated using a number of different material properties. In all the case studies analysed,
the material properties significantly influence the resultant seismic statistics derived from the
model.

To summarise, examining the relative changes between modelled cumulative frequency
magnitude relations as a result of changing material properties, increased the material strengths
and imposing a higher material viscosity results in a general stiffening response of the system.
That is to say, a ’stiffer’ system results in an increased b-value, lower Mmax and an increased
frequency of smaller events (Mendecki, van Aswegen & Mountfort, 1999). An example of this is
shown in Section 5.4 GAP 603 September progress report (Lachenicht, 1999,).
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Seismic event delineation method sensitivity (modelled data)

In the September 1999 progress report, seismic events were delineated automatically utilising a
cut-off co-seismic slip value. All spatially connecting co-seismic slip above the cut-off value was
combined into a single event. The main problem with this method of event delineation, is that if
a large cut-off co-seismic slip distance is selected a large amount of detail of the individual
event responses is lost. If a very small cut-off value is used, the events are lumped together into
a single event. This problem is essentially a function of the large time windows utilised in the
model, i.e. a number of events occurring sequentially through time will be lumped into a single
event, even though they actually do not directly interact though time.

As a result, a new method of delineating seismic events was devised. This permits the analyst
to visually delineate and separate individual seismic events using polygons.

Alternative seismic event simulation methods
Co-seismic slip filters

All the analyses of modelled seismic events up to this point have been based on events derived
from filtered co-seismic slip values. Thus the viscous relaxation of the surrounding fault gouge is
filtered out in order to allow the co-seismic slip to be calculated and associated to individual
seismic events. However, this filtering process is computationally intensive.

To circumvent this problem, an alternative procedure was tested where seismic events are
delineated (utilising polygons) from raw data, which includes the viscous relaxation component.
Application of this method shows the simulated seismic event data analysed to still exhibit a
power law response.

Approximation of the three dimensional non-linear rockmass response

In the previous analyses of the seismic response along the Break fault, the response of the
surrounding rockmass was assumed to be linear elastic. This methodology can, however, be
improved by simply incorporating non-linear displacement discontinuity elements along the
plane of the reef. This permits both compressive and shear failure to occur in the vicinity of
mining excavations, approximating the surrounding three-dimensional rockmass response and
its subsequent interaction with the Break fault (refer to section 6). The method is also
computationally efficient, hence presenting a viable design tool.

Asperity size distribution sensitivity

All the seismic events extracted from the models have been derived from the failure of

asperities placed over the Break fault surface (Lachenicht, 1999 14,). These have been

associated with specific assumptions, namely:

» Random distribution of asperities over the fault surface (30% areal coverage)

And with one or more of the following:

* A specific assumed strength distribution of asperities

» A specific assumed size distribution of asperities

« Spatial clustering of randomly distributed asperities allowing the formation of larger
asperities

All of the modelled seismic data derived from the above assumptions exhibited a degree of
power law behaviour. However, the question arose, ‘Would it be possible to generate a power
law frequency magnitude size distribution from an experiment which incorporates constant
strength and size asperities randomly distributed over the fault surface. If this were true, it would
imply that the power law size distribution is inherent in the mechanics of the model.

92



Both frequency-magnitude relations exhibit strong power law behaviour.

Comparison between frequency magnitude relations

For both the ‘model 1’ and ‘model 3’ data, the seismic moment of each event is calculated by:

Mo = f* 5 (A * u)

Where:
M, = seismic event moment (Nm)
¥ = rigidity (3e10 Pa)

(Kostrov & Das, 1988)

A = Area of grid block | (m?)
Ui = estimated co-seismic slip of grid block i (m)
n = number of grid blocks delineated for the seismic event (polygon method)

For the ‘model 2’ and ‘model 4’ data, the seismic moment of each event is calculated by:

Mo = dcaverage * stource volume
Where:
Mo
doaverage
volume (Pa)
dVsource volume

(Madariaga, 1979)

= seismic event moment (Nm)
= average stress change of asperities failing over the event source

= event source volume (m?)

Thus it can be noted that different methods of moment calculation alter the resultant b-value of
the cumulative frequency magnitude relation.

The parameter assumptions utilised to attain the modelled seismic event data are listed in

Tables 3.1.6 and 3.1.7.

Table 3.1.6 Model 1&2 parameter assumptions

Parameter

Gouge Constitutive Model

(Break fault)

Gouge friction (Break fault)

Gouge viscosity (Break fault)
Gouge cohesion (Break fault)0 MPa
Gouge Young’s Modulus

Gouge Poisson’s Ratio

Asperity distribution (Break fault)

Asperity strength distribution
(Four asperity sizes from spatial clustering)

k-ratio

Vertical in-situ stress

Host rockmass Constitutive model
Host rockmass Young’'s Modulus
Host Rockmass Poisson’s Ratio
Time interval

Modelled mining sequence
Closure of excavations

Additional structures

Parameter Assumption
Mohr-Coulomb

30-25 degrees (strain softening)
1e16 PalsSec

40GPa

0.2

Random / Spatial clustering
(80x80m blocks)

Friction 45-18 (size 1)

Friction 48-18 (size 2)

Friction 51-18 (size 3)

Friction 54-18 (size 4)
0.3(east/west)/0.7(north/south)
0.027 MPa/m

Elastic

70GPa

0.25

3 months / model step

As specified

1m maximum closure permitted
Not included for simplicity
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Table 3.1.7 Model 3&4 parameter assumptions

Parameter

Gouge Constitutive Model
(Break fault)

Gouge friction (Break fault)
Gouge viscosity (Break fault)
Gouge cohesion (Break fault)
Gouge Young’s Modulus
Gouge Poisson’s Ratio
Asperity distribution (Break fault)
Asperity strength distribution
k-ratio

Parameter Assumption
Mohr-Coulomb

35-25 degrees (strain softening)
1e16 Palsec

0 MPa

40GPa

0.2

random

Constant — friction 45-25 degrees
0.3(east/west)/0.7(north/south)

Vertical in-situ stress 0.027 MPa/m

Host rockmass Constitutive model Elastic

Host rockmass Young’s Modulus 70GPa

Host Rockmass Poisson’s Ratio 0.25

Time interval 3 months / model step
Modelled mining sequence As specified

Closure of excavations
Additional structures

1m maximum closure permitted
Not included for simplicity

Additional points that can be noted:

* Model 1&2 (full data) show a higher b-value to that of the observed data (1.62 & 1.76 versus
1.18 & 1.35)

* Model 3’s b-value emulates that of the observed data (40m h/w f/w filter), i.e. 1.18.

« There is a high variability of b-value between model 3 & 4 (1.18 to 2.07), i.e. resulting purely
from the alternative moment calculation method.

* Model 3 shows a lower b-value to that of model 1 (1.18 versus 1.62). This can be attributed
to the face that spatial clustering of asperities is not present, the asperity strength assigned
is on average lower and non-linear displacement discontinuity elements are incorporated in
the model on reef elevation — leading to an overall softer system response.

» The power law size distribution is more noticeable in the model 3 data (no size or strength
distribution imposed) than for the model 1 event data (imposed size and strength
distribution).

Conclusions

This work forms the first part of a sensitivity analysis necessary to delineate the parameter
assumptions that control the resultant power law distribution. The major conclusions derived
from the work can be summarised as follows:

Observed cumulative frequency-magnitude relations are sensitive to:

. Spatial filtering of the data

. Length of analysis time windows (amount of available data)

Modelled cumulative frequency-magnitude relations are sensitive to:

. Material properties (strength & viscosity)
. Event delineation methods
. Alternative source parameter calculation methods (moment)

In addition, the following points were noted:
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. Modelled cumulative frequency-magnitude b-values can reflect the observed data.
However, the underlying physics between the two might significantly differ. This can be
confirmed through an analysis of the associated time and space distributions

. Cumulative frequency-magnitude relations derived from modelled energy still exhibit
power law characteristics which are shown to be less sensitive than that of moment
magnitude (analysis of differences between models)

. Cumulative frequency-magnitude relations derived from asperities distributed randomly
in space, with no assumed size or strength distribution still exhibit power law behaviour
in the resultant cumulative frequency-magnitude relations

Other aspects investigated as part of this report were:

. Less computer intensive event filtering methods (co-seismic slip filters)
. Optimised event delineation methods (polygon method)
. A seismic event simulation method incorporating an approximation of the surrounding

three dimensional non-linear rockmass response

The remaining sensitivity associated with the frequency magnitude size distribution that must
still be investigated is that of the analysis of the effect of variable grid block sizes on the
resultant frequency magnitude size distribution.

Some physical systems can exist in different phases. Crystals can melt, liquids can crystallise
or evaporate. Some ceramic materials behave as insulators at room temperature but , if
immersed in liquid nitrogen they suddenly become superconductors. The general properties of
these processes are:

1. They occur only for certain values of the physical parameters controlling the behaviour of
the system such as temperature, pressure, concentration etc. The values of the control
parameters for which a given physical system undergoes a phase transition are called
critical values.

2. Near the phase transition point the correlation length of the physical system diverges as a
(negative) power of the distance of the control parameter to the corresponding critical value.
Similar power-law behaviour near a phase transition is observed for other physical
quantities. The corresponding exponents in these power laws are called critical exponents.

3. One of the central facts in the theory of phase transitions is that while the critical exponents
are unique for each concrete system, there are many seemingly different types of physical
systems which share the same values of the critical exponents. For such systems it is said
that they form a class of universality.

4. The power-law behaviour of the observable quantities of a physical system near a phase
transition point is directly related to the phenomenon of scaling (the preservation of the form
of a function when the argument is scaled by a factor). It is an observed fact that many
quantities related to seismic activity exhibit scaling.

A concept of a considerable following is the belief that many real physical systems are
spontaneously driven to a critical state by their internal complexity. This statement is known in
the literature as Self-Organised Criticality (SOC). Apart from some very attractive theoretical
aspects to SOC it is of little practical importance to the mining industry.

One way of studying critical phenomena is on simple mathematical models. One such model
with wide-ranging applications is the percolation model. It is perhaps the simplest system which
can undergo a phase transition. The model is formulated on a regular lattice. The role of the
control parameter is played by a real number p called the occupation probability. For a given
value of the occupation probability one can generate many instances of the lattice system by
assigning either 0 or 1 to the sites of the lattice according to the rule: the value of 1 is assigned

95



to the current site with probability equal to p. If a site is not assigned the value 1 it is set to zero.
Obviously the control parameter p must be a number between zero and one.

The main objects of interest in the study of percolation models are the connected clusters. A
connected cluster is a set of occupied sites in which each site has at least one nearest
neighbour which is also occupied. An infinite cluster (or spanning cluster) is a connected cluster
which includes occupied sites from the opposite ends of the lattice. The model is said to
percolate for a given value of the control parameter (the occupation probability p) if it has a
spanning cluster. Obviously the model does not percolate for p=0 or even for p>0 but very
small. On the other hand the model will certainly percolate for p=1 or p<1 but very close to 1.
The question is: how does the probability for forming a spanning cluster vary with p? It turns out
that the variation of this probability is not a smooth and monotonous increase from zero to one.
Instead the percolation model exhibits a phase transition with the corresponding critical point
being the percolation threshold , that is the value of the occupation probability for which the
model can for the first time generate a spanning cluster. For a two-dimensional site-percolation
model the percolation threshold is near the value 0.5927.

The properties of sub-critical and super-critical (spanning) clusters in percolation models could
be of relevance for modelling of faults and specifically when choosing a distribution density of
the asperities.

3.2. Time distribution

Space-time distributions of fault slip were plotted by (Cochard and Madariaga, 1996, Rice 1993,
Shaw, 1995). The fault epicentres or slip lengths are plotted on a fault position - time plot, as
shown in Figure 3.2.1. Low values of rate dependence lead to slip across the entire fault
whereas higher values cause a distribution of smaller events within the fault boundaries. Time
dependent energy release cycles were observed by Napier and Malan (1997) using a boundary
element representation of longwall mining of tabular stopes as shown in Figure 3.2.2. The
energy release can be considered to be analogous to the seismic energy release and can be
used as a measure of seismicity.
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Figure 3.2.1 Example of space-time distributions of seismicity from a block slider model
of fault slip (Shaw, 1995)

A comparison of inter-event times was used by Robinson and Benites (1995) to assess the
difference between the modelled results and a random, Poisson process. The results indicated
that there was very little difference over most of the size range, although larger sizes
demonstrated quasi-periodic recurrences. Ito and Matsuzaki (1990) compared the time
distribution of events in a two-dimensional Burridge-Knopoff cellular automaton model with the
Omori law and indicated that the model response could approximate the Omori law if the
manner in which the events were defined was modified. Thresholds of frictional force were
introduced that defined the start and the end of an event. Any subsequent increase in force over
the initiation threshold was considered to be an aftershock. Thus, in numerical models, the
event statistics and size, space and time distributions depend on the way that events are
defined.

(a) 18
E 18 | Mining rate: 1m/day i
§ " | |—Depth 2200m :
| | %
g _ 14 {|..--Depth: 3700m
.5 E 1214 : | !
° 2 . §o1 8
8= Y : !
o = i g
E E 0.8 1 | !
-= 06 1 g i i :
g€ : I
g %1 4 3 & & :
1 2 3 4 5 6 7 8 8 10 11 12

0
Days
Figure 3.2.2 Energy release rate for a mine stope analysis (Napier and Malan, 1997).

Evena and Ben-Zion (1997) evaluated numerical seismicity as generated with a model of a fault
segment 70km long by 17.5 km deep, using 550m long elements. They used pattern recognition
algorithms to assess the generation of seismicity in terms of spatial randomness, correlation
dimension, repetitiveness, average depth, time interval for recurrence of a constant number of
events and the ratio of numbers of events in two magnitude ranges.
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Figure 3.2.3 Effect of fault rheology on slip distribution through time (Cochard and
Madariaga, 1996)

The importance of applying the correct constitutive relation on the slip plane is illustrated in
Figure 3.2.3. The model in Figure 3.2.3a uses a rate independent model and slip events occur
once and then no further relaxation is allowed. The Model in Figure 3.2.3 uses a visco-plastic
rheological model and demonstrates a number of slip events extending across the fault plane
subsequent to each initial slip.

3.3. Clustering in space and time

The term “clustering” as applied to seismic phenomena corresponds to the property of seismic
events to form distinguishable groups according to some criterion. A seismic cluster is a group
of seismic events formed in the above sense. It is obvious that specifying of clustering criterion
or criteria is crucial for cluster identification within a given seismic catalogue. A clustering
criterion must lead to a metric relationship (distance or a sense of closeness) between any pair
of seismic events. Here are some examples to illustrate this idea:

1. Temporal seismic clusters: the grouping criterion is based on the time interval between two
events. Another way of defining temporal seismic clusters is by the time interval between an
event and a fixed moment of time. When the additional criterion of causal relationship
between the events is added to the time-clustering criterion one arrives at the idea of fore-
shocks and after-shocks as a typical example of clustering in time.

2. Spatial seismic clusters: the criterion is the Euclidean distance between the locations of the
events. This is the most intuitively acceptable idea of clustering because the clusters are
groups of seismic events swarmed together in physical space.

3. Clustering in size: the criterion is the absolute value of the difference between the size of
any two events. Since the size of a seismic event cannot be uniquely specified by a single
number there are different criteria by which one could identify seismic size clusters.

4. Spatio-temporal clusters: the criterion is the simultaneous fulfiiment of the requirement for
closeness in Euclidean space and for a short time-interval between a pair of seismic events.
The importance of the identification and analysis of spatio-temporal seismic clusters lies in
the possibility of revealing a causal relationship between some events.

5. Projective spatial clusters: the criterion is a weakened spatial closeness condition applied to
the projections of the locations of seismic events on some plane or line.

3.3.1. Cluster identification: connected clusters

Cluster identification is the procedure whereby a seismic catalogue is subdivided into individual
seismic clusters.

Selecting a clustering criterion is only the first step towards cluster identification. The criterion
has to be applied in order to decide whether an event belongs to a cluster and if it does to
which particular cluster it has to be assigned. This procedure is not unique. To specify the
clustering criterion means to define the distance between events. The cluster identification
procedure is a specific way of using this distance. The simplest and intuitively most acceptable
cluster-identification idea is the search for connected groups of seismic events. Connected
groups of seismic events or connected clusters are defined through the definition of a
connected pair of seismic events. Two seismic events are said to be connected if the distance
between their locations is less than some chosen value - the connectivity range. The choice of
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the connectivity range depends on the concrete situation and could be related to the error in
determining the locations of seismic events. The algorithm for the identification of connected
clusters can be derived inductively from the following statement: Given are a connected cluster
and a seismic event. The event belongs to the cluster if it is within the connectivity range of at
least one of the events already assigned to the cluster.

The separation of a seismic catalogue into connected clusters strongly depends on the choice
of the connectivity range: if it is chosen too small there will be many separate clusters of one or
two events each; if the connectivity range is too big then there will be only a few very big
connected clusters and, in the extreme case, the whole catalogue will be one cluster. The whole
idea of the cluster analysis is to reveal some patterns in the local seismicity or some structural
features of the rock mass. Therefore the two extreme cases: each event - a cluster and all
events - one cluster are equally uninformative. Choosing the best value for the connectivity
range is not a simple task and strongly depends on the local seismicity, the properties of the
seismic system, the geological structures etc.

3.3.2. Cluster analysis of model-generated data

The numerical models capable of simulating seismic activity invariably use some form of spatial
discretization hence they possess some fixed length scale. This simplifies the choice of a
connectivity range when the objective is an analysis of the clustering in space of some set of
model-generated seismic data. The natural choice of the connectivity range in this case is some
multiple of the discretization length of the model. For instance, if the model is three-dimensional
and uses some subdivision of the volume of interest into non-intersecting tetrahedral elements,
the connectivity range could be taken as the maximum distance between the centroids of
adjacent tetrahedra. The same choice of connectivity range will be appropriate for clustering
analysis of the projections of seismic events’ locations on a fixed plane.

3.3.3. Quantitative analysis of spatial seismic clusters

An important component of the cluster analysis of seismic data (either real or model-generated)
is the quantification of every individual connected cluster. The simplest quantity which can be
associated with a cluster is its “mass” or weighted sum of the events which make the cluster.
The weights can be chosen according to the size of the events or set to unity for all events in
the cluster. Clusters can have a different shape and location and the problem of associating
numerical characteristics with these features does not have a unique solution. One possible
way of quantifying spatial seismic clusters is to embed each cluster in its best-fitting ellipsoid (or
ellipse in two dimensions). In the three-dimensional case the numerical characteristics of a
cluster will be:

» the position of the centroid of the ellipsoid

« the lengths of the three main axes of the ellipsoid

e the unit vector along the principle axis of the ellipsoid.

The characteristics of two-dimensional clusters are defined in the same way:
» the position of the centroid of the ellipse
» the lengths of the two main axes of the ellipse
< the unit vector along the principle axis of the ellipse.

The procedure for computing the above characteristics in the three dimensional case may read
as follows:

* Preliminary step: the given seismic catalogue is decomposed into several connected
clusters and, perhaps, a number of diffuse events which cannot be assigned to a cluster for
the chosen value of the connectivity range. If it turns out that the catalogue contains
connected clusters one can proceed with the quantification of the individual clusters.
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¢ Finding the centroid of a cluster: If the singled-out cluster contains N elements (seismic
events) located at P;= (x;, y;, z), i = 1,2,...N, the centroid of the cluster is at Pc = (Xc, V¢, Zc)
where the coordinates are computed as the centre of gravity of material points of “mass” w;
atP..

i=1N
The weights can be correlated to the size of the events or alternatively all weights could be
set equal to unity.

» Determining the principle axis of the cluster: Measure the distance of each event-point P; to
the centroid of the cluster and single out the point Py which is furthest from the centroid.
Then the length of the principle axis of the cluster ellipsoid is equal to the length of the
vector (Px - Pc) and the unit vector along the principle axis is collinear with (Py - Pc).

» Determining the secondary axis of the ellipsoid: Measure the distances of all points of the
cluster to the line of the principle axis. Single out the point P, which is the furthest from the
line of the principle axis. Then the vector (P, - P¢) determines the secondary axis of the
ellipsoid.

« Determining the third axis of the ellipsoid and the corresponding length: calculate the cross-
product of the unit vectors of the principle and the secondary axis. The result is the unit
vector if the third axis of the cluster ellipsoid. Measure the distances of all points in the
cluster to the line of the third axis and determine the point P, for which this distance is
maximum.

Special cases:

< spherical clusters: for which the three axes have approximately the same length

e a pancake-shaped cluster: two of the axes are of approximately the same length while the
third is much smaller

» acigar-shaped cluster: the secondary and the tertiary axes of the ellipsoid are
approximately equal and much smaller than the principle axis.

The procedure described above has a straightforward adaptation to the two-dimensional case.

3.3.4. Analysis of a set of clusters

Consider a catalogue of the local seismicity in an area of interest for a given period of time. By
applying the cluster identification procedure the catalogue is decomposed into a set of
connected clusters. The mass and the shape characteristics of each cluster are evaluated
according to the above formulated rules. The next step is to study the distribution of the clusters
according to one or more of the cluster characteristics. The spatial distribution of the centroids
of the clusters can be related to the locations of stress concentrations and seismogenic
geological structures. Additional information about the seismogenic structures can be extracted
from the orientation of the principle axes of the cluster ellipsoids. The temporal evolution of
spatial seismic clusters can be related to the local mining activity and can specify the input to
numerical models which is one of the form of integration of modelling with monitoring.
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The simplest means of evaluating the spatial distribution of seismicity is to plot the data on mine
plans with the size of the symbol being proportional to some parameter obtained from the
seismic event e.g. magnitude or moment. This does not allow for evaluation of the patterns.

The application of numerical or analytical models based on the theory of elasticity led to the
development of parameters based on stress or strain measures that could be used to indicate
the spatial variability of seismicity.

McCreary et al. (1993) suggest that reasonable estimates of seismic potential could be obtained
at the Ansil Mine in Canada by consideration of modelled principal stresses. A three-
dimensional boundary element code was used to model the mine layout. Known seismic events
were plotted along with the principal stress contours. The seismicity correlated to regions in
which the principal stress was greater than 55 MPa and less than 80 MPa. Regions with a
principal stress greater than 80 MPa did not exhibit seismicity and were considered to have
failed completely. McCreary et al. (1993) commented that parameters such as the principal
stress change due to mining, the stress difference and the extension strain should also be
considered. Bek et al. (1996) noted that the majority of events in a deep copper mine lay on pre-
existing fault planes. They plotted the stresses at each event location, obtained from an elastic
model, in the Mohr Coulomb space, to obtain an estimate of the elastic stresses at which the
events were occurring. They stressed the need for inelastic models to be able to address the
issue of path dependence of rock failure on the evolution of seismicity.

The excess shear stress ESS can be defined as the shear stress acting on an existing or
potential plane in excess of the dynamic rupture strength (Ryder, 1988). Reasonable estimates
of seismic event magnitude were obtained by Ozbay et al. (1993) and Webber (1990) using the
MINSIM-D program and considering the modelled ride on a plane of potential failure below the
stope. The integral of the ride over the expected area of slip was used to calculate an equivalent
seismic moment. Seismic location accuracy must also be considered when comparing the
predictions of numerical modelling with actual seismic event locations (Webber, 1990). The
extension to three dimensions can be made by considering the volume excess shear stress
VESS (Spottiswoode, 1990). Comparison with seismic events in mines indicates that the
maximum VESS corresponds to regions of high seismicity and that the maximum event
magnitudes can be related to the maximum VESS. The importance of explicitly including the co-
seismic strain changes to model inelastic response is stressed by Spottiswoode (1990).

The energy release rate ERR is defined as the amount of strain energy released per unit area of
mining. The ERR can be related to the volume of closure. Minney and Naismith (1993)
attempted to match the rate of change of stored energy with the seismicity from mining a
remnant pillar. They noted, however, that the elastic models were only useful in hindsight for
understanding the sequence of seismic events. A method to introduce inelastic response by
limiting the maximum stress carried by pillars and the rock mass ahead of the face produced
better correlations between the ERR and the locations of events (Spottiswoode, 1997)

McGarr (1976) proposed that a link between seismicity and the area that had been mined out
could be obtained through the relationship

M, =y G AV

where M, is the cumulative seismic moment, G, is the shear modulus and AV is the volume
of closure in the stope. The dimensionless parameter y is determined from back analysis of
mine seismic data (Milev and Spottiswoode, 1997) for a particular region.

In models where the fault zones are treated explicitly, the frictional properties affect the space
and time distributions of slip (Cochard and Madariaga, 1996, Tse and Rice, 1986). Plots of slip,
or stress drop against position on the fault for various time contours can provide insight into the
space-time correlation of events for different parameter ranges.
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A series of tests to investigate clustering in the particle flow code (PFC3D) were performed by
(Hazzard, 1999). The numerical models were compared against physical laboratory
experiments. The model used in a test with uniaxial loading of a cylinder is shown in Figure
3.3.1a. The plot of events occurring immediately after failure is shown in Figure 3.3.1b and
indicates how the events are clustered along a single failure plane.

Figure 3.3.1 Cylindrical PFC3D sample (Hazzard, 1999) showing a) cutaway view of
sample and b) localisation and clustering of events along final plane immediately after
failure.

Hazzard (1999) also performed a series of tests on a square sample to investigate the effect of
the parameters of a proposed clustering algorithm. The sample and final set of event clusters
are shown in Figure3.3.2. As shown in Figure 3.3.3, the size distribution depends on the stress
path applied to the model. Test | considered hydrostatic compression followed by compression
of one side of the cube to failure. Test || was an extension test, where the stress on one side
was relieved until the sample failed. Figure 3.3.4 and 3.3.5 show that the cluster size also
depends on the choice of the space and time windows in the clustering algorithm.

Figure 3.3.2 a) Square PFC3D sample for loading in compression or extension (test Il)
clusters recorded prior to failure in Test I. b) Clusters of events for tests | (Hazzard,
1999).
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Figure 3.3.3. Frequency-magnitude plots for two tests with different stress paths. Test |
is a compression tests and test Il is an extension test. (Hazzard, 1999).
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Figure 3.3.4. Comparison of frequency-magnitude plots for events with different space
windows. The value of R, in particle diameters is shown on each curve. (Hazzard, 1999).
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Figure 3.3.5. Comparison of frequency-magnitude plots with different time windows (Te).
The value of Te in us is shown on each curve. The radius of the space window (Re) is 5
particles diameters in each case (Hazzard, 1999).

3.3.5. Modelling with IDRM

The methods of cluster identification and quantification have been applied to the analysis of
model-generated data about instabilities in rock-mass under loading. The numerical model
(which is named IDRM for Integrated Damage Rheology Model) implements the fundamental
equations of continuum mechanics with damage rheology. A set of self-consistent equations
describe the evolution of the physical state of a given volume of rock for certain initial
distribution of the stress tensor and under prescribed boundary conditions. The state of damage
of the material is described by a scalar variable which takes its values in the interval [0,1]. The
material properties and, in particular, the elastic modulae depend on the local state of damage.
The material response to loading is non-linear and is governed by the density of the elastic
potential energy (in the iso-thermal case). The numerical algorithm implements a finite-
difference FLAC-like procedure for describing the distribution of the deformations within the
volume of interest. The model does not postulate empirical constitutive relations but re-
calculates the stress-field directly from the Helmholtz free energy of the physical system. Since
the numerical procedure is based on equations of motion, the model solves a forward problem
in the actual, physical time and hence is perfectly suitable for integrating with real seismic data.
The model-generated seismic events correspond to local loss of stability (the local density of the
free energy loses its convexity) or damage above the critical level. The loss of stability and
consequently the failure in elements is associated with stress-redistribution which affects the
entire volume and can cause failure in other elements in which the level of damage happened to
be just under the critical value. Thus a single record in the model-generated data stream refers
to a particular moment of time and a number of elements which have failed simultaneously at
this time are not necessarily connected in a spatial cluster. A further processing of the data
generated by the IDR is required in order to separate seismic events (connected clusters of
elements which were failed by the model at the same moment of time) from the acoustic noise
(diffuse set of simultaneously failed elements which do not belong to connected clusters).

Once the actual model-generated seismic events are separated from the acoustic noise, one

can proceed to write a seismic catalogue of modelled data. Such a catalogue can in turn be
analysed by means of the technique for identifying and quantifying connected clusters either in
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real space (spatial seismic clusters) or in any other abstract space of the modelled observables.
In this report we shall restrict ourselves to spatial clustering of seismic data generated by means
of the IDRM model. Correlations will be sought between spatial clusters and the distribution of
stress, damage, damage rate and other relevant quantities.

The model was set for a prismatic volume of rock just under the mining face of section 336 ,
TauTona mine. The initial distribution of stress was produced by MAP3D. Since the objective of
the study is the clustering of data in Euclidean space, no change of loading due to advance of
the face was considered. A seismic catalogue of real events which is available for the area was
used as an additional input to IDRM which constitutes a de facto integration of numerical
modelling with seismic monitoring.

Stage 1 involves the separation of IDRM-generated seismic events from the acoustic noise. A
typical set of simultaneously failed elements is shown on Fig.3.3.6.

Figure 3.3.6. All IDRM elements which failed at t=-55083.9 sec (the model was started at t,
=-148000.0 sec). The spheres are at the centroids of the failed tetrahedral elements.
Some spheres which could be wide apart can look close together in this projection.

The procedure for identifying connected cluster was applied for the set of failed tetrahedra
shown in Fig.3.3.6. The connectivity range was chosen as 1.5 times the minimum distance
between tetrahedral nodes for the whole grid. Groups of less than three connected failed
tetrahedra were not considered as clusters but were assigned to the acoustic noise instead.

It turned out that the above set of failed elements contains only two connected clusters (for the
chosen connectivity range) and the reminder of the IDR event contributes to the acoustic noise.
The two connected clusters (the model-analogue of seismic events) are shown on Fig. 3.3.7a
and Fig. 3.3.7b respectively.
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Figure 3.3.7b.

In a subsequent analysis, the model was run through about 40 hours of real time (considerably
less in computer time because of an adaptive inertial mass re-scaling). The total number of
failed elements for this simulation was 21371 but the number of seismic events (connected
clusters of simultaneously failed elements) turned out to be just 111, the number of elements in
a cluster ranging from 3 to 12. The clusters varied in shape as well. A cluster of 10 elements is
shown on Fig 3.3.8 from two different viewpoints: in the plane of the principal and the secondary
axes (Fig. 3.3.8 a) and in the plane of the principal and the tertiary axes of the cluster-ellipsoid
(Fig. 3.3.8 b) This particular IDR cluster can be interpreted as a planar seismic event. Indeed, 9
of the 10 elements in this cluster are coplanar as it can be seen from Fig. 3.3.8 a.
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Figure 3.3.8. Connected cluster number 63 (of 111) from two different viewpoints: a) In
the plane of the principle and the secondary axis; b) in the plane of the principle and the

tertiary axis

Stage 2: cluster analysis of IDRM-generated seismic events begins once the model-generated
seismic events have been identified (in Stage 1). One can apply a connected-cluster
identification procedure on the whole catalogue of IDRM-events or to parts of it, corresponding
to shorter time intervals. This would correspond to the observed clustering of events that are
associated with the swarming of model-generated seismic events near the base of the pillar and
under the active face of section 336, TauTona mine are shown on Fig. 3.3.9-3.3.11. Fig. 3.3.9
represents the data from the first 20000 sec. (Physical time) of simulations. Fig. 3.3.10 and Fig.
3.3.11 correspond to the subsequent periods of 20000 sec. each. The first of these intervals
begins with the start of the model and thus bears the mark of a certain transient period. This
explains the lower level of seismicity in the first of the three figures.
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Figure 3.3.11. IDR-generated events during the third 20000 sec period.

Finally, the cumulative plot of all IDR-generated events for this simulation is shown in Fig. 3.3.12
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Figure 3.3.12. All IDRM-generated seismic events (about 35 hours of real time).

The spatial clustering of model-generated seismic events depends on the choice of the
connectivity range and on the threshold separating seismic events from acoustic noise. These
parameters have an obvious importance for calibration purposes when model-generated data is
compared with the records from the local seismic monitoring network.

Another factor which affects the results of the cluster analysis of model-generated data is the
geometry of the spatial discretization. Quite apart from the obvious dependence on the grid size
(which simply limits the resolution power of the model) there is a more subtle dependence on
the aspect ratios of the elements of the grid (local factors) as well as on any anisotropies of the
mesh as a whole: i.e. privileged planes and/or directions. The effect of these factors can be
assessed and eliminated by running the model for several different grid sizes. A preliminary
analysis shows that the results produced by IDR are not very sensitive to the distribution of the
aspect ratios of individual tetrahedral elements but could be affected by the presence of
privileged planes in the three-dimensional grid. In order to eliminate this effect a new meshing
algorithm was developed which randomises the grid and improves the quality of individual
tetrahedra at the same time.

Modelling with DIGS

Slip weakening and tension weakening laws have been included in the DIGS code to try to
reduce grid size effects in the simulation of random crack assembly failure. This model has also
been extended to allow time-dependent cohesion and friction weakening. A problem of concern
in simulating seismic activity, using random crack assemblies, is the identification of seismic
event clusters. A simple test run in which a parallel sided stope is mined up to a span of 96m,
using face advance steps of 2m, was carried out to attempt to gain some insight into the spatial
positions of fracture clusters. In this analysis, the time and mean position of failure of each
element in the random mesh was recorded. Figure 3.3.13 displays a plot of the normal distance
to the reef plane at the time of failure of each element. This shows the dispersion of failure away
from the reef plane as mining proceeds. It is also interesting to observe certain organised failure
trajectories curving away from the reef plane as time advances. These paths correspond to
fractures initiating at the stope face and then growing away from the stope horizon. Figure
3.3.14 shows a second plot in which the horizontal position of failure is plotted against time. It is
apparent from this plot that failure generally follows the stope face position. (The stope face
advance of 2m is assumed to occur after every 20 time step intervals). Coherent groups of
points in Figure 3.3.14, for which the distance decreases as time increases, correspond to the
same crack elements that form the associated point groups in Figure 3.1.13 and show that
these cracks grow backwards over the mined region and away from the stope face. The group
of points occurring near the relative horizontal position of 12m, corresponds to ongoing failure at

109



the “passive” end of the advancing stope panel. The analysis presented here is a first step
towards formulating a procedure to identify the link between temporal and spatial clustering of
failure sites. However, the results show that in this model very few fractures initiate ahead of the
stope face. It is still uncertain how to identify the participating crack elements in a particular
seismic “event”. Effects of random or selective material strength orientations would also affect
the analysis.
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Figure 3.3.13 Failure initiation position normal to the reef plane as a function of time. 20
time step intervals occur between each face advance increment of 2m.
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Figure 3.3.14 Relative horizontal position of element failure as a function of time.
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3.4. Migration of Seismicity

Studies carried out in this project have established that a number of simulations of mining
induced seismic behaviour lead to exponential frequency-magnitude distributions of the number
of events and their moment or magnitude. In these cases it has been found that the
displacement discontinuity boundary element method (DDM) is an effective tool for the
representation of random discontinuity assemblies or slip on a fault with random strength
properties. It is noted, however, that an important feature of observed seismic behaviour in deep
level mining is the migration of seismic activity along geological structures as a function of time.

In order to gain some initial insight into the representation of this phenomenon with the DDM, a
simple mining geometry was considered. In this case, a rectangular shaped, horizontal stope,
with dimensions of 400m by 190m, was analysed adjacent to a vertical fault plane situated 10m
from the long axis of the stope. Four 50m by 10m rectangular segments of the effective pillar
between the stope and the fault plane were then removed in successive steps, starting from one
edge of the stope. Following each mining stage, the fault was allowed to slip according to a
“creep” rule specifying that the rate of creep is proportional to the net shear stress acting across
the fault. An important feature of the simulation is that all elements of the fault plane are initially
intact. During each time step, the shear stress is computed at each fault plane element. If the
specified fault strength is not exceeded no slip is allowed. If the strength is exceeded, the fault
element is mobilised and is permitted to slip by an amount proportional to the net driving shear
stress. The number of time steps between each pillar removal stage is nominally set to 20 or 25
time units.

Figure 3.4.1 shows the successive areas on the fault that are mobilised in each of the four
mining stages. In the first stage, where the bracket pillar is removed in the region 0 to 50m from
the left hand edge of the fault, it can be seen that an approximately rectangular patch of the
fault, with area 50m by 40m, is mobilised. However, as successive portions of the pillar are
removed, it is clear that the slip patch extends both vertically and laterally to the right hand end
of the fault plane. Within each stage it is also observed that the mobilised elements migrate
upwards and towards the right as a function of time. It is also particularly significant that the
bracket pillar does not “insulate” the fault from movement when part of the pillar is removed and
fault-stope intersection is allowed. The results shown in Figure 3.4.1 correspond to the
assumption of uniform Mohr-Coulomb strength properties on the fault. The slip patterns are
found to be similar if random properties are used.

Figure 3.4.2 shows the incremental area mobilised on the fault plane in each time step. Itis
interesting to note the randomness of this time series despite the assumed uniform fault
strength properties. Figure 3.4.3 shows the corresponding energy release increments which
show nearly regular decay rates following each pillar removal step.

It appears that the simple model presented here demonstrates some of the mechanistic
elements of seismic migration or “diffusion” that arise in practice. However, it is necessary to
assess how sensitive this model is to the assumed time-dependent creep law and to compare
results to observed activity.
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Figure 3.4.1. Four successive stages of fault slip corresponding to removal of the bracket
pillar in the regions 0 to 50m, 50m to 100m, 100m to 150m and 150m to 200m
respectively.
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removal stages occur at times 20, 40, 60 and 85.
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Figure 3.4.3 Incremental energy release values corresponding to relaxation of the fault
plane in successive time intervals.

The integration of seismic migration and aftershock activity with numerical modelling requires an
assessment of the capabilities of models to represent observed behaviour. On a smaller scale,
smaller that the stope-fault interaction problem described above, it is necessary to assess
whether models can replicate detailed migration effects following stope face blasting. An initial
simulation of these effects has been carried out by considering the time-dependent formation of
the fracture zone around a mining face. In this case a small region of approximately 10m x 10m
is covered by a random mesh of grid elements and the edge of the stope is simulated as a
rectangular slot adjacent to this region. The height of the slot (stope width) was set to one metre
and fractures were then allowed to activate ahead of the slot. The average mesh element size
was approximately 0.2m. The mesh was assumed to comprise intact elements interspersed with
a population of weak flaws (one in every twenty mesh elements) having no cohesion. Figure
3.4.4 shows the cumulative length of flaws and mesh elements that are activated following the
introduction of the slot adjacent to the mesh area. This displays a decreasing activation rate of
the mesh segments as a function of time. (The model is uncalibrated and the time units have
been omitted deliberately but could be considered to be in hours). To check for migration
effects, the distance of the center of each sequentially activated mesh element from the center
of the stope face was computed and averaged within each time step. This average distance has
been plotted in Figure 3.4.5 as a function of time. Figure 3.4.5 shows that the fracture activation
occurs in a region of approximately 5m radius from the center of the stope face. The graph also
indicates that the locus of fracture activation does not show any clear trend as a function of time
and continues to occur randomly within the 5m radius face region. Figure 3.4.6 shows the time-
dependent trend of the energy release increments that arise within each time step after the
implicit face “blast”. It must be appreciated that this model is extremely simplistic with respect to
the manner in which the loads are applied to the face region as well as the local assumptions
concerning the time-dependent fracture movement constitutive relations. It is therefore essential
to compare this first step with observed data and to refine the face advance procedure.
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Figure 3.4.4 Cumulative fracture length activated after the simulated “blast”.
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Figure 3.4.5 Average distance from the center of the stope face of activated fracture
segments in each time step after the simulated blast.
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Figure 3.4.6 Energy release increments in each time step following the simulated blast.

The Point kernel method has been extended to include viscoplastic discontinuities randomly
distributed throughout space. This will enable the program to consider forward modelling of the
potential for formation and interaction of new seismic events, based on a set on input seismic
events and a known and planned mining layout. As an illustration, a two panel stope model was
mined from a central raise line for 10 mining steps. The element size was 10m and 12 relaxation
time steps were allowed for each mining step. The resulting time sequence of moment releases
is shown in Figure 3.4.7. The figure indicates that events tend to cluster together in space and
time. Migration effects are possibly evident in later mining stages where events are observed to
be induced subsequent to the mining step. Further studies are required to investigate the effects
of geometric, material and rheological properties.
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Figure 3.4.7. Point kernel analysis of stope showing distance of events to stope with time
with magnitude indicated by size of the circles.
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4.Seismic Monitoring: Requirements and Limitations

4.1. Requirements

Location: The location of a seismic event is assumed to be a point within the seismic source
that triggered the set of seismic sites used to locate it. The interpretation of location, if accurate,
depends on the nature of the rupture process at the source - if a slow or weak rupture starts at a
certain point, the closest site(s) may record waves radiated from that very point while others
may only record waves generated later in the rupture process by a higher stress drop patch of
the same source. One needs to be specific in determining the arrival times if the location of
rupture initiation is sought, otherwise the location will be a statistical average of different parts of
the same source.

A reasonably accurate location is important for the following reasons:

e toindicate the location of potential rockbursts;

¢ all subsequent seismological processing, e.g. seismic source parameter and attenuation or
velocity inversion, depends on location;

» all subsequent interpretation of individual events depends on location, e.g. events far from
active mining, close to a shaft or, in general, in places not predicted by numerical modelling,
may raise concern;

» all subsequent interpretation of seismicity, e.g. clustering and specifically localisation around
planes, migration, spatio-temporal gradients of seismic parameters and other patterns are
judged by their location and timing.

Location error depends on the accuracy of the data. Table 4.1 lists the major aspects of the
data and their minimum precision required for accurate location (Mendecki et al. 1999).

The location depends also on the numerical procedure adopted to solve the system of nonlinear
site equations. The denser the network and the more accurate the data, the smaller is the
influence of the numerical procedure. With high quality data from at least 5 sites of reasonable
configuration, the location error may be reduced to less than 3% of the average hypocentral
distance of the sites used.

In the case of the velocity model not being known adequately, or if velocities change
significantly with time, one can attempt to improve the location by the arrival time difference
method, also known as ‘master event’ location or relative location. This procedure requires an
accurately located master event (e.g. blast), in the proximity of the event to be relocated, that
has reliable arrival times at sites used in the relocation procedure. It is inherently assumed here
that the velocities of the seismic waves from the master event to the sites and those from the
target event are the same. Since this is not always the case, it is important that the two events
should be close to each other; less than 10% of average hypocentral distance would be a good
rule of thumb.

In general the accuracy of location should be approximately half of the event size.
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Table 4.1
Parameters Affecting Location Accuracy Recommended
Seismic site = the set of sensors with the same Minimum Precision
co-ordinates

common time among seismic sites in the network 500us

arrivals of P and/or S-waves at site 500us or one sample
P and/or S-wave velocity model 7.5%

site coordinates m

sensors orientation at site, used to constrain the 5 degrees

location by direction(s) or asimuth(s) of recorded
waveforms; also used in seismic moment tensor
determination

number of seismic sites at least5

the distribution of sites with respect to the position of | 0.3
the event to be located, e.g. as measured by the
normalised orthogonality between straight ray paths
from the hypocentre to the sites, QC:

QC =0.3873/ns]det(C)] , where

cos? a; cosa; * cos B cosQa; * COS y;
C=| cosa;*cosp cos? B, COS B; * COS ¥
cosa; * COS J; C0S f3; * COs J; cos?

and a;, B, y; are directional angles between the

hypocentre and the i-th site; )’ runs over the number
of sites, ns.

Static source parameters: A seismic event, at its source, is a sudden inelastic deformation
within a given volume of rock that radiates detectable seismic waves.

The velocity of that deformation varies on average from a few centimetres per second to a few
meters per second, generally being slower within softer rock at lower differential stress. The
average strain change varies from 10*to 10 and stress change can be as low as 10*Pa and as
high as 10®Pa. The source size for small events of magnitude m = -2 would vary between 2 and
4 meters and for larger events of m = 3 could go from 100m, for fast sources in highly stressed,
homogeneous rock to a few hundred meters in low stress, heterogeneous rockmass. The shape
of the source can not be defined routinely and is frequently assumed to be circular or, at best,
rectangular over the fault plane. More sophisticated inversion techniques need to be used to
unravel the complex deformation and/or stress change distribution at the source(s) of seismic
radiation.

Since the definition of the source of a seismic event in numerical models is not unique, one
needs to derive as much useful information from waveforms as possible to constrain the
guesswork.

The following static parameters, apart from the origin time and location, pertaining to seismic

source are considered essential for the purpose of integration with numerical modelling:

+ Scalar seismic moment, M, that measures coseismic inelastic deformation and it is related
to the average slip u over the planar source curve A or to the strain drop Ae or stress drop
Ao at the volume source V,
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M=uuA or M =puleVv =AoV, 411

where | is rigidity. The inclusion of rigidity here may be misleading since linear elastic
waves generated by a slip event have no information on material properties at the source
(Ben-zion, 2001). It is therefore better to replace moment with the observable product,
called seismic potency P,

P=uA or P=A&v. 41.2

» Seismic moment tensor, M, that can be decomposed into isotropic (or volume change) and
deviatoric components providing an additional insight into the nature of the coseismic strain
drop. The eigenvalues and corresponding eigenvalues of the deviatoric component describe
the magnitude and orientation, respectively, of the principal moment axis (neglecting gravity)
acting at the source. These principal moment axes are uniquely determined by moment
tensor inversion (Michael, 1987) and can provide sufficient information to find the best stress
tensor, thus very useful for integration. For homogeneous body, the coseismic volumetric
change, AO, can be calculated from (Aki and Richards, 1980)

£O =tr (M, )/(3A +2p),

where A and y are the Lamé constants.

e Characteristic length, |, associated with the narrowest dimension of the source, which is
inversely proportional to the higher predominant frequency at the velocity spectrum at the
source, fo, also know as the second corner frequency from the displacement spectrum,
| = constant/fo. For a circular source there is one corner frequency and | = 2 x source
radius.

e Stress drop Ao, which is equal to the difference of initial o, and final o, stress values at the
source: Ao =g, — g,. It follows from the linearity of the basic equations that Ac and u must

be proportional to one another, thus

t=c29 pc=M 413

7 clA

where ¢ is a dimensionless constant depending on the shape of the source and for the most
important cases, varies by a factor of two. Thus, if we know M, A and |, the stress drops, Ao,
may be found with a precision better than a factor of, at most, 2. However, in most cases,
only one source size parameter is obtained from waveforms and then stress drop is
approximated by

M
AU:CIA\T, 414

which, for long thin sources may produce errors much larger that a factor of two.

Seismic energy: Seismic energy is defined as the total energy transmitted by seismic waves
through a surface surrounding the source, and as such is inaccessible to the static or quasi
dynamic numerical models used in the South African mining industry. In terms of source
parameters the exact formula is given by Kostrov (1974) and Kostrov and Das (1988),

tCS

0 AW)

where:
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Vs  effective surface energy, which includes the total loss of mechanical energy, in particular
inelastic work, and heat flow from the fracture edge;

A fracture area with the displacement

Ag;  difference between the final (at the end of the event) and the initial stress;
n; unit vector normal to the fracture plane;

tes source duration;

O traction rate.

Summations over repeated indices is assumed.

From dimensional analysis it follows that the last two terms in equation (4.1.5) vary with the
fracture area as A¥> whereas the fracture work, 2y, A, is proportional to A (Kostrov and Das,
1988). Thus, the relative contribution of the fracture work to seismic energy increases with a
decrease in the size of the fracture. Consequently for sufficiently small fractures the first term
may almost cancel the second term, suppressing the acoustic emission so that ‘silent’ fracture
would occur.

The second term in equation (4.1.5) is determined by the static quantities — stress drop and final
slip. The last term, containing the traction rate, strongly depends on how the fracture
propagates and correlates with slip. The faster the oscillations of stress, the greater their
contribution to the radiated energy due to the presence of the time derivative of stress. The
energy due to radiation of high frequency waves during accelerating and decelerating rupture is
called radiational friction. It usually occurs when the moving zone of slip pulse reaches regions
of differing resistance to deformation. If traction rate and slip are uncorrelated the third term will
vanish, and then

E=—— 41.6

In the far field the P and S wave contributions to the total radiated energy are proportional to the
integral of the square of the P and S velocity spectrum. For a reasonable signal to noise ratio in
the bandwidth of frequencies available on both sides of the corner frequency, the determination
of that integral from waveforms recorded by seismic networks is fairly objective.

The high frequency component of seismic radiation needs to be recorded by the seismic system
if a meaningful insight into the stress regime at the source region is to be gained.

Table 4.2 lists the major aspects of data used in source parameter calculations and the
minimum precision required for reasonable results.
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Table 4.2

Parameter Affecting Source Parameter
Calculation

Recommended
Minimum
Precision/Value

calibrated, resonance free frequency range +3dB
Mmax - the maximum magnitude event to be
measured

Mmin - the magnitude that defines sensitivity of the
network

geophone natural frequency

geophone damping factor

fmin =05 f0 (mmax)

fmax =5 fO(mmin)
5%
5%
5%
5%

geophone sensitivity
accelerometer sensitivity
number of sites

5 x 3 component each, or
3 x 3 comp. plus 6 single

comp.
. 5% of AHD
location accuracy > A = wave velocity / f,
hypocentral distance 10
SNR = Anax/pretrigger noise level 7 5%
P and S wave velocities 20%
P and S wave attenuation & scattering Q 10%

rock density at the source

window length for source parameters
T(Amax) - period associated with maximum amplitude 759%
on velocity waveforms

Uncertainties between the observed displacement
spectra, corrected by the average radiation pattern,
and the model.

4-T(Amax)

Quantification of seismicity: Apart from general patterns of seismicity, e.g. size and time
distributions, clustering and migration that have been described earlier, one can quantify the
following seismic components of strain, stress or rheology change in the rockmass:

+ Seismic strain and its rate,

¢ Normalised strain orientation tensor,

» Seismic stress and relative stress,

e Seismic viscosity and stiffness,

e Seismic relaxation time and Deborah number.

Since most routine numerical modelling packages used in the South African mining industry are
static, the radiated seismic energy needed for most of those parameters can only be derived
from

E = &AW, 417

where W is the change in strain energy at the source and £is the seismic efficiency which can
not be obtained by purely seismological observations and needs to be assumed by calibrations.

4.2. Uncertainties

Location: The location uncertainties depend on the following factors:

e The errors in arrival time determination: this source of errors can never be fully eliminated,
since not only are both automatic and human pickers subject to errors but also the effective

sampling rate of the instruments puts a bound on the accuracy of arrival times.
« Inadequate knowledge of the velocity model.
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¢ |naccuracy in the station coordinates.

« The method of solution: if the system is linearised a different location error will be found than
if a nonlinear minimisation technique is used. The applied norm used will also play a role in
the location error.

« The spatial distribution of stations with respect to the event to be located.

The estimate of the uncertainty depends on the method used to solve the system of station
equations. If the location algorithm resorts to solving the linearised system, say

r = Ax 421

where r is the vector of residuals, A is the matrix of derivatives and x is the vector of origin time
and hypocenter corrections, then the covariance matrix can be calculated by

C=c2(A"A)(ATA)TTT, 422

where a§ is an estimate of the data variance, usually based on the variance of the fit to the

arrival times (residuals). Individual uncertainties are simply the square root of the corresponding
diagonal elements of C. The covariance matrix can be used to estimate confidence regions,
which is usually a 4-dimensional ellipsoid using

(X =%0) C,. (X = %o) = k2, 423
where k? =mg3[F(m,n-m)]/(n -m),

where m is the number of unknowns, in this case 4, n is the number of equations and F is the F-
statistic at a given confidence level. This type of estimate does not take into account errors in
the velocity model, so that actual errors will generally exceed this estimate.

If a nonlinear programming method, e.g. Nelder-Mead algorithm, is used to solve the system of
station equations, then there is no information on errors associated with the solution. In their
original paper, Nelder and Mead (1965) pointed out that such errors could be evaluated by
adding a few selected points and generating the Hessian matrix. The error estimation
associated with the nonlinear method is performed using the standard approach, which entails
calculations of the travel time derivatives with respect to the hypocentral parameters.
Confidence ellipses are computed via:

(h=h)Y'Cc'(h-h)<k? 424

Where h is the estimated hypocentre, C is the covariance matrix associated with the matrix of
the partial derivatives evaluated at the estimated hypocentre. The value of k, depends upon the
distribution of the residuals, usually assumed to be normally distributed. Under the assumption
that picking and velocity model errors are normally distributed, Flinn (1965) proposed the
following formula for k:

k2 =4s’F,(4,n-4) 425

where F,(4, n —4) is an F statistic with 4 and n-4 degrees of freedom for the critical level a and

n %
o 1 (17 426
(n—=4)(n,,
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where n is the number of observations and r; =t -t .

The confidence ellipsoids that are calculated using this relation may be unrealistically large in
the case of a small number of observations (Evernden, 1969). Jordan and Sverdrup (1981)
suggested a modification in this relation by taking into account a priori information on the
residual distribution:

20~ —
2= AT =D 4k 1n-4) 4.2.7
K+(n-4)
where K is the parameter that controls the amount of a priori information. For K = 0 Flinn’s
relation is retained, while for K = «, it is assumed that there is exact a priori information. Jordan
and Sverdrup (1981) recommended a value of K = 8 (Thurber and Rabinowitz, 2000).

Source parameters: Seismic source parameters are often estimated from the velocity and
displacement power spectra (Andrew, 1986) with corrections for the effect of the bandwidth
limitations (Di Bona and Rovelli, 1988, Mendecki and Niewiadomski, 1997).

The power spectra approach does not use the objective function, consequently no information
regarding the resolution of the parameters can be obtained directly from the inversion process.
One may then use the conventional statistical testing to estimate the confidence intervals for the
parameters. Extent of confidence intervals is controlled by the shape of the probability
distributions function. A possible way to estimate the distribution of parameters is by using
bootstrapping techniques, whereby repeated samples are drawn from the data enabling a
distribution to be built up and to construct confidence regions. This type of simulation required to
generate large numbers of the replicate time series and inversions. The method is suitable in all
cases, where usage of CPU time is not an issue.

The alternative approach is to assume the shape of the probability distribution and then
estimate the mean, variance and covariance matrix.

The computational advantage is that the estimation of statistical moments required far fewer
replicated time series than that needed to reconstruct the probability distribution function.

The whole data set has to be divided into several subgroups to generate the replicated time
series. There are several possibilities for selecting subgroups:

» Application different techniques of selection P-wave and S-wave windows

* Resampling of original data

¢ Using different station combinations (N-1 in rotation)

¢ Resampling in the frequency domain

Power spectra are then calculated for each subgroup. The data for each subgroup are chosen
arbitrarily, therefore one can calculate the variations of source parameters for every event.

The uncertainties of measured quantities are often produced from many factors which contribute
to the final statistical error. There are two ways of combining individual errors in the final
uncertainty of a measured quantity: additive and multiplicative. It is a rigorous result from the
mathematical theory of probability that the additive combination of similarly distributed errors
leads to a normal (or Gaussian) distribution while a multiplicative combination of component-
errors leads to a log-normal distribution of the final uncertainly of the measured quantity.

The normal distribution of a random x is characterised by two parameters, y and o, in terms of
which the corresponding probability density function is given by:
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The mean value and the variance of the normal distribution are given by u and o° respectively.

The log-normal distribution can be defined by means of the normal in the following way: an
random variable, X, is said to obey the log-normal distribution if log(x) is found to obey the
normal distribution. Using the same parameters p and ¢ to describe the log-normal distribution,
one can write the corresponding probability density function, mean value and variance as:

( (Inx = p)* ,u)z\ <>0

4.2.9

flog nor(x ,U, 0_\/_

L 0 x<0
<x >=exp(u +0.50?)

var(x) = (% —1)exp(2u + o?)

The errors associated with seismic moment M and the source size, |, are assumed to be log-
normally distributed (Archuleta et al. 1982, Flatcher et al. 1987). The error associated with
seismic energy was assumed to be normally distributed.

Seismicity parameters: Once we have the uncertainties in the fundamental seismic
parameters - time, t, location, X, radiated seismic energy, E, and scalar seismic moment, M - we
can estimate the errors in quantities that are derived from these. These other forms are either
microscopic, in the sense that the quantity is computed on a single-event basis, like apparent
volume or apparent stress drop, or macroscopic quantities computed for a collection of seismic
events within some volume of interest, like seismic Schmidt number or diffusion.

In what will follow we shall assume that the underlying probability density functions (pdf's) of the
estimated seismic parameters are Gaussian, with the variances directly related to the standard
deviations. This assumption can only be tested accurately by a time sequence of identical
fractures occurring at exactly the same point in space, something that does not occur in nature.
Nevertheless the central limit theorem dictates this to be a reasonable default assumption.

If the standard deviations of the underlying seismic quantities are small compared to the
quantities themselves, then a simple analytic approximation may be used. For some function of
the directly estimated underlying seismic quantities from some catalogue, we have a straight-
forward expression for the error of F(t;, X;, E;, M,) that parameter in terms of the underlying

errors:
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4.3. Limitations

The fundamental limitation of seismic monitoring is our limited understanding of the deformation
and radiation processes at seismic sources and the inability to recover all useful information
from recorded waveforms. Specifically, larger seismic events in mines have proven to be
complex rather than simple fracture-like sources with multiple subevents and non-uniform
distribution of inelastic strain or slip, e.g. see Figure 4.1 after Cichowicz, 2001.
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Figure 4.1a Waveforms of a complex seismic event of m = 3 recorded
at distance of 420m from the source. In this relatively homogeneous
medium complexity of waveforms is caused mainly by the complexity
of the source.
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Figure 4.1b Source time function of the event above obtained from
the moment tensor inversion in time domain. Amplitudes are
normalised to 1.

The same limited understanding applies to seismic processes leading to rockbursts where
certain recognisable spatio-temporal patterns exist only over a limited time period after which a
dynamical reorganisation occurs that leads to the appearance of a new but still temporary
pattern of events. The nature of the processes responsible for this complex dynamic is not as
yet understood and it severely limits the predictability of rockmass response to mining by either
the numerical modelling or seismic monitoring techniques. Specifically important is to
understand the spatio-temporal mechanics of an extended system and to distinguish its
characteristic time and length scales associated with processes of excitation, dissipation and
correlation. It is the ratios of these times and lengths to each other and to the characteristic
system size that determines the state of the dynamics and the extent of the influence between
the different points of the system.
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In general we cannot claim to understand a phenomenon unless we can prescribe a rule, e.g.
an equation or a computerised algorithm, that allows us to say something about the future
behaviour of a system, given information about its present state.
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5. General issues and future developments

5.1. Validation of model representations of seismicity

Validation and verification are terms that are often applied in numerical modelling to describe
the process of determining whether the results of the model are reliable and can be used for
making predictions. Oreskes et al. (1994) present a philosophical discussion on the
application and reliability of models. They consider that the term “verification” implies that the
“truth” of the model has been demonstrated. They argue that it is impossible to demonstrate
“truth” in the context of a numerical model. The individual mathematical components or
computational algorithms may be verified as they are part of a closed system, in which each
part is well defined and hence the correctness of the result can be proven, or verified. In
contrast, models are an incomplete representation of an open system. They require input
parameters that may not be well defined or known, and there is a loss of information
regarding the system due to a choice of the scale at which the system is described.

Validation is considered by Oreskes et al. (1994) to mean the process of ensuring that there
are no errors of logic or detectable flaws within a computer program. A model cannot be
validated in this sense, as the results depend on the input parameters and hypotheses.
They present a number of cases that indicate that the general usage of the two words is
inconsistent, and usually are both meant to suggest that the model can represent reality. A
comparison of the model results with in-situ or laboratory tests data is still not sufficient to
validate the model. They note that comparison of the results of a numerical model with an
analytical solution can show that the program is verified in a limited sense, but does not say
anything about the ability of the model to describe reality or to provide correct predictions in
other situations. In a similar manner, calibration of the model to conform to a set of observed
data is still not a guarantee that the model predictions will be relevant in other
circumstances.

The usefulness of models is not however questioned by Oreskes et al. (1994). Models can
be applied to provide additional information regarding the consequences of hypotheses.
They can be used for sensitivity analyses to understand the relationships between the input
parameters and the outputs and to define requirements for new empirical data. Comparison
with other models can highlight shortcomings in different hypotheses. Alternatively, the
model may be used for prediction into the future, as long as relevant changes are made to
the input parameters over the considered time period.

Oreskes et al. (1994) consider that the “main reason for modelling is the lack of full access in
time or space, to the phenomena of interest.” This view can be challenged by asking if the
purpose of the model is in fact not to be a replica of the real system, but is instead a
distillation of the important features. Then, the usefulness of the model is that the system
can be understood, and predictions made, without the complications of unnecessary detail. If
this view is taken, the validation must be the process of ensuring that the output reflects the
main features of the system.

In the context of the modelling of seismic patterns, Ben-Zion and Rice (1993) consider that
the reproduction of a Gutenberg-Richter power law with a b-value of 1 is not a sufficient
condition for concluding that the model correctly represents real seismic data. The
correctness of the model should be determined by its ability to model observed deviations
from the power law. In many models, the b-value is observed to remain invariant regardless
of chaotic response in the time series of events resulting from small changes to the input
parameters (Robinson and Benites, 1995). The value of b = 1 is a nearly universal outcome
of self organised models (Robinson and Benites, 1995) and can be obtained from boundary
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element based discrete fault plane models (Eneva and Ben-Zion, 1993), cellular automata
(Wilson et al, 1996), spring slider models (Shaw, 1995), particle models (Hazzard, 1998),
and even continuum models, assuming that the elements have a random strength
distribution.

The essential element for prediction of power law response is that there is some type of
randomness in the input parameters (Ben-Zion, 1993, Evena and Ben-Zion, 1995, Wilson et
al. 1996, Rundle and Klein, 1993, Rundle, 1988, Lyakovsky et al, 1998). The randomness
results in self organisation and scaling behaviour. Uniform or uncorrelated properties lead to
characteristic events that relate to a specific size. The number of size scales represented in
the model can also change the response from scaling to characteristic size events (Ben-
Zion, 1998). A wider range of scales is needed to develop a power law output. Alternative
effects such as dynamics and conservation parameters can also change the event statistics,
even in the same model. The inclusion of inertial dynamics does not necessarily lead to
complexity. Strong heterogeneities, or special friction laws are also needed.

The event statistics may also depend on the space-time window that is used to observe the
events (Ben-Zion and Lyakovsky, 1999, Hazzard, 1998). The model must also be relevant to
the physical situation (Sammis et al, 1999). Thus, a model of a crack in an elastic half space
produces extremely high stress drops compares to events observed in a creeping fault zone
at Parkfield U.S.A.

A number of problems arise in comparing numerically generated seismicity with observed
data (Evena and Ben-Zion, 1997, Rundle, 1988). There is considerable non-uniqueness in
the representation of seismicity by numerical models, as well as non-universality in
earthquake models. Models should be constrained by comparison with geological and
seismological data. The degree of predictability varies depending on the choice of the
properties of the numerical fault. The relative performance of different models varies when
measured against different seismic parameters. Precursory or long-term trends vary from
model to model. Finally, all models may vary from the observed data, but the amount of
correlation may be optimised for certain models. Thus, there is a considerable degree of
subjectivity and non-uniqueness in the selection of the modelled seismicity.

5.2. Definition of a seismic event in the context of a
particular model

5.2.1. Quasi-static Boundary Element Tessellation/space filling
codes

* The incremental moment, Mo, for each element is computed and summed for the whole
crack assembly. This is easy to apply and considers larger clusters but the definition of a
cluster is a problem. As shown in Figure 5.2.1, there is no unique definition of what
constitutes a cluster. Problems with this approach also include determination of the order
of events, geometry of the cluster and the cluster extension in later steps.

» Calculation of released energy for each time step is easy to apply and considers larger
clusters, but may incorporate too many events in one cluster.
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Figure 5.2.1 Problem of non-unique clustering in atessellation analysis. Problems
include determination of a: order of events, b: geometry of cluster and c: cluster
extension in later steps.

5.2.2. IDRM

Due to the damage-dependent elastic potential energy the constitutive relations of IDRM are
non-linear and break down when the free energy losses its convexity. The loss of convexity
of the free energy signals the beginning of a damage event accompanied by stress-drop in
the failed elements as well as with induced (co-seismic) stress-drop in other elements. The
latter is a process which could be localised in space and finishes with the restoration of the
convexity of the free energy. Due to the full access to the stress and strain fields provided by
IDRM one can extract information about the modelled events in full detail. IDRM writes the
catalogue of damage events it generates. This model-generated data set needs further
processing in order to filter out the actual model-analogues of seismic events from the
acoustic noise which would remain below the sensitivity threshold of the seismic monitoring
system. In other words, IDRM like all similar models of seismic activity requires an
unambiguous and quantitative definition of what is to be interpreted as a modelled seismic
event. Further the said definition of modelled seismic events must be sufficiently flexible to
allow for a calibration of the running model to the observed level of local seismicity. IDRM is
equipped with such a definition of a modelled seismic event.

Key to the definition of seismic event within IDRM is a cluster-analysis of the model-
generated data on element failures due to damage above the critical level and a loss of
stability. Not every failed element is treated as a source of a seismic event. Instead, the set
of all simultaneously failed elements is analysed and all connected clusters (see the
corresponding entry in the Glossary) of such elements are identified. A seismic event is a
connected cluster of “mass” above a certain minimum value. The damaged elements which
do not belong to connected clusters of sufficient size are treated as contributing to the
acoustic noise.

5.3. Computational geometry issues in numerical
modelling practice

Computational geometry is a new discipline dealing with the algorithms of representing
geometrical object in a manner suitable for computer programming and especially for the
development of computer graphics applications and for solving boundary value problems.
The scope of computational geometry includes algorithmic development for the following
problems:
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draw the best-fitting smooth curve to a given set of points

draw the best-fitting smooth surface to a given set of points

given a smooth surface, cover it completely with elements or “tiles” which do not overlap.
given a three-dimensional body, subdivide it into elements of a given geometry. The
elements should not overlap and the coverage must be complete i.e. it must cover the
whole body.

» given a coverage of a geometrical body with elements, refine the coverage by adding
additional elements or make the coverage coarser by removing and merging elements.

These and similar problems arise in a natural way from the needs of the applied and
engineering sciences. The interest in computational geometry has been steadily increasing
and has lead to the creation of an independent scientific discipline. The development of
numerical modelling depend strongly on the progress in computational geometry especially
for the discretization of problems originally formulated for a continuum in two or three
dimensions.

Of interest to the numerical modelling of seismicity-related phenomena is the generation of
two- and three-dimensional grids constrained within some specified domain. The process of
generating such grids is known as meshing or gridding. Grids are used for transforming
problems formulated initially for a continuum into approximately equivalent discrete
problems. The term “approximate equivalence “ as applied to two problems needs some
clarifying: two problems are said to be equivalent if they have the same set of solutions. Two
problems are approximately equivalent if the solutions of one problem can be regarded as
approximations to the corresponding solutions of the other problem. The idea of numerical
modelling consist in reformulating a given “tough” problem into an approximately equivalent
and easier to solve problem. The problems of continuum mechanics are considered as tough
while the problem of solving a system of simultaneous algebraic equations is considered as
“easy” even when the number equations is large.

By imposing a grid over the spatial domain occupied by a solid it is possible to reformulate a
boundary value problem for the partial differential equations of continuum mechanics into
some approximately equivalent problem of solving a system of algebraic (often even linear)
equations. There are three different ways of achieving this:

» One can use the nodes of the grid to obtain discrete analogues of the operators of taking
partial derivatives. This idea is implemented in the various finite differences methods.

» One can seek an approximate solutions to the given boundary value problem as an
assembly of “pieces”, each piece being a combination of some basis functions and
defined within one of the sub-domains into which the grid has partitioned the whole
domain. Such “piecewise” approximations are at the basis of various finite element
schemes.

» ltis possible to regard a solid as a heterogeneous assembly of homogeneous “grains” or
“blocks” and to identify the latter with the elements of a grid. This is the underlying idea
of the discrete or distinct element models.

All numerical models of importance to the mining industry fall into one of the above
categories. In a sense, the choice of the discretization scheme is inseparable from the
choice of modelling strategy. Therefore it is important to understand the effect of the
geometrical or grid factors on the performance of a numerical model.

A grid or mesh which has been generated for a particular model can be characterised by:
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» lts length-scale or grid-size which is defined as the minimum distance between nearest-
neighbour nodes. The grid-size is a local parameter and can, in principle, vary from one
part of the grid to another. For regular grids, though, the grid-size is an over-all constant.

« Its connectivity index which is determined by the number of connected nearest-
neighbour nodes of the grid. The connectivity of a grid is closely related to the
dimensionality of the gridded manifold as well as to the geometry of the unit cell. For
regular square grids the connectivity index is equal to twice the Euclidean dimension of
the manifold. For tetrahedral grids in three dimensions the connectivity index of a grid-
node is defined as the number of tetrahedra to which the node belongs.

» Its topology or deformation-invariant properties. For instance a grid of a sphere is
different from any grid of a dough-nut-shaped body.

* The quality of the grid elements or cells. The quality factor of a grid element is
sometimes expressed in terms of the so-called aspect ratio. The aspect ratio is defined
in a different way for different types of grid elements even if they have the same
Euclidean dimension. Alternatively the quality of the grid elements and hence of the
discretization procedure as a whole can be measured by a quality factor which is the
normalised ratio of:

1. the square root of the area over the circumference for two-dimensional elements
2. the cubic root of the volume over the square root of the boundary area for three-
dimensional elements.

The grid topology is not a matter of choice but is dictated by the geometry of the rock-mass
to be modelled. The connectivity index of the grid is determined to a great degree by the
dimensionality of the problem and to a lesser degree by the choice of the unit cells for the
grid to be generated. The other two characteristics of a grid are entirely subject to choice
and determine the resolution and accuracy of the approximation provided by the model.

The smaller the grid-size (i.e. the finer the grid) the smaller will be the minimum size of the
seismic events generated by the model. The grid size affects also the accuracy of the
discrete solution of the continuum problem: the finer the grid, the better the approximation
since the latter is related in one way or another to some interpolation procedure. But the
limitations of the present day computers in processor speed and in core memory restrict the
minimum grid size for a given volume of the modelled body.

The quality factor of the individual grid elements does not alter the resolution power of the
model but does affect the accuracy of the approximation. For instance, in a finite differences
scheme, the partial derivatives of the unknown function are replaced by partial derivatives of
some interpolation polynomials with nodal points defined by the grid elements and if the
latter are abnormally elongated the approximation to the derivatives could be very poor.
Better quality factor means better shaped elements and correspondingly more accurate
representation of the derivatives. In a finite element scheme the interpolation is via some
basis of shape functions and a badly-shaped element can lead to a large error in the
replacement of the unknown function with the corresponding combination of the shape
functions. In a boundary integral scheme the shape of the elements is directly related to the
errors in the numerical integration (which again uses interpolation techniques). Finally, the
shape characteristics of the grid elements are of great significance in distinct-element
modelling and in molecular-dynamics inspired schemes (friction, fracture etc.). When a
heterogeneous rock-mass is modelled as an assembly of homogeneous “blocks” the shape
of the grid elements determines the interfacing of the blocks, the area of the contact
surfaces and the contact interactions.

Apart from the grid refinement and the quality of the grid elements the accuracy of a

numerical model can be affected by global grid artefacts. For instance, the algorithm for
meshing the target body could produce a grid in which most of the nodes sit on preferred
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planes or lines which would introduce artificial anisotropies. This problem is common for
structured grids and can be avoided by randomising the nodes of the grid while keeping the
connections.

5.3.1. The continuum limit and finite-size scaling

It is believed that the solution of a correctly formulated problem for a continuum solid will
correspond to the observed behaviour of the object. Unfortunately, the problems of practical
interest are essentially heterogeneous, anisotropic and non-linear which means that the
exact solution cannot be found analytically. The question is to what degree a numerical
solution of a discretized version of the original problem would approximate the existing and
yet unknown exact solution?

There are many different numerical approaches to the same problem originally set for a
continuum. Further, even within the same numerical approach there can be many different
models corresponding to different grids. This means that one and the same problem has an
arbitrary number of candidates for “the solution”, some very far off the target, others more
acceptable.

A criterion is needed for selecting out the best numerical solution among the available
approximate solutions. The following line of reasoning may lead to the formulation of such a
selection rule. Suppose that we have a numerical model based on some interpolation
scheme. If we could simulate the model for a sequence of grids with increasing refinement
one can expect that in the limit when the grid size goes to zero the discretized version of the
problem would become infinitely close to the original formulation in the continuum and hence
the solution of the model would tend to the exact solution. This procedure is called the exact
continuum limit of the model and cannot be carried out in practice because it would require
unlimited memory and computer time. Unfortunately it is very difficult and sometimes even
impossible to prove that the exact continuum limit exists and if it does that it is unique. With
some sacrifice of mathematical rigour and guided by practical considerations one could look
for signals of convergence in a sequence of simulations corresponding to an increasing grid
refinements. If one assumes that the character of the convergence, at least after some initial
transient part of the sequence, is monotonous, then the approach to the limit will be
signalled by a reduced variation of the consecutive members in the sequence. In practice
one will have to run the model for several grids with different degree of refinement and look
for a decreased sensitivity of the modelled data on the grid size. When it is found that the
last refinement of the grid did not change the modelled data by more than an acceptable
margin, one can conclude that the practical continuum limit has been reached.

Strictly speaking, one cannot speak of a continuum limit for a discrete element model. Yet
the same idea of reduced sensitivity of the modelled data to changes in the element size can
be applied to assemblies of distinct elements. For assemblies of distinct elements it is of
greater importance to study the so called finite-size scaling, which tests the sensitivity of the
model to increasing the number of constituents.

5.4. Error analysis of real and modelled data

Errors are always present in data. The origins of errors in a set of real data collected by a
seismic monitoring system are different from those of the errors in modelled data. Yet the
methods of error analysis are sufficiently general to cover all sources of errors and thus are
applicable to both real and model-generated data. A systematic treatment of the theory and
practice of error analysis goes far beyond the scope of these Guidelines.
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5.4.1. Types of errors

There are two types of errors: systematic and accidental. Errors of both types are present, in
principle, in every data set be that a list of observed values or a numerical output from a
running model.

5.4.1.1. Systematic errors

The systematic errors in real data can be due to some features of the electronic design of
the monitoring equipment or due to the concrete conditions in which the equipment operates
e.g. temperature, humidity, human factor and the like. Another source of systematic errors in
observed data could be the methodology used in the processing of seismic events including
all model assumptions made for this purpose. The configuration of the seismic stations in a
local network also affects the results by adding a, sometimes considerable, systematic error
especially in the location of the seismic sources.

The main sources of systematic errors in data generated by a numerical model are:

» The choice of basic equations

» The choice of numerical approximation to the solution of the mathematical problem
formulated in the model

o The discretization scheme applied and especially its length-scales

» The choice of the prescribed values in the initial and the boundary conditions

The above lists can be enlarged by including many other sources of systematic errors in real
as well as in modelled data.

5.4.1.2. Accidental (random) errors

Accidental errors are present in all measurements and their origin is not as easy to trace as
was the case with the origin of systematic errors. A common feature of the accidental errors
is that their values form random sequences in which there are no obvious correlations. For
this reason the accidental errors are also called random errors.

The random errors in measured values are usually attributed to the sensitivity and the
resolution power of the measuring instruments. In the case of model generated data the
random errors can be negligibly small if the model is based on a deterministic algorithm. The
situation is different, though, for stochastic modes in which the output is directly linked to
some random process e.g. numerical models implementing the Monte Carlo method.

5.4.1.3. Control of random errors

The presence of random errors in a data-set can be established by studying the distribution
of the numerical values with the standard tools of mathematical statistics. In particular, one
can evaluate the first moments i.e. mean and variance as well as the lower-order correlation
functions. The probable value of a measured quantity is associated with the statistical
average while the corresponding variance provides a measure for the accuracy with which
one can accept the above value. The reliability of the statistical estimates for the mean and
the variance depends on the volume of the data-sample.

The analysis and control of random errors is of importance for real data since the measuring
instruments and the data-acquisition units are susceptible to countless random disturbances.
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Model-generated data is practically unaffected by random errors unless the algorithm is
stochastic.

5.4.1.4. Control of systematic errors

The control over systematic errors is more difficult than the treatment of random errors
because there are no general procedures for this kind of analysis. Instead, each case must
be treated individually and the actual cause for the systematic errors must be identified and
quantified. The systematic deviations to the measured values by a seismic monitoring
system can be separated out from the raw data by testing the equipment for:

» the susceptibility to temperature variations

» the susceptibility to variations of the humidity

» the effect of mechanical factors on the equipment

» the effect of ageing on the equipment

A very important source of systematic errors in observational data is related to the design of
the measuring equipment. In order to identify and quantify systematic errors due to the
design of a seismic monitoring system it would be necessary to compare different sets of
data collected by different seismic system installed on the same site. The installation of two
or more parallel seismic systems on the same site can be prohibitively expensive but one
can double some of the components of an installed seismic system.

The above-listed possible sources of systematic errors in real data are difficult to control
and, for that reason, are often ignored. A more realistic task will be to quantify the effect of
the model assumptions needed for the analysis of seismograms. This includes the details of
the algorithms implemented in the seismic analysis software. Finally, it is necessary to
estimate the effect of the configuration of the seismic network on the data.

The systematic errors are often the only errors present in model-generated data. The main
sources of systematic errors in modelled data are:
» the choice of equations implemented in the model
» the choice of numerical approximation to the exact solution of the equations
» the formulation of the initial and boundary conditions needed for solving the
mathematical problem in the model
» the properties of the discretization scheme used for reducing the number of degrees
of freedom in the problem (a continuum mechanics problem involves infinitely many
degrees of freedom and cannot be treated in a computer unless discretized)
» errors due to the interpolation of continuous functions by a finite set of table-values
+ some elements of the computer code can lead to errors in the model output due to
loss of accuracy (single precision numbers used instead of double precision in
sensitive segments of the code)

Most difficult to quantify are the errors due to the choice of the basic equations embedded in
the numerical model. The equations of physics can have a limited domain of validity and, if
applied beyond this domain, their solutions can deviate from the observed reality. A typical
example is the use of the linearised version of an equation (say, the harmonic oscillator) in
the region where nonlinear effects become non-negligible and even dominant. The only way
to identify the contribution to the total error in modelled data due to the fundamental
equations of the numerical model is by comparing different data-sets generated by different
models designed to solve the same problem. Unfortunately, this recipe is far from easy to
implement.
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5.4.2. Errors due to the discretization (grid-size and grid-quality
effects)

The systematic errors in modelled data due to the properties of the discretization scheme
are better understood and easier to analyse and quantify. The discretization of a continuum
problem is usually carried out by imposing on a region of space (or space-time) a finite grid
(mesh) of nodes connected by links. The elementary cells of the mesh provide an
approximation to the real material in the sense that the material properties within a cell are
considered either constant or changing according to some shape function. This approach is
especially well-suited for the treatment of heterogenous and granular materials. The error
due to the discretization of heterogeneous materials can be reduced by calibrating the size
of the elementary grid-cell to the actual size of the homogeneous system. The errors due to
the shape of the individual grid-cells are treated in a similar way.

The main reason for introducing a grid in a model is for converting a set of differential or
integral equations into a system of simultaneous algebraic (usually linear) equations. In the
case when the numerical model is built on differential equations, the grid is used for
obtaining a discrete representation of the differentiation operator. Grids are used for solving
integral equations by replacing the integrals with numerical quadrature or cubatures (as for
instance in the Boundary Element Method). The errors introduced by the discretization in
these cases are due to the interpolation of an unknown function by a set of nodal values.

In numerical models of seismic activity the most serious grid-size effect is an imposed cut-off
on the size of the modelled seismic events. The minimum grid-cell size determines the
resolution power of the model with respect to the magnitude of the seismic events and the
separation of their hypocentres. The total volume of the grid used in a model puts an upper
limit on the maximum size of seismic events which can be simulated. In dynamic modelling
of seismic waves the grid-size imposes an upper cut-off on the frequency spectrum while the
total span of the grid restricts the lowest frequency (i.e. largest wavelength) in the model.

The influence of the decretization on the modelled date is a broad subject and needs a
specific treatment for different numerical models. The road to quantifying the grid-determined
errors in @ model is via a sensitivity analysis of the model response to variations of the
parameters determining the grid.

The evaluation of the various computational methods reveals that a fundamental grid size is
implied in each case. The particular grid size parameter is as follows.

Finite element method: element mesh size
Particle flow code: average ball size

2D DIGS model: tessellation mesh size
3D fault slip model: square element size
FLAC model: zone size

It is important to address the following set of generic questions.

1. How does each model behave, in terms of energy release magnitudes, when the grid
size parameter is varied in relation to the mining step size?

2. Is the mobilised fracture “length” (“area” or “volume”) deterministic or fractal?

3. How are the magnitude-frequency statistics affected by different fracture size

populations?
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The answers to these questions are related also to the constitutive rules that are used to
describe failure. In particular, for slip on fault planes or on the segments of a random
tessellation mesh, it is important to distinguish between conventional cohesion breaking
(Mohr-Coulomb) models and models in which slip weakening or velocity dependent friction
are employed and which include an implicit length scale in their formulation. The importance
of the implicit slip length scale has been highlighted by Rice (1993) in the formulation of a
San Andreas Fault (SAF) slip model. In this case, if grid sizes are too large, “inherently
discrete” behaviour is observed in which power law frequency-magnitude statistics occur.
Most of the simulations of seismic behaviour evaluated to date fall into this category of
model. When the grid size is reduced sufficiently, it is observed on the SAF model that the
complex slip behaviour is replaced by cycles of periodically repeated large earthquakes.
These considerations must be evaluated in relation to local mining induced slip complexity
and the spatial migration of seismic and aftershock activity.

5.5. Specifying the initial and boundary conditions for a
particular model

Every numerical model which solves a forward problem needs a set of initial conditions to be
specified. The initial conditions must form a complete set in the sense that they must fully
specify one of the accessible states of the physical system under study (e.g. a given volume
of rock.) In the case of wave propagation in an elastic medium the initial displacements and
the initial velocities must be specified in every point in space (note that the wave equations
require two sets of quantities, namely displacements and velocities, to be specified as initial
conditions. This is due to the fact that the wave equation is of second order in the time-
variable). A damage rheology model needs the initial stress field and the initial distribution
of damage for solving the corresponding forward problem. A cellular automation type of
model would require as an initial condition the full information of an accessible state of the
system under study. In short, the initial conditions set the starting point in a forward
(evolution) simulation.

Initial conditions may be all that is needed for solving an evolution problem formulated in
terms of Ordinary Differential Equations (ODEs) but a Partial Differential Equation (PDE)
problem needs also boundary conditions to be specified for ensuring the existence and the
uniqueness of the solution. The physical meaning of the boundary conditions is that they
specify the concrete loading conditions for the material system under study as well as the
interactions of this system with the surrounding world (heat exchange, diffusion, radiation
emission and absorption, contact interactions etc.). The fundamental equations of a physics-
based model are a coded form of the most general laws of nature and as such have
infinitely many solutions which include all possible situations and processes. It is the set of
boundary conditions which specify a concrete problem. Setting up the boundary conditions
in a particular case is a very delicate task because if these conditions turn out to be too
restrictive there will not be a solution of the problem and if the boundary conditions are not
restrictive enough the problem will have more than one solution which is as bad as not
having a solution at all. For certain classes of problems there are rigorously proven theorems
which state how one must set the boundary conditions in order to guarantee the existence
and the uniqueness of the solution. In particular, for the elliptic partial differential equations
describing the elastic equilibrium states of a solid occupying certain volume there are three
types of boundary conditions which lead to an unique solution:

o Dirichlet problem: prescribed are the values of the unknown function on the boundary
of the domain

« Neumann problem: prescribed are the values of the normal derivative of the unknown
function on the boundary of the domain
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» Mixed problem: Dirichlet-type of conditions are set for part of the boundary and on
the rest of the boundary the conditions are of Neumann-type.

Some problems exhibit an enhanced sensitivity to small variations of the boundary
conditions. This leads to chaotic behaviour and is usually the consequence of some non-
linearity either in the equations or in the boundary conditions.

Lattice solids and cellular automata models require specific boundary conditions to deal with
the edge-effects of finite lattices. For instance, the most commonly imposed boundary
conditions on lattice models of solids are periodic with the topology of a torus (dough-nut).
This corresponds to an infinite crystalic structure.

5.6. Constitutive relations

Continuum mechanics provides a good description of the behaviour of solids and fluids and
yet it is only an approximation to the reality because it does not take into account the full
details of the microscopic structure of the concrete material. The basic equations of
continuum mechanics are an expression of the fundamental conservation laws of physics
and are universally applicable irrespective of the specific properties of the material under
study. This universality means, for instance, that the dynamical equations of motion are not
sufficient for determining the evolution of the physical state of a deformable solid under
prescribed loading and additional information has to be supplied about the specific way in
which the material responds to changes in the state variables (such the strain tensor
invariants, the temperature, and other relevant degrees of freedom).

The physical state of certain volume of rock at a given moment of time is specified by the
values of all relevant state variables. One can say that the accessible states of a physical
system correspond to points in an abstract space of dimension equal to the number of state
variables (in the case of a mechanical system of material particles this is the phase space of
coordinates and momenta).

One of the fundamental assumptions of physics is that the dynamics of a physical system is
determined by some function of the state variables. In the case of a system of material
points this function is called the action. For a deformable solid the elastic potential energy
(or, more generally the internal energy) as well as the entropy are of importance and the
role of the state function is given to the so-called Helmholtz free energy defined as the total
internal energy of the system minus the product of the entropy and the temperature.

The way in which a physical body responds to small changes in the state variables is
determined by the details of the interactions between its microscopic constituents and is
manifested at the macroscopic level by a set of functional relationships between the state
variables and some suitably defined macroscopic (averaged) quantities. The stress tensor is
one example of such macroscopic quantity which is the averaged result of the local
intermolecular interactions for the material under study. A typical constitutive relation will
have the form of an expression for some component of the stress tensor as a function of the
components (one or more) of the strain tensor. The Hooke’s law is a classical example for a
constitutive relation in the case of an elastic solid and within a limited interval of small
deformations.

For complex and nonlinear materials the constitutive relations are also non-linear and can
include a dependence on the derivatives of the state variables and on the loading history.
When the constitutive relations contain a dependence on the loading history it is said that
they correspond to a material with memory.
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5.6.1. Theoretical derivation of constitutive relations

Theoretically the constitutive relations are generated by the partial derivatives of the
Helmholtz free energy with respect to the components of the strain tensor. Therefore a
numerical model based on a postulated form of the Helmholtz free energy is already
equipped with constitutive relations and any additional input of stress-strain relations could
lead to internal inconsistencies. The generic link between the free energy and the way in
which the material responds to variations of the deformation is rooted in the physical
meaning of the Helmholtz free energy, namely: it is the amount of internal energy stored in
the material which is available for conversion into mechanical work.

The damage-rheology model IDRM is an example of a numerical procedure in which the
constitutive relations are derived from an explicit expression for the Helmholtz free energy.

Many numerical models of practical importance do not include a postulate about the free
energy and are based on explicit constitutive relations which are usually derived from the
analysis of experiments and observations.

5.6.2. Empirical constitutive relations

Empirical constitutive relations are in the form of stress-strain curves for the material under
study and for different loading ranges and patterns. The data for the stress-strain curves is
obtained either from laboratory experiments or from field observations. There is a
considerable contamination with both systematic and statistical errors in empirical
constitutive relations which may lead to significant distortion of the modelled data relative to
the corresponding real data.

The constitutive description of failure in large scale volumes of rock surrounding a mining
excavation can be approached in two fundamentally different ways. In the first case, it can
be assumed that the medium is partitioned into representative volume elements (RVE'’s) and
that the overall deformation is controlled by the local deformation of each RVE and the
inertial interaction between these elements. This class of model embodies the theories of
plasticity or damage mechanics to provide descriptions of the element strain as a function of
the imposed loading and loading history. An alternative approach is to assume that the
medium deformation is controlled by failure between constituent particles or blocks. In this
case, constitutive descriptions are expressed in terms of the interface forces such as bond
strength and frictional resistance. These two classes can be considered to be dual and
exclusive descriptions of material failure. It is important to observe that the surface
separation philosophy depends also on the divisibility of the material that is controlled,
ultimately, by molecular separation forces. In practical terms, this scale is many orders of
magnitude smaller than the scale of engineering interest and the possibility exists that the
defining fracture surfaces may possess a fractal character with dimension falling between 2
and 3.

In terms of the specific numerical models that are considered to be potential candidates for
the integration of seismic activity with modelling, the boundary integral codes, MINSIM and
DIGS assume that material failure occurs on representative surfaces, whereas the ISR code
assumes that failure occurs in volumetric elements. The finite element code ELFEN,
boundary integral code MAP3Di and distinct element code UDEC allow failure on both
separating surfaces and in volumetric elements. It is important to note that the different
models demand different classes of constitutive relationships. The surface controlled models
require a description of bond cohesion and friction resistance whereas the volumetric models
require parameters to describe the effective “flow” of the material. The calibration of each
model class is difficult. Detailed frictional behaviour may depend on the velocity and velocity
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history of the sliding interfaces. In assigning point properties to the volumetric elements, it
may be necessary to assume that the outcome of a laboratory experiment, in which detailed
localisation mechanisms occur, is representative of the average behaviour of a different
sized zone.
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6. Conclusions

The organic integration of seismic monitoring with numerical modelling is not a fashionable
buzz-word, but the next logical stage in the development of reliable tools for intelligent mining
design and production planning.

An integrated numerical model

* incorporates, explicitly or implicitly, all the experience accumulated from years of mining-
oriented numerical modelling and rock-engineering practice, and

e combines it with state-of-the-art analysis of high-resolution data from a modern seismic
monitoring system, and

* uses the real seismic events as a direct input and

* addresses the main issue of rockmass stability at a particular location, in a given interval of
time and under specified conditions.

The modern seismic monitoring systems are capable of providing high quality data about the
local seismicity in mines. The seismological analysis of the records about a particular seismic
event could, in principle, reconstruct the seismic source mechanism and produce the values of
the relevant source parameters. The statistical processing of long local seismicity records can
throw light on the correlations between the character of the mining activity, the existing
geological structures and could even highlight some general trends in the seismic activity.
However, neither of these approaches would lead to a statement about how a certain sequence
of real seismic events would affect the stability of a particular volume of rock, in a particular
interval of time and under specified production conditions in the mine. It is precisely the answers
to this type of question that is vital for planning and organising the mining process for maximum
safety and efficiency.

The behaviour of the rockmass under specified loading conditions is governed by the laws of
continuum mechanics, thermodynamics, material damage evolution and damage-driven
rheology. In addition there are the very important and yet poorly understood processes of
energy dissipation and friction on material discontinuities. The problem is of such complexity
that even the formulation of it as a mathematical system of equations is not possible without
massive simplifications. Even when such simplifications are made and a corresponding
mathematical problem is correctly set, its solution is, as a rule, inaccessible by analytical means
and has to be sought numerically. The formulation of a mathematical problem designed to
correspond to a realistic situation of rockmass behaviour under loading, together with the
numerical algorithm for finding an approximate solution to the problem defines a concrete
numerical model applicable to the planning and conducting of the mining process.

The reliability of the conclusions drawn from the data generated by a numerical model strongly
depends on the accuracy of the information the model takes as an input. Ideally this information
should fully characterise the initial state of stress and deformation in the rockmass. In real life
one has to settle for a very approximate estimation of the actual loading conditions and even
less knowledge about the physical state and the structure of the rock. Under the circumstances
every possibility has to be exploited for improvement in both directions. The concept of
integrating seismic monitoring with numerical modelling is in response to the stated need. The
observed local seismicity contains valuable information about the state of the rock mass and its
environment. This information was either not included or inaccurately presented in the initial
setting-up of the model. By taking real data as an input an integrated numerical model will
continuously correct itself and perform as an adaptive system.
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6.1. Requirements imposed by the integration on the
numerical models

A numerical model of the rockmass response to loading is suitable for a functional integration
with observational seismic data when:

» it implements a reasonable approximation of the fundamental relationships between the
relevant physical degrees of freedom.

» itis designed to solve a forward problem about the evolution of the physical state of the rock
under the given initial and boundary conditions.

« it can convert the data about a real seismic event into a corresponding addition to the
loading at the correct moment of time.

« it can itself emulate seismic events in a way which allows for calibration of the model to the
observed local seismicity.

« it must have an adequate resolution in the size, location and time of modelled events.

» the computer code must run sufficiently fast so that the numerical clock does not lag behind
the physical clock.

6.2. Numerical models that are suitable for seismic
integration

6.2.1. Existing models

The “classic” tool for the analysis of stress distribution problems in tabular mining has been the
displacement discontinuity method (DDM). It is possible to use this numerical framework for the
integration of seismic activity by allocating slip patches to appropriate regions of defined fault
planes, according to the observed record of seismic event sequences. Each slip area can be
made to conform to the observed seismic moment and forward assessment of future seismic
activity can be made at any stage of the integration cycle. This approach is constrained, at
present, to the analysis of static deformation problems but is accessible to most of the current
3D-DDM software available in South Africa. Additional interface computer codes for automatic
conversion of recorded event moments to slip plane positions may be required.

The static DDM models can be used to model fault creep by postulating laws that define the
fault creep rate in terms of the shear loading stress. Regions of each fault surface can be
assigned different material properties to designate asperities or creeping “gouge” material. As
stress accumulates on the asperities, these will be broken at intermittent intervals. This process
can be used to replicate some aspects of the statistical nature of seismic activity. Event
frequency-magnitude statistics will be controlled by the asperity density and strength, as well as
the characteristic relaxation time, of the fault creep law.

At present, the incorporation of an observed event may be incompatible with the existing stress

state over the selected fault position. Future studies will have to be directed to devising
strategies to treat these incompatibilities in a systematic manner.
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6.2.2. Future model development

Future developments should explore the possibility of formulating a fully dynamic version of the
DDM to allow dynamic fault slip and the accompanying wave propagation effects. This would
have to be integrated with slow creep dominated deformations and would allow a much richer
incorporation of waveform characteristics into the integration process. Difficulties relating to the
numerical stability of 3D dynamic DDM models have to be resolved.

Hybrid methods, such as the Integrated Damage Rheology Model (IDRM) described in this
report, hold promise for the detailed dynamic simulation of complex seismic source processes
and their integration with mine planning. At the quasi-dynamic level damage rheology modelling
is conceptually well-suited for integration with real seismic data by converting seismic events
into corresponding additional loading on the rockmass.

Non-linear continuum models, such as the finite element method (FEM) or other forms of finite
difference models, may also prove to be suitable tools for developing a hybrid seismic damage
model. In these cases, numerical strategies have to be used to treat absorbing boundary
problems for mining applications.

6.3. Recommendations for integration in practice

Integrated numerical models of rockmass response to loading have serious advantages
compared to models which are not capable of assimilating seismic data in real time, and will
inevitably become an industry standard for mining design and production planning. The
methodologies for using integrated numerical models will eventually crystallise from the
experience of employing such models for practical problem-solving but even at this very
preliminary stage one can make some recommendations in this respect:

» the initial state of the modelled rockmass should be specified as accurately as possible.

« it must be ensured that high-quality seismic data exists, or will be provided, for the location
and time-interval of interest.

« the numerical model has to be set up for the required resolution with respect to both the real
and the modelled seismicity, while staying within the available computational resources
(computer memory and CPU speed), and ensuring that the numerical time-stepping is faster
than the pace of physical time.

» the loading on the studied rockmass, due to the existing and planned mining, has to be
estimated as accurately as possible.

» The perturbations to the physical state of the modelled material, caused by the real seismic
activity in the area, have to be quantified so that they can be introduced in the running
model as an input at the appropriate time.

What can reasonably be expected from an integrated monitoring-modelling system? First and
foremost, the integration of data with modelling will improve the reliability of the forecasts about
the evolution of the physical state of a particular volume of rock, subjected to a variable loading
due to specified mining activity, and the actual local seismicity. In particular, the data generated
by an integrated monitoring-modelling system should, when analysed, allow definite statements
to be made about:

» the elastic and plastic deformation within the modelled volume of rock at a particular
moment of time.

« the distribution of static stress at a particular moment of time.
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+ the level of micro-seismic activity within the modelled volume of rock.

» the rockmass stability and, in particular, any expected loss of stability of the modelled
rockmass.

A conceptual view of the integration of seismic monitoring with numerical modelling for the
needs of the mining industry is the first step towards developing the new generation of mining
design and planning tools. This development is not a matter for the distant future but has
already started. Even at this very early stage it has become evident that a data-driven numerical
model has considerable advantages over its non-integrated counterpart.
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