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EXECUTIVE SUMMARY

Control of the rock mass deformation near deep level stopes and the avoidance of damaging
incidents of violent rock failure requires a fundamental understanding of rock failure
mechanisms. Research work to gain this understanding has been undertaken within the ambit of

the Rockmass Behaviour project GAP029. Specific outcomes of this research are as follows.

1.) The computer code WAVE has been developed to a useable degree to allow elastodynamic
interactions between faults and stopes to be analysed in both two and three dimensions. Special
features of WAVE allow the simulation of dynamic fault slip and simple tabular mining

outlines.

2.) Numerical studies using WAVE have shown that particle velocities generated by slip on a
simulated fault are in broad agreement with established distance-velocity correlations in three

dimensions.

3.) Application of WAVE to simplified mining problems has shown that backfill can be
effective in reducing relative closure velocities between the hangingwall and the footwall of
stopes and that parting planes can trap seismic waves in the hangingwall region. Conditions for

the triggering of a large fault slip event by a small precursory event have been investigated.

4.) Photoelastic studies of wave propagation in plates have confirmed the validity of numerical

results computed with the WAVE code.

5.) The causes of numerical instability in the elastodynamic boundary element code TWO4D

have been analysed and methods to reduce or eliminate the instabilitics have been implemented.

6.) The computer code DIGS has been developed further to allow the efficient analysis of large
scale interacting crack assemblies and initial work has started to allow the analysis of multiple

material problems and three dimensional interacting crack problems.

7.) Studies of fundamental rock failure mechanisms have shown that the grain shape can affect

the nature of rock failure strongly in terms of rapid load shedding or plastic yiclding. This



provides a basis for relating the fabric of different rock types to their overall strength and

brittleness.

8.) Pre-existing rock discontinuities, such as parting planes or weak joints, have been shown to

play an important role in the formation of extension fracture patterns near openings.

9.) A survey has been carried out on the effect of geological structures on the pre-existing
stress state in different mining districts and the potential effect of this stress state on rock

failure analysis.

10.) The role of blasting in promoting fracturing around tunnels has been analysed. It is found

that the blast gases can enhance the formation of additional fractures.

11.) Physical observations of slow creep-like stope closure rates have been analysed using a
viscoelastic model of a simple tabular excavation with good correspondence being achieved.
This forms an important basis for studies of the effect of face advance rate on seismic intensity

and cyclicity.

12.) Studies to determine the creep potential of rock joints have been initiated.
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ABSTRACT

Progress on the Rockmass Behaviour project GAP029 is summarised in this report for the
period 1993 to 1995. The work has been carried out in three main areas of activity covering
respectively, elastodynamic modelling, development of techniques for the analysis of the stope

fracture zone and application of models to explore innovative design procedures.

The work on elastodynamics has centred on the analysis and application of the experimental
boundary element code TWO4D and on the further development of the finite difference code
WAVE. It has been found that the application of boundary element methods (such as TWQO4D)
to the solution of dynamic problems can be hampered by two factors. The first of these is the
appearance of instabilities in the numerical solution which are exhibited as unbounded
oscillations in particle motions, which can make the analysis method unusable. The cause of
these instabilities appears to be associated with the shape functions that are used to represent
the variation of the displacement discontinuity strength within each element used to cover the
problem boundaries. The use of low order functions, such as constant or linear variation
discontinuities, results in strongly singular variations in transmitted stress waves away from the
elements. These stress “spikes™ can, in unfavourable cases, lead to a response at a receiving
position that is larger than the so-called self-effect of the sending element. In these cases, an
uncontrolled resonance is set up between the elements leading to the observed instability
behaviour. It has been found that the occurrence of such instabilities can be curtailed by
adjusting the self-effect of all elements by a small perturbation or by adopting a more refined
time-stepping scheme to update the elastodynamic solutions (the so-called half-step scheme). It
has also been possible to apply a special stability analysis technique, based on control theory
concepts, from which it can be inferred whether a given problem will exhibit instability

behaviour before the solution is computed.

The second difficulty encountered in using elastodynamic boundary element methods is
associated with the need to retain a back-history of solution values for all previous time steps
preceding the current time step. This can result in long computer run times and large storage

requirements for moderate sized problems.

Development of the finite difference computer code WAVE has concentrated on implementing

fault slip logic for two-dimensional and three-dimensional problems, opening and closing
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behaviour in cracks, cavity modelling capabilitics and on the inclusion of special constructs to
allow tabular mine layouts to be modelled. Considerable attention has been given to improving
the graphics capabilities of WAVE for the representation of wave transmission patterns and for
extracting quantitative information such as time plots of key variables and frequency analysis
capabilities. Higher order differencing schemes have also been introduced to reduce dispersion

in the transmission of waveforms through the numerical grid.

Initial applications of the elastodynamic codes WAVE and TWO4D have been made to
simplified mining problems. One of these applications was to analyse the effect of backfill in a
horizontal stope with a single parallel parting plane above the stope. A seismic source was
introduced in the form of a vertical fault plane ahead of the advancing stope face. The fault
plane was allowed to slip and it was observed that the parting plane could trap seismic waves
in the immediate hangingwall region above the stope provided it was free to slip or to open. It
also showed that backfill could reduce relative movements between the stope hangingwall and

footwall.

A number of studies have been carried out to compare the seismic response monitored at
varying distances away from a modelled fault ahead of a horizontal stope with empirical and
theoretical seismic correlations of particle velocity with source distance. When the fault rupture
was modelled in three-dimensions, the results agreed qualitatively with the empirical and
theoretical particle velocities whereas a two-dimensional model tended to over-estimate the
predicted particle velocities at a given distance from the fault. Also the fault rupture logic of
either allowing a sudden loss of cohesion or a controlled degradation of cohesion as a function
of the degree of slip, could affect both the rupture velocity on the fault and the observed peak
particle velocities. Sudden loss of cohesion was associated with higher velocities. A further
study of the initiation of slip on a fault between two stopes revealed that an event initially
triggered in the fault region between the stopes could result in a much larger event being
triggered on the fault in the hangingwall region. A three-dimensional back analysis of an actual
rockburst event was carried out which showed that broad correspondence between modelled
and measured particle velocities could be obtained although it was clear that the model was too

simplistic to reproduce the exact details of observed waveforms.

Some effort was also made to check the validity of the elastodynamic models against the results
of physical models of photodynamic experiments in which an explosive charge was initiated on

the edge of a composite plate made from photoelastic materials and having a slot-shaped

v



opening in the centre of the plate. Very good agreement was obtained between the observed
patterns of wave propagation and the numerically simulated results, adding confidence to the
validity of the numerical solutions. A review has also been carried out on the attenuation of
waves in fractured ground to set the basis for future investigations of the interaction of seismic

waves with the stope fracture zone.

The second major area of work addressed the development of techniques to study the
mechanics of the stope fracture zone. Much of this work has been based on the application of
the DIGS computer code (Discontinuity Interaction and Growth Simulation) developed
specifically to model the growth of fractures in brittle rock. Crack sliding and opening logic is
based on assigned cohesion and friction properties and on specified dilation angles for forward
and reverse sliding. A simple cohesion-weakening model, in which cohesion is specified as a
lincar function of the slip movement, has been implemented. Crack growth is controlled by
‘tension’ and ‘shear’ modes to control the choice of growth direction ahead of an active
discontinuity. An energy based growth criterion has been formulated that allows shear banding
phenomena, such as pillar foundation failure and slip lines in slope stability problems, to be
simulated. Good progress has also been made in the development of a numerical solution
method that can allow the analysis of large scale assemblies of interacting cracks. In addition,
work has been initiated on the implementation of a multiple material model and on the
formulation of influence functions for polygonal shaped elements that can be used in three-

dimensional fracture growth studies.

Considerable effort has been devoted to studies of the fundamental nature of failure processes
in brittle granular rock assemblies. This showed that grain shape can play a strong role in
determining the load shedding capabilities of the simulated material structure. Irregular or
angular shaped grains allow rapid load shedding once failure is initiated whereas rounded
grains reflect hardening or reduced load shedding. By contrast fracturing through grains allows
rapid strength degradation. This work also demonstrated how fracturing parallel to the major
principal stress can arise in uniaxial compression as a result of grain angularity and how this is
curtailed if confining stresses are applied to the sample assembly. Additional effects that
control micro-fracture patterns are the presence of pores which can promote tensile fractures
between the pores as opposed to the common concept of fractures initiating from the pore

surfaces.



Laboratory scale physical modelling experiments have been carried out to identify the nature of
fracture initiation from discontinuity interfaces and to calibrate and verify the DIGS code.
Good qualitative agreement has been obtained in the case of fracture initiation from a single
inclined diametral interface introduced into a Brazilian test specimen, giving some confidence
to the applicability of the tensile fracture growth rule used in DIGS. Further agreement was
obtained in experiments where fractures were initiated from the interfaces of a layered sample
of synthetic sandstone-cement material into which one or two rectangular openings were
introduced. These experiments also provided supporting evidence for a mechanism proposed
for the initiation of extension fractures from parting planes in underground stopes. Some
inconclusive physical modelling tests were also carried out on stacks of glass layers in which it
proved to be difficult to model the observed fracture patterns. The extreme brittleness of glass
and the absence of granularity make these experiments difficult to reproduce. A special test rig
has also been constructed to allow triaxial tests to be carried out on rectangular shaped
specimens. Initial tests in which a rectangular strip punch was used to load a biaxially confined
specimen have shown the formation of wedge-shaped shear failure zones initiating near the
edges of the punch. These shear fractures can be approximately modelled using the shear

growth model implemented in DIGS.

A review of experiments carried out by previous investigators has shown that in many
instances so-called secondary fractures may develop adjacent to the initial fracture
configurations around openings or pre-arranged notches or sliding cracks. One such example is
the development of tensile zones adjacent to wing cracks formed from the ends of a sliding
crack. Numerical simulations have shown that these secondary fractures may play a strong role
in the formation of splitting fractures sub-parallel to the major loading direction and may also
account for slabbing and spalling. Confining stresses curtail secondary fracturing and shear
mechanisms become prominent. Conversely extension type fractures must form either in direct

tension or from pre-existing flaws such as joints or mobilized parting planes.

The third and final area of work covers the application of modelling concepts to innovative
mining strategies and the identification of underlying mechanisms that must be understood to
allow any planned intervention in controlling or engineering the mechanics of the stope fracture
zone. One of the necessary factors in this respect is to understand the overall geological
environment and stress ficld in different mining districts. A survey has been carried out to
summarize known information concerning stress trends as well as to assess proposed tectonic

models for these trends. It has also been demonstrated that the specification of the initial stress
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state can be strongly affected by the manner in which pre-existing stresses associated with
geological features such as fault structures and dykes are accounted for in any proposed

numerical analysis.

A review of interaction mechanisms between excavation processes and induced fractures has
been completed. This indicated that blasting can enhance the formation of fractures near
tunnels (“bow-wave” fracturing) depending on the blast strategy (conventional development or
smooth wall blasting). This is important in inferring the influence of blasting on the formation
of keyblock structures in stopes. The propagation of blast-induced fractures from a shot hole
has been modelled using a simple pressure loading model in DIGS. Observed blast patterns are
reproduced as well as some fracture interactions generated in successive blasts in adjacent

holes.

In devising any strategy to control the formation of fracturing, it is necessary to determine
whether the rate of face advance affects the recurrence time of seismic activity. This in turn
requires an understanding of the basic mechanisms controlling time-dependent “creep”
behaviour in stopes. Initial work has shown that a simple visco-elastic model can be used to
reproduce observed closure rates with good accuracy and that the origin of slow creep-like
closure is almost certainly associated with movements on joints and discontinuities close to the
excavation. The nature of these movements must be identified. To do this a number of joint
surfaces in borehole cores have been mapped and will be correlated with the roughness of the
surfaces subjected to creep loading experiments. This information will be used to construct
representative numerical models of discontinuity relaxation associated with simulated mining

step increments.

Several stope scale failure processes have been identified. These include mechanisms for the
formation of wedge structures ahead of a stope face as well as the effect of inherent
weaknesses, such as parting plane slip on the initiation of extension fracturing. If extension
fractures initiate from mobilized parting planes and intersect the stope, the horizontal confining
stress can be reduced leading to an effective widening of the stope width and subsequent
formation of an unstable, unconfined failure near the stope face (rockburst). It is also suggested
that where footwall failure mechanisms differ from those of the hangingwall, anomalously

oriented extension fracture patterns may be initiated.
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Several innovative numerical analyses have been carried out to demonstrate mechanisms of
sidewall spalling and borehole slabbing (breakout) phenomena. In addition, the effect of
rotating the stress field on the stimulation of fracture growth from initial microcracks by the
activation of wingcracks at both ends is demonstrated. This mechanism can be used to
determine the effective in-situ strength properties near openings that are advanced
incrementally and which consequently cause stress rotations as the face position is changed.
Other studies include estimation of the bounding limit for the size of the fracture zone, the
effect of modulus sensitivity to confinement based on microfracture structure and the effect of
mining depth on the expected severity of seismic activity. It is also suggested that if the stope
hangingwall is strongly fragmented, support could be designed to cover a continuous strip
parallel to the stope face and to provide an “umbrella” in rockburst conditions rather than be

designed to maintain the integrity of the hangingwall beam.
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1. INTRODUCTION

The primary purpose of the rockmass behaviour research project GAP029 is to provide a
quantitative understanding of the formation of fractures and behaviour of fractured rock around
excavations and the mechanisms of rockbursting. This research work represents a continuation
of investigations supported by the Gold Mining Industry under the auspices of the former
Chamber of Mines Research Organization. This report summarizes technical details of the
work carried out during the three year period from 1993 to 1995, with funding by the Safety in
Mines Research Advisory Committee (SIMRAC) of the South African Department of Mineral
and Energy Affairs. The report is structured in three main sections corresponding to the three
enabling outputs that were included in the original project proposal document submitted and

adopted in 1992.

The three enabling outputs are as follows.

Output 1: Methods to analyse elastodynamic rock movements and rockburst mechanisms.

Output 2: Methods to analyse the mechanics of the fracture zone surrounding deep level

excavations.

Output 3: Innovative mining strategies and layout designs using numerical methods.

The enabling outputs 1, 2 and 3 are covered respectively in sections 2, 3 and 4 of this report. In
the original project plan, a number of detailed working steps were identified explicitly within
each enabling output. These steps are inter-related and thus the work is not reported directly
under each topic but is grouped according to appropriate functional themes including the actual

project plan steps.

The structure of the three main outputs reflects the philosophy of developing basic tools for the
analysis of rock deformation mechanisms (outputs 2 and 3) and then applying these tools to
innovative mining strategies (output 3). The motivation for this approach is that a fundamental
understanding of deformation and failure mechanisms will enable mining strategies to be
designed in a rational manner and should also provide some ability to predict expected failure

mechanisms in specified geotechnical environments. The project structure recognizes the basic



importance of characterizing dynamic rock movements for the understanding of rockburst
initiation and the effects of rockbursting on stope hangingwall stability. Dynamic computer
codes have been developed to investigate the interaction between seismic waves and stope
movements. Calibration of the performance of elastodynamic numerical models against

physical modelling experiments has also been undertaken.

However, it is apparent that any analysis of the formation of the stope fracture zone relies
completely on a fundamental understanding of the nature of rock failure. In particular, it is
necessary to describe the formation of tensile or extension fractures and to distinguish between
this form of fracturing and the formation of shear band or burst fracture structures.
Considerable attention has therefore been directed to the investigation of micro-mechanical
models of rock failure and to the study of failure mechanisms associated with different rock
fabrics. The exploration of these phenomena has required efficient numerical treatment of large
scale interacting crack assemblies and good progress has been made in achieving this goal. An
accompanying programme of physical modelling has been carried out to calibrate and verify

some of the predicted fracture mechanisms.

It must also be acknowledged that only limited progress has been made in reaching the primary
goal of output 3, which represents the investigation of innovative mining strategies and possible
means to engineer the stope fracture zone. In addition, the planned step 3.1, which was directed
towards determining the interaction of local support units and the hangingwall structure, has
been omitted entirely as this topic is covered directly by SIMRAC project GAP032, Stope and
Gully Support. Nevertheless, encouraging progress has been made in applying simplified
modelling strategies to simulate the propagation of blast-assisted fracturing and in identifying
the nature of creep-like movements in deep level stopes. The topic of time-dependant
movements that are not directly seismic in origin is important for quantifying any link between
the rate of face advance and the recurrence of damaging rockbursts. Good progress has been
made in characterizing the nature of discontinuity roughness with a view to determining
effective joint properties and joint creep behaviour. Work summarizing the current knowledge
of the tectonic environment in different gold fields and the effect of mining depth on the nature

of the stope fracture zone has also begun.



2. ELASTODYNAMICS

Work reported in this section corresponds to enabling output 1 of the Rockmass Behaviour
research project - ‘Methods to analyse elastodynamic rock movements and rockburst
mechanisms’. Studies have concentrated on improving the numerical stability properties of
the boundary element elastodynamic code TWOA4D, and on developing the finite difference
code WAVE, to address the problem of analysing elastodynamic movements in the rock-

mass.

The first approach is to use the boundary element method to represent the effect of dynamic
slip and opening motions on dislocations in an isotropic medium. In this case influence
functions based on Stoke’s fundamental solution for a time varying point force in an infinite
medium, are computed for displacement discontinuity elements which are used to define
cracks, faults or stopes at arbitrary orientations. This method for the solution of two-
dimensional plane strain problems is embodied in the computer code TWO4D. However,
difficulties in applying the technique have arisen due to numerical instabilities that can occur
in the computed solution. The analysis of the stability characteristics of the elastodynamic
displacement discontinuity method is given in section 2.1, together with strategies for pre-

determining potential instabilities and avoiding instabilities.

The second approach has been to employ finite difference methods to solve explicitly the
differential equations describing the propagation of elastodynamic waves. This method is
encoded in the computer program WAVE. The program allows discontinuities to be specified
in orientations aligned to a cartesian grid in both two and three dimensions. A number of

features of WAVE are described in section 2.2.

Section 2.3 shows how these techniques have been applied in analysing mine problems.
Section 2.4 shows the results of physical modelling which has been used to gain fundamental

understanding, and to validate the accuracy of the codes.



The project plan objectives for elastodynamics (enabling output 1) are as follows:

Objective 1.1: Implement numerical techniques to represent the mechanics of fault slip
including the possibility of slip-weakening, velocity dependent friction and
representations of fault asperities.

Objective 1.2: Implement numerical techniques to represent the mechanics of fault slip
including the possibility of slip-weakening, velocity dependent friction and
representations of fault asperities.

Objective 1.3: Investigate using boundary element and finite difference codes, fault slip
mechanisms, interaction of seismic waves with tabular stopes and with geological
structures such as dykes, and the geometric factors that determine the magnitude of
dynamic movements.

Objective 1.4: Characterize the dynamic representation of support elements and regional
support such as backfill in numerical algorithms by interpreting underground and
laboratory observations.

Objective 1.5: Review the physics of wave attenuation in a homogenous medium and the
effects of multiple fractures in the medium, and propose numerical representations for
this behaviour for dynamic modelling of the stope fracture zone.

Objective 1.6: Characterize the causes of numerical instability in boundary element methods
Jor two and three dimensional elastodynamic problems.

Objective 1.7: Characterize the error limits imposed by finite difference meshes and the
treatment of absorbing boundary conditions in finite difference analyses of elastodynamic
problems.

Objective 1.8: Extend graphics representations of dynamic movements, predicted by
numerical methods, and explore applications of dynamic analyses to improving the
resistance of stope layouts to rockbursts and the impact of local and regional support

Strategies.



2.1 DEVELOPMENT OF BOUNDARY ELEMENT CODES

The major contribution of boundary element elastodynamics has been to characterize and
improve the numerical stability of the method (Objective 1.6). The presence of intermittent
instabilities in time domain indirect boundary element methods has been identified, the
causes analysed, and a new time-stepping algorithm developed with improved stability and
accuracy characteristics. The results of this work are reproduced here from a study on the
stability properties of time domain elastodynamic boundary element methods (Siebrits and

Pierce, 1995).

Numerous time domain direct and indirect boundary element methods have been published in
the boundary element literature over the past 30 years, but there have been relatively few
papers published which mention or examine the stability properties of these methods,
contrary to the finite difference and finite element literature, where the stability theory of
these methods is well established (Smith 1985, p.47, Bathe 1982, p.537). There are examples
in the literature (Koller et al 1992, Andrews 1994, Mack and Crouch 1991, Siebrits and
Crouch 1994, Cole et al 1978) that demonstrate that boundary element methods go unstable
after a sufficient number of time steps. In fact, the authors have yet to find a boundary
element method code that does not go unstable, despite unsubstantiated claims in the
literature of unconditionally stable boundary element methods (Banerjee et al, 1986). In this
report, the reasons why indirect boundary element methods go unstable are examined, and a
new time-stepping algorithm with significantly improved stability and accuracy properties,
that can be generalized and applied to any time stepping direct or indirect boundary element

method, is proposed.

Evidence of instabilities

This report deals with numerical instabilities in the two-dimensional displacement
discontinuity method, with brief reference to the direct method. One of the more recently
published direct boundary element codes, QUADPLET (Dominguez 1993), which uses
numerical quadratic spatial and analytical linear temporal integrations, can be shown to go
unstable, even for a simple problem, such as an axisymmetrically loaded cylinder (the
Selberg problem, Graff 1975). Figure 2.1.1 shows an instability that develops by 2000 time

steps for the case where 16 elements have been used to model the boundary, and Q1 = 0.3,



where Q1 = (CIAI)/ Ax , and ¢, = compressional wave velocity, Af = time step, and Ax =

element size. Since the instability only develops after such a large number of time steps, one
may argue that the code is “practically” stable. However, the rate at which an instability
develops depends upon the problem being solved. If elements are located at acute angles with
respect to each other, or are in close proximity to each other, then an instability can develop
much faster, and swamp most of the transient behavior that is being monitored. This will be

demonstrated in the next example.

Numerical instabilities do not necessarily disappear if the time step is reduced. They are
intermittent in nature, and problem dependent. A very simple problem that illustrates this is
an antiplane strain version of the displacement discontinuity code, TWO4D (Siebrits and

Crouch, 1994), with constant spatial and linear temporal functional variations (viz.
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Figure 2.1.1: Evidence of instability in QUADPLET for Selberg problem




constant/linear scheme) and analytical integrations, where
two elements are located opposite each other, 2Ax apart,
as shown in figure 2.1.2. Table 2.1.1 highlights the

28X
intermittent nature of the instability development. In Table

2.1.1, 02 =(c,At)/Ax , where c, is shear wave velocity. Y
02=(c,Ar)/ 2 ty ’ I

X

The loading pattern is immaterial. Depending on the "

particular combination of time step, spatial step, and

roblem geometry, numerical oscillations can either grow .
P g Y £ Figure 2.1.2: Two element

exponentially as a classical numerical instability, grow
P Y - 8 problem geometry

non-exponentially as a resonant instability, pulse in a
resonant way with successive pulses increasing, decreasing
or remaining constant in amplitude, or merely oscillate with a decreasing or unchanging

amplitude. In other words, it is possible to generate almost any type of spurious oscillation.

Q2 0.10 | 0.20 ; 0.30 = 040 | 0.50 | 0.60 | 0.70 |0.80 [0.90
stable? | no no yes no yes yes no |yes yes
Q2 1.00 | 1.10 | 1.20 | 1.30 | 134 | 1.40 | 1.50

stable? | yes yes yes yes no yes yes

Table 2.1.1: Evidence of intermittent instabilities

In the displacement discontinuity method, even a single row of elements can go unstable. For

example, in the plane strain constant/linear version of TWO4D, a single straight line of
elements, with Q1 = (c,At)/ Ax =035, can be shown to be unstable by 500 time steps. In

two dimensions, a Rayleigh wave propagating along a free surface (such as along a
mathematical crack) does not decay with distance from the source (Graff 1975, p. 353). Thus,
element to element influences along a mathematical crack construction, such as provided by
the displacement discontinuity method, contain a component that does not decay with
distance. It has been found that influences that decay with distance provide better stability

properties in boundary element methods.



A test problem that has been used to investigate elastodynamic stability comprises two
intersecting cracks, as depicted in figure 2.1.3 (“Hook™ problem). Depending on the choice of
Q1 in plane strain (or Q2 in antiplane strain), this problem may or may not go unstable. This
applies to both the constant/linear and linear/linear versions of TWO4D. Figure 2.1.4 shows a
typical unstable result obtained from the constant/linear antiplane strain version of TWO4D

with 02 = 0.7, where the displacement discontinuity history of element 21 is plotted (see
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figure 2.1.5). The smooth line through the unstable result is the equivalent result obtained
with a new time stepping scheme, to be covered later. Figure 2.1.5 is a plot of the light cones
at the first few time steps, for elements 19 and 20. It is clear that the shear wave front from
element 19 chops element 21 at the second time step (shown as a dashed line). Figure 2.1.6

shows the same diagram, but for Q1 = 0.67, and the wave front just misses element 21 in this

case. This run turns out to be stable.
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Figure 2.1.5: Light cones for Hook problem Figure 2.1.6: Light cones for Hook problem
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Stability analysis
The standard time stepping algorithm for the indirect methods is given by
m-1
CF,+>C F,=b, @.1.1)
k=1

where F' = vector of unknown boundary tractions and/or displacements, C = influence

coefficient matrix, b = known boundary displacement and/or traction vector, and m = current
time step number. Equation 2.1.1 is a matrix convolution sum whose stability can be

investigated using the z-transform and complex variable analysis. Taking the z-transform of

equation 2.1.1 gives

b(z) = C(2)F(z) (2.1.2)
where the z-transforms of the vector and matrix sequences {b,,}, {F, }, and {C s are

defined in terms of the z-transforms of their components. For example,



C(z)= [cy (z)] = [Z cy)kz_k} (2.1.3)
k=0
In a typical boundary element problem, {b,,} is specified, and { ', } can be expressed as

F(z)=C'(2)b(2) (2.1.4)

The sequence {F,} can now be represented using the inversion formula and the adjoint

formula for the inverse of a matrix as

1 {adj(C(z))

27 | det(c(2))

—k =

l_)(z)}zk_ldz (2.1.5)

where C is a contour that encloses all the poles of the expression enclosed in parentheses in

equation 2.1.5. The poles that are due to the numerical scheme are determined by the zeros of
det(C(z)) =0 (2.1.6)

The time-stepping scheme is numerically stable if all the zeros of equation 2.1.6 lie within the

unit disc. It is necessary to locate the zeros of equation 2.1.6 in order to be able to determine

if a given discretization is stable. However, each of the elements of g(z) is an infinite series,

so that potentially equation 2.1.6 has an infinite number of roots.

If the boundary elements are located within a finite region, the coefficient matrices { C k}

decay as £ — « . The infinite series ¢ U.(z) can be approximated by polynomials of degree at

most M, which is sufficiently large for the dominant element to element influences to be
included. Provided the truncated matrices are sufficiently small the roots that are discarded

will be close to zero and will not affect the stability analysis. For an N degree of freedom |

boundary element model, the g , are each N by N matrices so that det(g(z)) is

approximated by a polynomial of degree M, which is denoted by

Py (2) = det(C,,(2)) ~ det(C(z)) 2.1.7)

For large boundary element models (e.g. N = 100) with truncations involving even a modest
number of time steps (e.g. M = 50), it is required to locate the roots of a 5000 degree

polynomial, which is impracticable.
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However, by means of the transformation @ =1/z the unstable roots ‘z| > 1 can be mapped

inside the unit disc. Therefore, we define define the complementary stability polynomial
O (2)=2"" P, (Vz) (2.1.8)
which has roots z, inside the unit disc that correspond to the unstable roots of P, (Z) that

fall outside the unit disc. Since QMN(Z) is an analytic function in the finite complex plane,

the Argument principle implies that the number of roots of Q,, (z) contained within a

closed curve C is given by Aarg(QMN(z))l - / (272’) which is an integer representing the

z

number of times the point @ = 0, (z) winds around the origin as z traverses the curve C
once in a positive direction. In particular, if the curve is a circle C, of radius » = 1 then the

number of roots of O, (Z) within  the circle is given by

[arg(QMN(ezm))—arg(QMN(eO’))]/(hz), which is the number of unstable zeros for the

discretization. The application of the Argument principle thus enables the stability of a
particular discretization to be determined by focusing on the number of unstable roots rather

than having to find all the roots.

Figure 2.1.7 shows stability information for one of the unstable two-element antiplane strain

constant/linear TWOA4D runs. The first plot shows the image curve Q(z) as the point z

traverses the unit circle C;; the second plot shows the cumulative argument

@
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as z traverses the unit disk element problem element problem

Figure 2.1.7 Stability for unstable two element problem
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arg(Q(z = e'e)), 0 <6 <2r, and the third plot shows the actual distribution of roots of

P(z) for the problem. The cumulative plot (b) predicts one unstable root.

Figure 2.1.8 shows the spatial plots (see the solid lines), observed at times ¢ = Af, t = 2At,
t =3At and f=4Ar along the element center-line, of the wave fronts emanating from a
single displacement discontinuity element. The displacement discontinuity element has been
excited by triangular hat functions that act over two time intervals. In the first snap-shot at
time /= Af the response to the triangular excitation of the displacement discontinuity
element is a square-wave stress pulse | (t - At) -H (t) that does not decay with distance. In
the second snap-shot observed at time ¢ = 2 At the response is no longer a square-wave stress
pulse but a perturbation of the pulse —H (t) +2H (t - At) - H (t - 2At) . The perturbation of

this pulse results from the diffraction pulses that arrive at y, from the edges of the element.

To the left of y, the pulse —H (t) +2H (t - At) - H (t - 2At) is subjected to interference

while to the right of y, the pulse is undisturbed. In the third snap-shot observed at time
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Figure 2.1.8: Stress Influences Oyy along y axis for single element located aty = 0
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t =3At a similar diffraction-interference pattern is observed. In this case the response is a

perturbation of the pulse —H (t - At) +2H (t - 2At) -H (t - 3At). It is observed that the

jumps in each of these perturbed step pulses are the result of and are directly proportional to

the changes in gradient in the original exciting triangular pulses.

An interesting phenomenon that can be observed after the first time step is that the stress
pulse reaches a level which is larger than the unit magnitude of the self-effect (see time step

t=At aty =0 in figure 2.1.8). Physically this implies that the displacement discontinuity

element can achieve a larger stress influence on an element located at y > 0 than the stress
influence that the element has on itself. This situation arises from the interference of the
diffracted pulses that emanate from the singular points at the edges of the element. These

large stress regions are referred to as persistent diffracted pulses.

From the above discussion on the persistent diffracted pulses, it can be expected that regions
where the remote influences are larger than the self-effect, will be associated with poor
stability. Thus if the second element is placed in one of these regions the resulting two-
element problem would be expected to be unstable. In each plot of Figure 2.1.8 the
magnitude of the largest root of the stability condition is represented as a function of the
location y along the center-line of the displacement discontinuity element at which the second
displacement discontinuity element is placed (see the dashed line). A close correlation can be
observed between the regions in which the diffracted stresses are larger than the self effect
and the regions within which the two element problem will be unstable because the stability

root is larger than unity.

If the time step is altered (either increased or decreased) then it is possible that, due to the
relative locations of the elements, no persistent diffracted pulse passes through the second
element. In this case the algorithm will most likely be stable because the self-effect will
dominate all the influences over the time history of the model. This is the source of the
intermittent instability phenomenon demonstrated in Table 2.1.1 and is also observed in more
complex displacement discontinuity models such as the Hook problem. Because the
instability regions and the places where the persistent diffracted pulses occur are not
identical, it is not possible to derive a simple criterion for instability based on the location of
the persistent diffracted pulses. In addition, in problems with more complicated geometries

the nett effect of the persistent diffracted pulses may be difficult to assess - for example when

13



there are two lines of elements that are not parallel. It is for this reason that the more global

stability checking procedures were developed.

Improved time-stepping algorithms

Numerical instabilities can be delayed by switching from single to double precision, and by
making use of averaging techniques from time step to time step (Manolis et al, 1986).
Averaging methods are not desirable because they effectively damp the transient behaviour to
some degree. Repetitive averaging is even less desirable because the solution is more heavily
damped and can follow an incorrect path. Normalization of the influence coefficients could
also be beneficial. However, none of these methods is very satisfactory, and it is desirable to

develop alternative time stepping schemes in order to obtain a robust stable algorithm.

From the above discussion of stability, it can be seen that stability can be improved by
increasing the size of the self-effect. A logical way of doing this is to adjust the size of the
very first time step slightly by an amount & (the & scheme). Note that in the direct boundary
element method, this would only increase the size of the displacement self-effects - the stress
self-effects are constants. The & scheme has the drawback, however, of introducing a small

error into the algorithm, the result being a slight time shift in the solution. The larger the

choice of &, the larger the shift but the better the stability properties of the algorithm.

The design of a time stepping scheme that is consistent and has a larger self-effect is more
complicated. The so-called half-step scheme satisfies these two requirements. This scheme is
characterized by a two-stage system, involving half and full steps. The sequence of half and
full steps is depicted in figure 2.1.9, and the algorithm, in the case of the indirect methods, is

given by

C'Fy+>.C Fo=by, (2.1.9)

F,, =b, (2.1.10)

m

2k

m-1
f 7 7
go Elm + gl EM-] + Z g2m—
k=0

where / and f imply half and full steps, respectively. Figure 2.1.4 compares the results when

the standard and half-step schemes are applied to the Hook problem.
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Figure 2.1.9: Half and full step sequence of time basis function for half-step scheme

In the half-step scheme, twice the number of time steps are needed to advance the solution by
the same amount of time as in the standard scheme. However, larger time steps can be used
because the system is more accurate. In addition, convolutions are effectively performed on
time steps that are twice as large as in the case of the half-step scheme, which compensates
for the fact that twice the number of time steps need to be advanced. This is demonstrated in
Table 2.1.2 (compare the run times of the two 150 time step runs) for a 28 element plane

strain constant/linear Hook problem, run on a Pentium 66 MHz machine.

SCHEME | NO.STEPS | RUNTIME | Q1 | STABLE?
standard 75 2.05 min 1.2 no
150 6.23 min 0.6 yes
300 20.93 min 0.6 no
half-step 150 3.30 min 1.2 yes
300 9.88 min 0.6 yes

Table 2.1.2: Run times for standard versus half-step schemes

Conclusions

The foregoing analysis has demonstrated the causes of numerical instabilities in time domain
elastodynamic boundary element methods, with particular reference to the two-dimensional
displacement discontinuity method. Numerical tools have been developed that can be used to
determine whether a particular problem will go unstable or not and a new time-stepping

algorithm with superior stability and accuracy properties to the standard scheme, has been

proposed.
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2.2 WAVE DEVELOPMENTS

WAVE has proved to be a useful tool for analysing elastodynamic problems in mining. This
is firstly because it is exclusively orientated toward mining applications (and hence it is easy
to apply stope and crack elements in the model), and secondly due to its efficiency it has both
a fast turn-around time on simple problems (which is good for experimentation), and it allows
orders of magnitude larger meshes than other available mesh-based dynamic codes, which is

very important for large-scale three-dimensional models.

The memory and speed efficiency are due to the staggered grid scheme and the assumption of
a regular orthogonal mesh. The major limitation in WAVE is the lack of generality due to the
assumed orthogonal mesh. The staggered grid also makes the implementation of some
features more complex. It would be highly desirable in the long term to have a mining-
oriented code with the above advantages in terms of a similar order of efficiency in speed and
in the size of problems it can address, while being more general with respect to the mining
geometries which can be represented (e.g. angled faults), in the representation of varyingly
oriented discrete fractures for wave propagation in the fracture zone, and in more varied

materials.

One of the most attractive features of WAVE is its efficiency, and hence very large model

sizes are possible, and these can be analysed with acceptable run-times. Table 2.2.1 lists

2D MODELS 3D MODELS
Memory N‘ Nl*t t#t# N* Nl*i t‘**
1 Mb 10,333 100 7 sec 6,200 17 2 sec
4 Mb 140,333 373 7 min 84,200 42 1 min
8 Mb 313,666 559 22 min 188,200 56 4 min
16 Mb 660,333 811 1.1 hrs 396,200 72 9 min
64 Mb 2.7 mil 1654 10 hrs 1.6 mil 117 1 hrs
128 Mb 5.5 mil 2347 26 hrs 3.3 mil 148 3 hrs
256 Mb 11 mil 3330 76 hrs 6.6 mil 187 7 hrs
* N = Total Elements
** N, = Elements in one dimension
*** ¢ = Run-time on a 120 MHz Pentium PC

Table 2.2.1: Maximum 2D and 3D model sizes in WAVE, based on available memory, and
the projected run-times on a 120MHz Pentium PC
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some example grid sizes, projected run-times and memory requirements for a simple purely

dynamic model. Run-times are based on a 120MHz Pentium PC.

The original WAVE concepts have been extended in a number of areas, mostly relating to
stope or crack element behaviour. The current capabilities are:

- two- and three- dimensional models

- narrow stopes, either open or with linear stiffness representing seams or backfill

- faults with a Mohr-Coulomb slip law, slip-weakening, inhomogeneities

- opening-closure behaviour in cracks (important for wave propagation around fractures)

- absorbing boundaries to reduce reflections

- combined static-dynamic models (applied stress boundaries)

- stope layouts for three-dimensional models

- limited stope intersections (in two-dimensions only) - also allows cavity models

- higher order differencing for improved efficiency/ accuracy

- various graphical representations
Some developments represent specific objectives. In general however, their purpose is to

enhance the scope of modelling, and hence to facilitate objectives such as objective 1.3 which

are oriented toward applications. Important developments are discussed in more detail.
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2.2.1 Overview of WAVE’s basic formulation and grid scheme

WAVE uses a leap-frog time-stepping method where new stresses are calculated from
velocities, and the new velocities are calculated from stresses. The stresses and velocities are
solved for at different positions distributed in a staggered mesh - figure 2.2.1.1 shows these
positions. It is important to note that some behaviour can be difficult to implement on a
staggered mesh (for example, complications due to shear and normal stresses not being
known at the same position in space). Appendix I summarizes how the basic mesh equations
are developed, and may need to be referred to in understanding the details of subsequent

issues - full detail can be found in Cundall (1992).

cell (ij)
I ;
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A | ! :
e |
g : Oq !
- |
:Xo'zz O :
__________ -
Ax i
2 —
Xy
—_—
(a) 2D Cell (b) 3D Cell

Figure 2.2.1.1: Unit Cell in the WAVE Mesh

The efficiency of the method is partially due to the staggered mesh which requires fewer
grid-points and less memory for the same order of accuracy as a grid whose variables are co-
incident. The assumption of a regular orthogonal grid also allows it to be memory and run-
time efficient, since calculations are independent of position, and a small number of constants

can be calculated and used throughout the grid.

REFERENCES

Cundall P.A. (1992) ‘Theoretical basis of the program WAVE’. Unpublished internal report,
COMRO-CSIR Mining Technology, pp 1-12.
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2.2.2 Stopes/ Discontinuities

The “stope” element in WAVE is the generic name for all discontinuities - representing open
stopes, seams, faults and cracks. A discontinuity is implemented in the mesh, as two
infinitesimally thin planes on which certain grid variables are controlled, and others allowed
to be dual-valued. The approach taken in deriving the equations is to write the standard mesh
equation for each of the surfaces using fictitious grid-points which are not in the mesh. Stress
conditions on the surface, provide the third equation allowing these fictitious values to be
eliminated. The approach is illustrated for a 2D horizontal crack in Appendix I, as an aid in

understanding subsequent details. Again, full detail can be found in Cundall (1992).

Faults

This work is important to objectives 1.2 and 1.3. Due to the positioning of the discontinuity
in the mesh, it can be seen in the derivation in Appendix I that grid shear stresses do not fall
directly on the surfaces, but an equation for the shear stress at the surface is used to rewrite
the velocity calculations on the surface. With faults the surface shear stresses at these
velocity points are calculated and stored and the two-step approach becomes a three-step
approach: calculate new stresses, limit the shear stress according to the slip law, and then

calculate the new velocities. The slip law used applies the Mohr-Coulomb limit

7| < € + tan(@)|o,

, where ¢ is cohesion, ¢ is the friction angle and o, is the

normal stress. When &, is tensile, the limit used is ‘r

x| < € . If necessary the shear stress

is reduced, and A7/k, then indicates the increment in slip displacement where k; is the shear

stiffness and A7 is the reduction in shear stress.

Due to the staggered grid scheme, three-dimensional faults have two velocity components
located at different positions on the surface, such that the calculated surface shear stress

components are separated in space. Figure 2.2.2.1 shows the grid positions for a surface in
the x,-X, plane. In this case the surface shear stress component &} can be calculated at the

position of % and 0';’; at the position of #,. The slip law must however be applied to total

shear stress. To do this we need to interpolate a total shear stress, apply the slip law, and

redistribute slip (stress drop) to the individual components.
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Figure 2.2.2.1 Grid values on the surface of a fault in the x,-x, plane, highlighting

velocities, surface stress and normal stress positions

The approach used is to calculate all the surface values of ol and ol at the & and #,

positions respectively, and then to interpolate throughout the grid storing the total shear

stresses at both positions. The slip condition is applied at both positions - the limiting shear

stress being calculated by interpolating the normal stress, which is located at a different

position.

The method has two phases as follows:

(a) Firstly, calculate total surface shear stresses at #, and i, throughout the surface:

Interpolate for o2, at position # and hence calculate the total shear stress 7 Y at i,

sf
Oy

sf

T

) _ 1 sf (4J)
y oo 1(0'23 to

2 2
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Similarly, interpolate for &7} at position #, and calculate the total shear stress at #, :

| Gy s () sFU=L)) PACIALY s G=Lj+1)
O3, —'4‘(013 + 07 o} ol (2.2.2.3)
o o] 2 o 2
T, =Y9n3li, TOx (2.2.2.4)

(b) Now apply the slip law |Tmax| <c+ tan(¢)|0'n

throughout the surface.

. 1 i ] i
For position # , G, = 5(033( o), (22.2.5)

n

and if o, istensile, o, =0 isused in the slip law.

s/ sf s

If 7 | then o)} isreducedto o, = o}

(2.2.2.6)

max

i >|r

in which case Aty gy = —— (2.2.2.7)

indicates the increment in the u, component of slip displacement, where k; is the shear

stiffness and Ao} is the reduction in shear stress.

. 1 ij+ i
For position i, o, = 5(033‘ T4 o) (2.2.2.8)

f of of 17 e

If r I i, > |Tmaxl9 then 0;3 is reduced to O3 =0 ‘ sf
T

(2.2.2.9)

)

in which case Aty oy = — (2.2.2.10)

This approach has a slight memory penalty, since the interpolated values thoughout the fault
need to be stored temporarily. More importantly, the interpolation will complicate future
attempts to adapt the method for parallel computation, since stress calculations are directly

dependent on stresses in other cells, whereas in general they are only dependent on velocity
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components in other cells. Thus interpolation calculations must be completed before
contributing components are changed. For this reason an alternative approach which
interpolates the total surface shear stress at the normal stress position was not used. While
this would simplify the application of the slip law in that it is applied at a single point, a
second set of interpolations would be needed to re-distribute the slip back to the separate

components, which is undesirable.

A slip-weakening rule is applied to the

shear bond. The strength of the bond at Cohesion
each element is reduced linearly with slip,
from the initial value of cohesion to a Cres

residual value (figure 2.2.2.2), where the

A 4

swd

initial cohesion (C,), residual cohesion ,
Total absolute slip (Tasip)

(Cres) and the slip-weakening displacement
(swd) are input parameters. The slip- Figure 2.2.2.2 Slip-weakening Law
weakening displacement is the value of

slip at which the residual cohesion is reached. The slip referred to here is the accumulated

total of all slip increments, regardless of direction - or the total absolute slip (7). In two

aslip —

N N
. . . . . 2 2
dimensions 7T, = E Iul(x,,-p) and in three dimensions 7, = Z\/u](s,,.p) + Uygiipy >
1 1

representing a summation over all time steps. The equation for the shear bond as a function of

total absolute slip is

C=C+(Co = G) e (for T,

wood iy S swd)

or C=C,, (for T,

slip

> swd). (2.2.2.11)

In general fault parameters are applied uniformly throughout the fault for better efficiency.
An extended “stope” type is provided whereby any of a number of parameters (amongst
them, friction, cohesion, normal and shear stiffnesses and stoping width, as well as switches
enabling or disabling slip or crack-opening behaviour) may vary element by element in the

“stope”. This allows for inhomgeneities to be specified on a fault.
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Contact logic - crack opening and closing behaviour

Contact logic in ‘stopes’ deals with the transition between an open and closed crack, and is
important behaviour in considering wave propagation in fractured rock (objective 1.5). For
example in section 2.4, the photo-elastic experiments and model comparisons show
significant differences when a parting plane is allowed to open compared to when it is
perfectly bonded. The contact logic also allows stope closure to be modelled, which is
important in setting starting conditions for dynamic analyses, where closure will affect both
the initial stress distribution and hence the source, and also the wave propagation in the

vicinity of the stope.

A contact status is maintained for each element in the “stope”. Parameters for stoping width
and tensile strength are used to specify the conditions at which transitions from open to
closed and closed to open take place. The stoping width is defined as the assumed thickness
of a crack and limits the amount of interpenetration of the surfaces, while the tensile strength
is the tensile stress required to open a closed crack. Switches can disable the contact logic - if
set open, a crack always behaves as if open allowing infinite interpenetration, while if set

closed it effectively has an infinite tensile strength.

The approach used is to calculate increments in stope variables based on both an open and a
closed crack, and then to check for a transition. If none occurred during the time-step then the
appropriate open or closed increment is used. Otherwise the point in time at which transition
occurred is estimated, and the increments in stope variables are based on combinations of the

open and closed increments for this step.

The calculations for open and closed stopes differ fundamentally in just four quantities:

normal stress, normal displacement, and two components of surface shear stress (assuming

. . . . d
three dimensions). For a stope in the x,-x, plane (horizontal) these are o, , u," , O'lzsf

and 0'23S‘f , where “sf” indicates a surface stress since these stresses are not at their usual

locations in the grid. Here #,” is the relative normal displacement or convergence and is not

known directly, because u, velocities are not located on the stope surface. o, and o,; are

!

1 .
dependent on Ao, and 0,5, % and u,° are only dependent on velocities whose surface

values are known. Increments in the four quantities must be calculated for both the open and
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closed conditions, when one of the following rules is applied according to the current state of

the contact.

(a) Stope initially open
If (uz’e’ +Auw" ””) > st (2.2.2.12)

[ 0p

where st,,, is the stoping width and Au,” * is the convergence calculation for an open

stope, then the stope has closed during this time-step. The fraction of the time-step taken to

close is

rel
L N (2.22.13)

rat rel OF

Au,
) y
The increments for »,” and o, are

Aw =t *Aw"" +(1-t )*Aw™" (2.2.2.14)

rat rat

Aoy =t,* Aazzop +(1-t,)* Ao'zzd (2.2.2.15)

and in this case the same ratios are applied to a,zsf and 0'23Sf .

(b) Stope initially closed
cl
If (03 +A0,")> T, (2.2.2.16)

. N . .
where T, is the tensile strength, and Ac,,” is the normal stress increment for a closed

stope, then the stope has opened during this time-step. The fraction of the time-step taken to

open is
T,-o
. =2 (22.2.17)
Ao,
The increments for uzrel and o, are now
rel * rel ¢ % rel °P
Au,” =t *Au, +(1-1,)*Auy, (2.2.2.18)
Ao, =-0, (22.2.19)
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sf sf
o, and 0,

are forced to zero.
If there is no transition in the open/closed state, then the appropriate values for the

increments based on the pre-existing state are used.

It is important to note that the possiblity of transition is only determined during the stress
calculation cycle. If a transition would have occurred before the velocity calculation (e.g. a
stope closes), it will not manifest itself in the velocity calculations, and the velocities would

(in this case) be inappropriately high (this applies only to the & and #, velocities, as the i,

velocity is not calculated on the stope surface). It is unclear whether the subsequent stress
calculations will correct this anomaly. Currently though, this is assumed to cause negligible

€ITor.

3D stope layouts

Stope layouts were implemented for three-dimensional models. This augments WAVE’s
application to more general mining problems. It has opened up the possibility of doing three-
dimensional back-analyses of real events, and also comparisons on the differences in dynamic

behaviour of different layouts, and is important to objective 1.3.

The approach used is to map a mine layout onto an existing rectangular stope, with solid
conditions (sealed surfaces) enforced at appropriate points. A first approach used finite
stiffnesses between the surfaces to approximate the solid areas. However, it was found to be
necessary to implement true solid conditions, and in particular the edge conditions between

the solid and open areas were critical.

For solid behaviour, all quantities on the stope surfaces must be continuous (single-valued).
Solid conditions are simply obtained by performing the equivalent of grid calculations, and in
storing these values both in the grid positions and for each surface of the stope (for use in
calculations by adjacent elements in the stope). Edge conditions are required when there is a
transition from an open to a solid area of the stope, where the calculations at the solid
position involve terms from adjacent cells which are dual-valued. These edge conditions are a
generalization of those needed in the three-dimensional rectangular stopes, where the dual-

values are averaged to give a single quantity for equations requiring a single quantity.
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An example using the layout logic is shown in figure 2.2.2.3, where wave patterns in the form
of closure velocities due to a fault source ahead of the stope, are shown for a lead-lag stope,
indicating how the multiple reflections lead to complicated wave patterns and pockets of high

velocity.

Figure 2.2.2.3: Convergence velocities in a three-dimensional stope, due to a shear event

Intersecting stopes, and cavities

An important generalization is to allow “stope” intersections. A limited form of this
intersection logic was implemented - for two-dimensions, and for the assumption of open
cracks at the point of intersection. This allows fractures to intersect stopes in two
dimensional models, while the linking of stope elements allows two dimensional cavity

problems to be modelled.
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There are a number of possible types of intersection: a full intersection (where both ‘stopes’
extend on both sides of the intersection), partial intersections from the left, right, top or

bottom (where a “stope” terminates at the intersection), corner intersections and co-linear

intersections.
‘Stope’ 2
0‘12 {lzL ]'JZR G]Z
A ® ® A
s T * T
u, - - z r\ul
A TL R T A
022 ’011 022 ’Gll
oo " s fo"”
— o 271 5 22 200 O- - ‘Stope’ 1
Yy Gy u,
A L ® 0. . A
o, U, i) L PN Gy

Figure 2.2.2.4: Intersection point for two intersecting ‘stopes’

The first requirement is to solve for the stresses at the intersection points. The case of a full
intersection is considered in figure 2.2.2.4, which shows the point of intersection between
two ‘stopes’. The surfaces are shown as separated, although the four corner points are
coincident in terms of their position in the WAVE mesh. In general at this point of
intersection there are four different surfaces, and hence four positions at which ¢, and o,,
can be calculated giving two relations between stress and known and ficticious velocities per
position. Assuming a linear normal stiffness gives a third relation per position. From

continuity ©,, is continuous across “stope” 1, and o, is continuous across “stope” 2, and
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T

B L R .
- c,, and ¢, as in figure 2.2.2.4, where

hence there are only four unknown stresses (o 1 > O

c
T and B refer to the top and bottom surface of “stope” 1, and L and R refer to the left and
right surface of “stope” 2). In the single “stope” case (in Appendix I), the normal stress is
solved for from three relations between normal stress, known velocities and two ficticious
velocities. The intersection case, is similar in that there are four sets of three equations -
however these are coupled. This leads to a sparse system of twelve equations and twelve
unknowns (due to eight ficticious velocities), from which the unknown stresses can be
solved. The nearest o, grid calculations are also complicated by the intersection. The
structure of this calculation is unchanged, but the appropriate surface velocities must be used

instead of grid velocities (figure 2.2.2.4).

The second requirement is to implement the actual intersection logic which maintains a list of
intersection points, the type of intersection (full, partial etc.), and links to the ‘stopes’ which
intersect. This logic overrides the stope stress calculations at the intersection points, and the
nearest ¢, grid calculations. The appropriate forms of these stress calculations is dependent

on the type of intersection.

The fully general case for the solution of the stope stresses has not been solved for. However
if it is assumed that both “stopes” are open at the point of intersection, then the solution of
the above equations is trivial (crnT = O'“B = GZZL = 022R = 0). This simplification is not made in
co-linear intersections, where the general solution is less complex. The intersection logic is
fully general so that if the above system of equations is solved for, these stress calculations

can be readily implemented in the existing framework.

Intersecting open stope elements have been employed successfully in representing cavities.
Figure 2.2.2.5 shows as an example a model of wave interaction with a ‘T-shaped’ tunnel,
illustrated by a series of snapshots of particle velocity. Intersections of fractures with a stope
can be modelled by allowing the first element of the fracture to be open (i.e. G, = 0 at the
point of intersection). This method was employed in section 2.4.2, where the model

accurately reproduces the experiment in spite of this assumption.

Extending these intersections to three dimensions is necessary before three dimensional

cavities and intersecting fractures can be studied.
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Figure 2.2.2.5: Example cavity problem, showing wave interaction with a ‘T-shaped’ tunnel
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2.2.3 Boundaries

Two conditions are enforced at the boundaries - absorbing and applied stress conditions. The
absorbing boundaries minimize reflections to approximate wave propagation in an infinite
medium. The assumption used is accurate for plane waves striking the boundary with an
angle of incidence of 90°. The applied stress boundaries implement an external steady-state

stress field, allowing the solution of an in-situ stress state.

Combined absorbing and stress boundary conditions

The implementation of the absorbing boundary conditions is summarized in Appendix I, and
detailed in Cundall (1992). To combine the absorbing boundaries with an applied stress, we
note that the absorbing conditions of Appendix I must apply to the transient stress not the
total stress, and that the total stress will include the stress applied at the boundary. The

absorbing condition for normal motions then becomes

trans bd

c,""=0,-0," =C,pi, ()

n

referring to the transient, total, and applied normal stresses, where #, is the particle velocity

in the direction of propagation, and C, is the P-wave speed. Using this relation and following
the approach of Appendix I but arranging terms differently, the equation for updating the

normal stress at the lower boundary in two dimesions becomes

6'22:(1+1—)[(l_ Ig_zd;)a;;'+E1A§—g(2u»2’+#a’;‘;)+E2-§;—l(a{~a{*)] )

_Ar ]
I Ax, Cpp

Absorbing conditions for shear motions are similarly based on the transient shear stress

trans __

" =r-t"=Cpu 3)

where 7 and u, are the shear stress and particle velocity perpendicular to the direction of

propagation, and C; is the S-wave speed. Using this condition and figure 2.2.3.1, we develop

the equations for the velocity # which is also located on the lower boundary. The general

equation for calculating new #, velocities is

.Y
Ac,' +——Ac), (4)

i :a;‘%+pr e
1 2
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Applying this at the lower boundary, and using fictitious stresses to represent stresses falling

outside the mesh, gives

) i At ; i At "
ulH}é =1 %+ (0'11 ~— Oy 1)'*' (O'lzj -0, ](f)) ()

Ax, p Ax,

Condition (3) is applied at the position of # and at time ¢, by averaging o, in space and

averaging u, in time, giving

trans
12

= %(012‘} + 0-121_1(,{) ~20,, bd) =Cp (a]:% + ’:‘1{—%) ©

L]

J=1)

Combining (5) and (6) to eliminate the fictitious stress o, , gives

Similar equations can be derived for other boundaries, and for three dimensions.
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Figure 2.2.3.1: Lower grid boundary in 2D Mesh, showing line of fictitious grid-points

32




Corner and edge conditions

At the boundary corners in two-dimensions, and at the boundary corners and edges in three-
dimensions, two or more boundary conditions are necessary. It was initially assumed that
these positions could be ignored as they would contribute negligibly to reflections. It was
eventually found that not calculating velocities along the edges for three dimensions, leads to
serious errors. (The solution to simple hydro-static loading led to significant values of shear

stress in the mesh - purely due to the velocity conditions at the edges).

Consider once again the #, velocity at the bottom boundary. For three dimensions we have,

At
pAx,

At
p Ax,

Cs . j i At _
uh=a (o-lzj -0’ '(f))+————(0'13k ~-a, ') (8)

(Jlli—o-nii])"" pr3

Taking the back edge of the lower boundary (k=1), we note that we now need a value of o,

which falls outside the mesh, leading to a second fictitious stress in the equation.

ih =i h +A(Un' —O'“H)+i(an’ _ 0.121—1(f)) +

k k=1(f)
o, —O 9
Ax, pAx, pr3( B P ) ©)

The condition (3) is now required to hold for both o, and o, at the # position. Equation

(6) for o, was derived from this condition, and we can derive a similar equation for o ;.

trans _ k k-1(f) bd __ .1+ .Y
13 =0 T0y; -20,"°=Cp (ul Ty 2) (10)
“"I
.. .. . -1 1) k-10F) .
Combining (9), (6) and (10) to eliminate the fictitious stresses o, and o, , gives
L I R VSR WL N (1)
vy Tl ok Gl s el

Similar equations can be derived for the other edges.

The solutions of stresses at the corners and edges are somewhat more complex, and
expressions have not been implemented, since their omission appears to have no significant

influence.
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Experimental “far” boundaries

Using the applied stress boundaries to model the far-field stress field in a mining problem
requires the boundaries to be very far for an accurate stress distribution to be obtained. In
statics the mesh can be graded to have large elements near the boundaries. In dynamics it is
undesirable to grade the mesh as these introduce reflections, so that the requirement of distant
boundaries can lead to undesirably large mesh sizes, when dynamic problems involving in-

situ stresses are investigated.

One solution is to approximate the effect of far field stresses at the boundaries. As an
experiment, a boundary was implemented which assumes a hyperbolic fall-off between the
boundary stresses and the far-field stress state. For the simplest test case of a single stope,
this approach was encouraging. Figure 2.2.3.2 compares results for a two-dimensional single
stope model for the cases of distant boundaries (70 x 70 elements), close boundaries (30 x 30
elements), and close boundaries with ‘far’ conditions applied. The results shown are for the
vertical stress distribution along a line 70 metres above the stope (near the top boundary of
the close model), and for stope convergence. The small model with close boundaries and “far’
conditions approximates that of the large model with distant boundaries - but with far fewer
elements. It is emphasized that the above was experimental and is not necessarily the best
approach. However, development of such a technique would be extremely important for

three-dimensional analyses.

Horizontal line 70m below the stope (m) (=31 v018 | T -
0 150m i .
-—— 90x90, Far Stope | e
convergence
- 30x30, Close (m)
Vertical | e 30x30, “Far”

— 90x90, Far
~ 30x30, Close
-------- 30x30, “Far”

stress (MPa)

{n=15)
70m

-100 |-

Poisition along stope (m)

(a) Vertical stress along a line 70 metres above a 70 metre (b) Stope convergence for a 70 metre stope

stope (near the boundary for the small models)

Fig 2.2.3.2 : Comparisons of models with far boundaries, close boundaries and close
boundaries with “far” conditions
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2.2.4 Accuracy

Comparisons were made between dynamic codes WAVE, TWO4D and FLAC (Siebrits and
Hildyard, 1993), which identify some of the strengths and weaknesses of the different
methods. One of the problems highlighted in the finite difference codes (WAVE and FLAC)
was in the propagation of high frequencies. Worst case examples were considered with
sudden step-loading of a crack and the immediate de-stressing of a pre-stressed fault. The
finite difference codes capture the gross behaviour, but this is swamped by significant
“ringing”. The cause of this ringing is numerical dispersion, where the modelled wave speed
differs from the physical wave speed for high frequencies. As a result, it was important to
characterize the accuracy of finite difference methods, particularly with respect to numerical
dispersion (objective 1.7). Higher order differencing has been implemented in WAVE to

reduce the effects of dispersion.

Dispersion

Dispersion is the variation of wave speed with frequency, and numerical dispersion indicates
the departure of the modelled wave speed from the elastic wave speed, which is large for high
frequencies. The effects of dispersion error become more manifest with time or distance of
propagation. The causes of numerical dispersion in finite difference approximations to the
wave equation, were analyzed in detail by Pierce (1995). This included a mathematical
analysis of the accuracy, stability and dispersion of various differencing approximations, with
specific reference to 2nd order central differencing and leap-frog time-marching as used in
WAVE. Expressions are presented for the order of accuracy based on Taylor expansions, and
the 2nd order scheme is shown to be a more accurate approximation to a dispersive wave
equation. Expressions for the numerical group and phase velocities show that the 2nd order
finite difference approximation is dispersive. In comparisons with analytic wave-forms, it is
shown that where there is little high frequency content, the numerical solution is in fact very
accurate. It is noted that in practical elastodynamic models, high frequency signals are
common due to faults and joints and impulsive loading. Dispersive effects can be alleviated
to some extent by using a sufficiently fine mesh or higher order difference schemes.
Although spectral methods eliminate dispersion, they are computationally costly and are not

suitable for non-linear problems and the modelling of discontinuities such as faults and
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joints. The analysis of this dispersion is fairly mathematical, and it is therefore included in

Appendix II.

Higher order accuracy

In order to improve dispersion error, difference schemes of 4th and higher order accuracy
were added to WAVE (the general scheme uses 2nd order differencing). The purpose here
can be seen as either to give greater accuracy or to give greater efficiency for the same

accuracy, hence increasing the size and scope of problems that can be modelled.

The effects of dispersion error become more manifest with time or distance of propagation,
but for a typical period of interest in geophysical applications it has been suggested that the
maximum ‘significant’ frequency should be 10% of the maximum frequency in the grid,
based on a 2nd order scheme (Aki and Richards, 1980) - although this is conservative for
short time frames. For a given source this requires a sufficiently fine mesh, or alternatively
the source frequencies must be controlled. In many problems of interest however, it is
undersirable to control the source - e.g. fault slip, where high frequencies can be introduced.
On the other hand a fine mesh has high memory and run-time costs. A number of papers in
the literature have established the benefits of higher order difference schemes in both space

and time, where numerical dispersion is improved but not eliminated (Dablain, 1986).

In WAVE, higher order spatial schemes have primarily been considered. The advantage here
is that there is no increase in the memory usage over the second order scheme, although run-
times are increased. In general the same accuracy as the second order scheme can be achieved
with a reduction in both memory and run-time requirements. Higher order accuracy in time
was experimented with, but this had the major disadvantage of increasing the memory

requirements.

Consider a line in the WAVE mesh as shown in figure 2.2.4.1. For the calculation of o, at

2u
x,, we need to evaluate the derivative ﬁ—x' at x;, and to approximate this we have known

values of u, at x,#h, x,#3h, x,#5h... This is true in general for each grid variable fin the
WAVE mesh, where we are dealing with a function f(x), with known values at x,#%,

Ax

x,#3hetc,and f'(x,) isrequired (here x is either the x, y or z dimension and 7 = —).
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Figure 2.2.4.1: Line in the WAVE mesh showing alternating positions of ¢, and #

Expanding the Taylor series for f(x, + /4) and f(x, —h) gives

Fg+h) = £(x,)+ f/(x)h + f”(xo)% . f”'(xo)% ; f""(xo)%+...(2.2.4.1)

2 h3 h4
f(x, —h)zf(xo)—f'(xo)h+f”(xo)%—f"’(xo)?+f‘“(xo)z—...(2.2.4.2)

Subtracting (2.2.4.2) from (2.2.4.1) eliminates all even order terms,
n /N
S(xg+h)—f(xy—h)= 2{]”(x0 Ya+ £ (x, ); + f“(xo);+...} (2.2.43)

giving

S(x, +h) = f(x, _h)+0(h2

J'(x0)= o

) (2.2.4.4)

which is the second order diffference scheme.
Similarly, expanding the Taylor series for f(x, +3A) and f(x, - 3h)

F(xy +3h) = f(x,)+3f"(x, )h+3’ f”(xo)g—z‘ +3 f"’(xo)?—? +3* f”(x0)$+.. (2.2.4.5)

f(xo—3h)=f(xo)—3f’(x0)h+32f"(xo)%—33f”'(x0)%+34f’”(x0)%—-- (22.4.6)

F(x, +3h)— f(x, =31) =2 31" (x, )1+ 3’ f"’(x0)§+35 f“(xo)i—j+...} (2.2.4.7)
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and eliminating the term in /2’ between equations 2.2.4.3 and 2.2.4.7, gives

_Tldf(xo +3h)+%f(xo +h)_%f(xo _h)'*'if(xo —3h)
2h

J'(x)= +OH)  (224.8)

which is the 4th order difference scheme. Continuing in the same manner, higher order
schemes can be derived. The coefficients for 2nd up to 10th order accuracy developed for

WAVE are listed in Table 2.2.4.1.
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Table 2.2.4.1: Coefficients for 2nd, 4th, 6th, 8th and 10th order differencing

The 4th order differencing was implemented in both two and three dimensions, while the 6th,
8th and 10th order differencing was limited to two dimensions. Higher order differencing is
only applied to the mesh equations, and equations near stopes and boundaries are 2nd order.
Development of full 4th order stope logic would be beneficial, but is relatively complex. As
such only the accuracy of wave propagation through the solid is improved, while the accuracy
of propagation on stope boundaries and the accuracy of aspects of the geometry are not
affected. Switching down to 2nd order in the vicinity of stopes introduces an error, which
limits the final steady-state accuracy of a model. This is most noticable in combined static-
dynamic analyses, where if the residual velocities (steady-state error) are not much less than
the values of interest in the transient/ dynamic model, then the higher order formulation
cannot be used. Nevertheless, it will be shown that significant benefit is obtained by using the

higher order formulation.

In Siebrits and Hildyard (1993), a series of tests were done comparing wave propagation from

a two-dimensional pressurized and shearing crack for which known analytic solutions exist.
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The case of step loading poses the worst possible conditions for dispersive solution methods
such as finite differences and finite elements, due to the high proportion of high frequency
content. The velocity at a point (at a distance of 3.5 times the source size) normal to a shear
source with step loading is reproduced here to show the benefits of the higher order
formulations. Figure 2.2.4.2 shows the results for a 10 element source for 2nd up to 10th
order differencing, and as a control the result provided by TWO4D (which has been shown to
have an accurate solution). The shape and amplitude of the response clearly improves with
successively higher order formulations, and the ringing is reduced. The very high order
schemes however, seem to produce larger boundary reflections due to the boundary being

2nd order, and for this reason the 4th order scheme has primarily been used in WAVE.

63
XA
63 MRE
(n=201)
=201 %) aoms
o ey
&3 8th arder
&3 (2 2nd order @
€3 @xA
a3
ARE
(n=201)
A (=201 0 N A AAAA QOB
o P WY VI\VAAAV;\VAMV 4 00 v vy
. (b 4h order 43 © 10th Qrder
a3 ANA
63 XA
N g
n=201) 00 — QoS
) MM, AN QO3S
L vvyvy
63 ™OD
&3 (© 6th order ®

Figure 2.2.4.2: Response to a Step Shear source for Orders 2 to 10

Another approach to evaluation is to compare the size of model required to produce the same
accuracy for the different schemes. This is done by choosing a finite rise-time for the source
(so that it is band-limited), and then selecting the coarsest grid which produces no ringing. In

figure 2.2.4.3 the TWOA4D step result is compared with a 10 element source model with a 2nd
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and 4th order solution, and a 20 element source model with a 2nd order solution. A rise-time
of 1.2x107s was chosen, corresponding to 12 and 24 time-steps in the 10 and 20 element
source models respectively. It can be seen that to give comparable results, the 2nd order
model needs to be about twice as fine as the 4th order model. In this case, the 2nd order
model would require four times the memory and more than four times the run-time of the

fourth order model.
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Figure 2.2.4.3: Responses to a shear source of finite rise-time (1.2 msec), comparing 2nd and
4th order solutions with the same mesh resolution and a more refined 2nd order solution. (In

each case, the dashed solution shows the step response for TWO4D)
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The above examples should show the optimal improvement for the higher order schemes,
firstly due to the high frequency content, and also because wave propagation in a continuum
is considered. A typical model may not have the same degree of high frequency content, and
may have stopes, faults, parting planes etc, which are always solved at 2nd order accuracy. A
comparison of convergence velocities in a simple three-dimensional stope model is shown in
figure 2.2.4.4. The model consisted of a (48m) square stope and a (16m) square shear source
(32m) ahead of the stope face. The convergence velocities considered are at 8m from the
stope face. The three cases shown are for a 2nd and 4th order accuracy with 4m elements, and
for 2nd order accuracy with 2.67m elements (a reduction of two thirds). In each case the
dotted line shows a more accurate solution (4th order, Im elements) for comparison. The
accuracy of the 4th order model and more refined 2nd order model are similar - however this
2nd order result requires nearly four times the memory and run-time. The 4th order result

here can be seen to become less accurate at later stages, since propagation along the stope is
2nd order.
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Figure 2.2.4.4: Comparison of different order solutions for a 3D stope model
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It has been shown that the use of higher order differencing, has the potential to reduce
memory and run-time requirements significantly. These benefits are particularly important in
3D modelling where the size and scope of problems will continue to be limited by computer
hardware in the foreseeable future. To obtain full benefit would require all features such as
stopes and boundaries to be higher order. The results do show however that there is an
advantage in higher order differencing even without all features being higher order. It is

recommended that future grid-based dynamic codes make use of high-order differencing

where possible.

Stopes

An accurate static stress state due to the influence of a stope is important as it often provides
the initial state for a dynamic investigation. WAVE obtains a static stress state through

applied stress boundaries and asymptotic solution of the dynamic equations, and hence

(1] DIGS

w19 Vo eemm———
[2] WAVE
(16 Elem)
[3] WAVE
QX (32 Elem)
00 f 100
019

(a) Stope convergence

e 1] DIGS
ST T EwAE
7T e (18 Elem)
T
(32 Elem)

-0.04

(b) Stope ride

Figure 2.2.4.5: Comparisons between DIGS and WAVE for a 100 m stope
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inaccuracies in the static solution are an indication of inaccuracies in the overall dynamic
implementation. DIGS was used to provide an accurate static solution for comparison with
WAVE. Comparisons are shown in figure 2.2.4.5, for the case of a 100 metre stope in a
rotated stress field (simulating a dip of 20°). It was found that normal stope components are
accurate (e.g. convergence, figure 2.2.4.5a), while tangential stope components (e.g. ride,
figure 2.2.4.5b) are less accurate. The cause of this inaccuracy is unclear, but it appears to be
localized directly at the surface, and tangential stresses one element from the stope are more
accurate. Figure 2.2.4.6 is for a similar case of a 400 metre stope where total closure occurs,
and shows that the overall stress field is accurate. The convergence profile when total closure
occurs was also shown to be accurate (Hildyard et al, 1995). The static accuracy for three-

dimensional models has not been verified.

(~400.0;4000) (~400.0;400.0)

(400.0400.0) {400.0400.0)

(i) WAVE (i) DIGS

Figure 2.2.4.6: ESS contours (Min=0MPa, Max=20MPa) for DIGS and WAVE for a

400 metre stope

The accuracy of the dynamic behaviour of stopes and cracks in two-dimensions has been
established through reproducing dynamic photoelastic experiments (cf. section 2.4). In
particular the non-linear slip and contact laws were effective in reproducing behaviour from
these experiments (cf. section 2.4.2), which gives some confidence in their usage. Similar
experiments in three dimensions are recommended for testing the three-dimensional

formulation.
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Boundaries

In Siebrits and Hildyard (1993), boundary reflections were found to be minimal for high
frequencies, but were present in problems with low frequency sources. It was later noted that
the extremely low frequency in this example violates the absorbing boundary assumption of

the waves being planar at the boundaries.

Reflections are generally small and are not normally visible in snapshots of wave patterns.
The best way to highlight boundary reflections is to compare seismograms for the same
model, but with boundaries at different distances. A simple model was used with a
compressional point source and a shear source and a corresponding velocity recording. The
‘far’ case has the boundaries at least thirty elements from the source and from the recording
point, while the ‘near’ case has the boundaries at least ten elements from the source and from
the recording point. The results for different source pulse widths are compared in figure
2.2.4.7. Seismograms (a) to (c) are for a compressional source, and (d) to (f) for a shear
source. The presence of boundary reflections can be noted, and reflections are greater for
larger pulse-widths, i.e. lower frequencies. One reason for this is that the boundaries are most
accurate for plane waves, and the distance of propagation required before a plane wave
assumption is valid, is proportional to the wave-length. The reflections ae greater for the
shear source than the compressional source. This is primarily due to the loading. A smoothed
step load was used for the shear source, for which there is a nett stress change and hence a
zero frequency (infinite wavelength component). A smoothed pulse was used for the

compressional source, which has no nett stress change.

In all the above cases, the pulse-width is greater than ten elements, so we would expect
reflections with the close boundaries. By moving the boundaries to at least 20 elements from
the region of interest, reflections for the shortest pulse become negligible figure 2.2.4.7(g). In
general, the boundaries should be at least one pulse-width from the region of interest. In two-
dimensional models this requirement is acceptable, although in three dimensions it is

generally necessary to accept some level of reflections.

Often of more significance than the distance of the boundaries required to minimize
reflections, is the distance of the applied stress boundaries required to achieve an acceptable
static stress distribution. Figure 2.2.4.8 compares the static results for a sixteen element, 100

metre stope, for different boundary positions. These are compared for convergence and
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Figure 2.2.4.8: Comparisons of aspects of the static solution for different boundary positions

vertical stress distribution along a horizontal line 100 metres above the stope, as an arbitrary
choice of the region of interest. The cases shown are for 80x128 elements, 48x64 elements
and 32x32 elements, where the vertical boundaries are at a distance of four, two and one
stope span from the stope, with the horizontal boundaries at two, one and half a stope span
from the stope. The case with the vertical boundaries at a distance of two stope spans gives
acceptable accuracy, but the grid size is four times that of the assumed region of interest. This
is very limiting in three-dimensional problems. As discussed in section 2.2.3, it is undesirable

to grade the mesh for dynamic models, although alternative approaches seem possible.
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2.2.5 Stability

Understanding the stability of a numerical scheme is important both for accuracy, and for
efficiency, so that an efficient time-step can be chosen rather than a conservative estimate to
ensure stability. The stability criteria for one-dimensional time-marching schemes is
considered in Appendix II or Aki and Richards, 1980. For the leap-frog scheme as used in

WAVE, this is shown to place a restriction on the maximum time-step of

At <

m

h (2.2.5.1)
C

where h is the length of the spatial discretization, and c is the wave speed. Effectively this
ensures that the speed of propagation of numerical information is faster than the physical

wave speed. In WAVE itself, three separate stability conditions are required: for the grid, the

stope and the boundary equations.

B D
X X
Ay
X X
A C
—>
Ax

Figure 2.2.5.1: Schematic of four grid points of normal stress (only) in the WAVE mesh

We apply the above principle to the mesh equations in the two-dimensional WAVE grid.
Figure 2.2.5.1 is a schematic of four cells in the WAVE mesh, where only the positions of
normal stress are shown, represented by the ‘X’s. We note that numerical propagation from

point A to point B requires a single time step, and hence

(22.5.2)
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is a necessary condition, where Cp.. is the maximum P-wave velocity throughout the grid
(noting that the P-wave velocity is always higher than the S-wave velocity). However

propagation from A to D requires 2 time-steps, so that

2 A 2
ar < VAT AT (2.2.5.3)

max — C

P-max
is another necessary condition. If Ax = Ay this gives a sufficient condition of

A

At < 7§Cy— (22.5.4)

In general however Ax # Ay. For this we need to obtain the shortest physical distance
requiring the largest number of time steps. This condition is reached when the number of x

and y grids being traversed are in the proportions Ay2 and Ax’ respectively, giving a distance

\/ Ay*Ax® + Ay*Ax* | while the relative number of time steps required to propagate this

distance is Ax’ + Ay2 . This gives a more general condition of

< AxAy
A A G

At (2.2.5.5)

In WAVE, the actual time-step used for the second order scheme in two dimensions is

A =L At (2.2.5.6)

V2

In three-dimensions, the same analysis yields

AyAz
At < Axdy (22.5.7)
VA + A + A2 C,
and the actual time-step used for the second order scheme in three dimensions is
3
At = £At (2.25.8)

2 max

For both two-dimensional and three-dimensional higher order schemes, the time-step is

reduced to 90% of the values given by equations 2.2.5.6 and 2.2.5.8 respectively.
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Stopes, seams and faults may be given stiffness. The choice of normal stiffness is arbitrary,
but the shear stiffness has as effect on the stability. The following empirical condition is used

in WAVE

P
Al S K K+%G (2.2.5.9)
Ay Ax?

where K is the shear stiffness, and p, K and G are the material parameters of the surrounding
material (density, bulk modulus and shear modulus). Alternatively, the maximum stable shear

stiffness in stopes for a given time-step size, is limited by

p K+4 G}
K. <A - 2.2.5.10
s(max) y|:At2 sz ( )

Finally, the present three-dimensional boundary conditions (specifically the edge conditions)

also affect stability. An approximate and conservative empirical relationship is used with

min(Ax, Ay, Az)
max S
242 C

(2.2.5.11)

where C; is the shear velocity at the boundary.
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Conclusions

WAVE is extremely well-adapted for analysing dynamic mining problems, with fairly low
geometrical complexity. WAVE has associated graphical facilities which provide a means of
visualizing the development of wave patterns, and capturing and analysing synthetic
seismograms. The command structure has been made more accessible by means of an
extensive on-line help facility containing command syntax and example models. It is

potentially a useful tool in obtaining an understanding of wave behaviour in a mining context.

Important developments have been made in the representations of stopes and cracks. While
limited in orientation, the important characteristics of wave-stope and wave-fracture
interactions are captured. Much effort has also been made to achieve optimum performance.
This includes the overall efficiency of the difference scheme, and efficiency due to the
assumption of an orthogonal mesh. Absorbing boundaries, static boundaries, high order
schemes and stope/crack accuracy have important implications on efficiency, and ultimately
determine the practical problem sizes which can be studied. Efficiency will remain a
necessity in three-dimensional analyses in the foreseeable future, due to finite computer

capabilities.

The efficiency leads to potentially fast model turn-around times, and this and the fact that
models are easily designed and altered (due to the simple grid scheme), encourage greater

experimentation with models, rather than setting up a single complex model.

WAVE’s usefulness could be improved by direct extension of a few areas such as:

- applied boundaries which efficiently approximate far-field stress are very important to
three-dimensional modelling.

- boundary and stope reflections due to switching from fourth order to second order
difference schemes, would be improved if fully fourth order stope and boundary logic
was implemented.

- Intersecting stopes in three-dimensions would allow three-dimensional cavity problems

and stope fracture intersections to be investigated.

The biggest limitation in WAVE is the lack of general orientations for stopes and fractures.
In this work area there are three needs - efficient analysis, particularly of three-dimensional

problems, representation of stopes, faults and fractures with arbitrary orientation, and very
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general and accurate crack orientations for studying crack growth. There are ways in which
the WAVE scheme can be generalized. However it is unclear how best this is achieved, and

indeed if another approach could not better combine the needs of efficiency and generality.

Finally, most of the issues encountered in WAVE will be important in any similar mesh-
based dynamic code. The performance of WAVE can be used as a benchmark in evaluating
simple but fundamental aspects of behaviour in alternative or more complex codes - with
particular emphasis on quantifying accuracy, and the memory and run-time requirements to
achieve that accuracy. From experience with WAVE, the following should be quantified:

- absorbing boundary efficiency (can the boundaries be close, and is there frequency-

dependence)

- static stress state (how far do boundaries need to be to achieve far-field conditions)

- dispersion accuracy

- mesh dependence

- stope and crack accuracy (with particular reference to reproducing simple photo-dynamic

experiments)
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APPENDIX I: Summary of fundamental technical aspects of WAVE

WAVE solves the wave equation for an elastic solid, by numerically solving a system of first
order equations given by the constitutive equations and equations of motion. This appendix
gives a brief overview of fundamental theoretical aspects of WAVE - a full analysis can be

found in Cundall (1992).

The time derivatives of the constitutive equations for a linear elastic isotropic material are:

&,=0,(K-%G)é, +2Gé, (1)

. Ou,
where éy = %{gﬂ— + auj } )
X X,

J il

The equations of motion (ignoring body force) are:

ou, Jdo,

1

p ot _o"xj

3

where p is density, and # is velocity.

The continuum is discretized into a grid or mesh - i.e. equations (1) and (3) are satisfied at

discrete points in time and space. For good accuracy, WAVE uses a staggered mesh with

X,
T cell (i ) *
x5 == 3
o :®’:’2 Aoy, : y *
! !
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(a) 2D Cell (b) 3D Cell

Figure 1: Unit Cell in the WAVE Mesh
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central differences. In this formulation, each grid variable is computed at a different position
in space. Figure 1 shows the positions of grid variables for a two and three dimensional unit
cell in the WAVE mesh, while figure 2 shows a portion of a two-dimensional mesh, with a
number of cells. Stresses are calculated from velocities using (1), and velocities from stresses

using (3). Hence velocities are also staggered in time by At/2 with respect to stresses.
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Figure 2 : Portion of a 2D WAVE mesh

Mesh Equations

Using equation (1) foro,, in two dimensions, and substituting E, = K + 4G/3 and

E, =K-2G/3, gives:

00,, _E ‘K, ou,

4
ot ox, ox, ®

Applying this equation at time #— )4 and at cell (i,]) in the grid, and discretizing with

second order accuracy on the staggered grid gives:
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- At g, s At . i i1
oy = 0';21 +E —u - |+ E,—|u -1 (5)
S oo 2 i)

where indices i and j refer to directions 1 and 2 and the velocities are known at time £ — ) .

Similarly, for o,; and 5, we get

ol =l +Elf7[(z'4{ —u;'l)+EzzAAx—t(u-2’ —i™) (6)
1 2
ol =ol +Gg(u;‘—a;)+GZAx’—(a{“ i) (7

1 2

For velocities, applying equation (3) at time ¢ gives:

vy LA L LA .
i =i ——(o o) )+ ———(of, — oy ®)
Ax, Ax,
ey ey LA 1A i
i =1 +~E(O—ézl _G£Z)+;E(O—12 _0'121) )
2 1

These are the basic second order equations applied throughout a 2D WAVE mesh.

Absorbing Boundaries

For plane P-waves propagating in an infinite elastic medium,

c=C,pu, (10)

where oand u, are the direct stress and particle velocity in the direction of propagation, and

C, is the P-wave speed. For plane S-waves,
r=Cpu, (11)

where 7 and #, are the shear stress and particle velocity perpendicular to the direction of

propagation, and C is the S-wave speed.
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If these conditions are enforced at the boundaries of the numerical grid, then for plane waves
the boundary acts in the same manner as an infinite medium. Boundary reflection increases as
the angle of incidence departs from 90°. Lysmer and Kuhlemeyer (1967) provide graphs

showing how this absorbing boundary performs over a range of angles.

In WAVE the boundaries were chosen to fall on planes containing the direct stress grid-
points (figure 3). Due to the staggered mesh, some boundary points correspond to stress, and
others to velocity components. The equations at the boundary are developed by writing the
standard mesh equations, using fictitious grid-points (which fall outside of the mesh). The
fictitious values are then eliminated by combining with equations (10) and (11). The

approach is illustrated for the lower boundary.
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Figure 3: Lower grid boundary in 2D Mesh, showing line of fictitious grid-points
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Writing the mesh equation (5) for the boundary at time ¢ — )4, gives

| At (0 i At
On=0n +E1§(ué"uzj )+E2"A'x_(”1—u1 ) (12)

2 1

and applying (6) at time  — )5 , gives

L A LG
5(022+O—22)"5?(“2 T ) (13)
Combining (12) and (13) to eliminate the fictitious grid-point it{'w ) gives
1 Ax - i Ey Axy f -0 . i1
=T [(M, — s )ot 20 + B3 (g — 4 )] (14)
(TE + ﬁ)

From (5) and (6), the mesh equation for &, can be written in terms of o ,, giving,

o, = 26K +26)A (4 - i)+ Lo, (15)
(3K +4G)Ax, E,

An equation for the velocity #, on this lower boundary can be derived by writing the mesh

equation (7), and then using equation (10) to eliminate the fictitious grid-points afzf VA

similar analysis is used to derive the equations on the remaining three boundaries.

Discontinuities

A discontinuity is implemented in the mesh as two infinitesimally thin planes on which
certain grid variables are controlled and others allowed to be dual-valued. The approach
taken in deriving the equations is to write the standard mesh equation for each of the surfaces
using fictitious grid-points which are not in the mesh. Stress conditions on the surface,

provide the third equation allowing these fictitious values to be eliminated.

The approach is illustrated for a 2D horizontal crack where the normal stress is assumed to be

governed by a linear stiffness k,. Grid variables falling on the crack have an upper and lower
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value. Figure 4 shows that variables o

u
1

where u and / denote the upper and lower surfaces.

»0. .4 and # must be calculated separately,
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Figure 4: Position of 2D crack in the WAVE mesh
From continuity ¢, =o', , but we can write two separate equations:
) At . . At i
AGh, = E,— (i — i)+ E, —— (i — i) (16)
Ax, Ax,
AV . At Vi
Ao, = E, —(ugf) - 1)+ E, —(u{(l) -1 ]“)) (17)
Ax Ax

2

1

where #{"" and "’ are “fictitious” gridpoints, since #{*" is below the upper surface and

w\") above the lower surface of the crack.
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0 ,, is also related to the relative normal velocity of the two surfaces, by the stiffness k,:

o) _+_u("f) uj—l +l.l(]f)
Ao, =ik A=k a2t 1 T (18)
22 n n 2 2
The fictitious stresses #{"” and "’ can be eliminated, giving:
k,A : Ax, .,
Ao, = B, —LikaBl_ (uzf—ug—‘)+15——2—u;"ff (19)
27k A, 2 E Ax,
where @ = ") — g7 4 gD _giTODy
from which &}, and &/, can be calculated
2G(6K +2G)At ¢ . i E
AO'rl — ( )A (ull(u) _ ull l(u)) +—2AO'22 (20)
(K +4G)Ax, E
K+ . .
Aol = 2G(6K +2G)Ar (u;<’> - u;““)) + iAazz Q1)
(BK+4G)Ax, E,

By assuming that the surface shear stress is governed by a linear stiffness k;, velocities #/'

and % can be calculated in a similar manner.
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APPENDIX II

PROPERTIES OF FINITE DIFFERENCE APPROXIMATIONS TO THE
WAVE EQUATION

Model wave equations and properties

In these notes we analyze in some detail the accuracy, stability, and dispersive properties of
finite difference models of the wave equation. In order to simplify the analysis we consider
the simplest possible form of wave equation. In order to motivate this simplification we
observe that the equations of elastodynamics reduce, via a Helmholtz decomposition (see
for example Eringen and Suhubi 1975), to two coupled wave equations - one scalar and one

vector. We therefore consider the right-moving component of the one dimensional wave

equation:
82 82 E) 8., 8 3
0= — — c*—U t)=(——c—)(— — U {(x,t 1
o2 ¢ ol @t = (G —eq )G H e V(Y (1)
namely,
oUu oU
—+c— =0, U(z,0)=Uy(z), (2)
at o

This partial differential equation can be solved using the following Fourier Transform pair:

f@) = [T e r@n @)= o [ o) ©

Using (3) the Fourier transform of the spatial derivative of U becomes:

3AU . [e9] o0 ,
. U(:l:, t)ewm + iw / U(x, t)ewmdz
oz — 00 —00

= iwU(w,t). (4)

Thus taking the Fourier transform of (2) reduces it to the following ordinary differential
equation:

(}+ciwﬁ = 0.

with the following solution

~

U= e_th[jQ.

Using the inversion formula (3) we obtain the solution to (2)
1 [ .-
U(z,t) = —/ U (w, t)dw
27 J—so
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_ L / (=) (o () dw
21 J—oo

= Uo(z — ct) (5)

We observe that the solution (5) represents the translation of the initial condition Up(z) by

a Galilean reference frame moving at a constant speed c.

Spatial semi-discretization

The finite difference method replaces the continuum model in the form of the partial
differential equation (2) by a discrete model in the form of a difference equation involv-
ing discrete approximates at desired meshpoints. A finite difference approximation to the
differential equation is obtained by replacing the derivatives in (2) by various difference
approximations. Depending on the form of these difference approximations a variety of fi-
nite difference models can be obtained each having different accuracies, stability properties
and even spurious physical effects such as dispersion that are not present in the original
problem (2).

In order to analyze the effects of the spatial and time discretization processes separately
we first consider a discretization of the spatial derivative in (2). We assume that the
domain (—o00,00) is divided into mesh points {xn = nh, n = ... —2,-1,0,1,2,...} and
that at each of these meshpoints the approximate solution un(t) ~ U(xn,t) is sought.
For example approximating 8U /8x by a central difference formula we obtain the following

spatial semidiscretization of (2):

in(t) + ¢ (“"“(t)Q_h“"‘l(t)) =0 (6)

To illustrate that this semidiscretization is not unique we can write down other difference
equations by using forward and backward difference approximations to the spatial derivative

to obtain:

(7)

an(t) 1 c (un—i—l(t) - un(t)> —0

h

and

in(t) + (“"(t) ‘h“"—l(”> =0 (8)

Truncation errors of spatial semidiscretizations

In order to determine the truncation error involved with each of the the above ap-

proximations we assume that the mesh values {u,(¢)} are discrete samples of an analytic
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function u(z,t) at each time level. Performing a Taylor expansion about the meshpoint z,

we obtain:

0 = an(t)+ec (u"“(t) — u"‘l(t))

2h
h? h3 h .
= dn+i (un+hu;+ S g+ TR
h? B3 h*
— up + hu;l — -i—u;: + ?iTu;:’ — 74-'—11,514) + s)
= T —_— 21+ 0(h 9
ot oz T 6 gz T O ©)

where v := %% and v’ = g%;-

If in equation (9) we replace uy(t) by U(z,, t), the solution to (2), we obtain the following
expression for the truncation error associated with the finite difference approximation (6):

2 43
T a0
Which implies that the central difference approximation is accurate up to O(h?%). Apart
from yielding the truncation error (10), equation (9) has another interesting interpretation
concerning the physical properties of the difference approximation (6) as opposed to those
of the original continuum equation (2). If we retain the O(h2) error term in (9) we see

that rather than approximating the wave equation (2), the difference equation (6) is an

approximation to the following partial differential equation

8 o ch? 8’
_ oy L = 11
((%—i—caw—i— 6 8:c3)u(x’t) 0 (11)

The third derivative term in (11) which is multiplied by the small mesh parameter h?
represents a singular perturbation to the right-moving wave operator (2). This equation is
the linearized Korteweg-de Vries equation which involves dispersive wave motion. Thus the
effect of this additional term is to introduce spurious numerical dispersion. In the following
subsection we perform a Fourier analysis of the difference equations (6) directly to obtain
a more complete understanding of the effect of this numerical dispersion.

Performing a similar Taylor expansion for the forward difference approximation we

obtain:

h

0 = anlt) +e (un+1(t) - un(t)>

2 3"

u ou ch 8%u 9
= a—:+ca—;+7ax2”+o(h) (12)

o ¢ ' h* " K "
= un+; Up + huy, + —uy + —uy, + o= up
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If in equation (12) we replace u,(t) by U(zn,t), the solution to (2), we obtain the following
expression for the truncation error associated with the finite difference approximation (7):

7 <13>
Which implies that the forward difference approximation is only accurate up to O(kh). The
physical properties of the difference approximation (7) as opposed to those of the original
continuum equation (2) can be obtained by retaining the O(h) error term in (12). We see

that, rather than approximating the wave equation (2), the difference equation (7) is an

approximation to the following partial differential equation

(a 8 ch 82

ol T =0 14
ot +C(9:v + 2 B:L'Q)u(x’t) (14)

We observe that (14) is a backward heat equation - which is notoriously unstable for initial
value problems. Thus we expect the forward difference approximation to yield an unstable
numerical scheme. The fundamental flaw in the forward difference approximation stems
from the fact that the information in the difference equations (7) is flowing from right to
left, while for the original continuum equation the information is flowing from left to right.

Performing a Taylor expansion for the backward difference approximation we obtain:

0 = dn(t) +e (“"(t) - “n—l(t)>

h
. h? R
= un+£(un—un+hu%—?u;;+yu;:’+...)
Ounp Oun ch82un 9
= L4 -4 0(h 15
ot " ox "2 amz O (15)

If in equation (15) we replace u,(t) by U(zn,t), the solution to (2), we obtain the following

expression for the truncation error associated with the finite difference approximation (8):

ch 32U(a:n, t)
i S 16
2 dx? (16)

Which implies that the backward difference approximation is accurate up to O(h). The
physical properties of the difference approximation (8) as opposed to those of the original
continuum equation (2) can be obtained by retaining the O(k) error term in (15). We see
that, rather than approximating the wave equation (2), the difference equation (8) is an

approximation to the following partial differential equation
3 & ch d°
= = == tY=20 17
(afLCax 2 a;ﬂ)“(x’ ) (17
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We observe that (17) is the convective heat equation - which is stable for initial value prob-
lems. Thus we expect the backward difference approximation to yield a stable numerical
scheme provided the appropriate time stepping scheme is used. In this case stability is pro-
vided by the dissipative effect of the small diffusion term. As a result of this dissipation, we
expect that energy will not be conserved by this difference approximation. In contrast to the
situation for the forward difference approximation, the information in the case of the back-
ward difference equations (8) flows from from left to right - the same direction as that for
the original continuum equation (2). We will see that the classic Courant-Friedrichs-Lewy
(CFL) stability condition for explicit time-marching of a given spatial semidiscretization
boils down to requiring that the rate at which information can flow on the numerical mesh

is faster that the rate at which information can flow physically.

Dispersive and dissipative properties of spatial semidiscretizations

In order to analyze the dispersive effects that are associated with the difference approx-

imation (6) we use the following discrete Fourier transform pair (Vichnevetsky and Bowles

1982):

o0
Di(up) =u(w) = h Z upe

n=—00
1 [m/h
un = -—/ e (). (18)
27 J—n/h
The discrete Fourier transform of a forward shift on the mesh is given by
© .
Df(unt1) = h Z unire” MY

n=—oo

0
= h Z ume—i(m—l)hw

m=—oo

= y(w) (19)
Thus taking the discrete Fourier transform of (6) and using the shift property (19) we
obtain the following ordinary differential equation for w(w,t):

ct

u = - sin(wh)a
= —iA(w)a (20)
where A(w) = 7 sin{wh).
The solution to (20) is given by:
u(w,t) = ﬂ(w,O)egiA(w)t. (21)
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Therefore using the expression for the inverse transform given in (18) we obtain
1 (/h iz, Aldy
un(t) = —/ ew(z ¥ )ﬂ(w,O)dw. (22)
2m —-7n/h
Comparing (22) with (5) we can identify the phase velocity

Aw) _sin(wh)
oW wh

C(w)

In contrast to (2) the speed of a signal moving through the discrete medium depends on the
frequency w of the signal. This phenomenon is known as dispersion. If the initial condition
comprised a mixture of frequencies, then each of these frequencies move off with a different
speed which depends on the frequency. After a long time we would expect to observe that
an initial signal is split up into smaller groups of waves occupying distinct regions in space.
The waves that belong to a particular group share frequencies that are close together. In
order to locate these wave-packets we consider the limit as t — oo in (22), which can be
written in the form:
up(t) = L /ﬂ/h ei(%_’&(w))tﬁ(w, O0)dw, t— o0 (23)
7w Jon/n
In order to obtain an approximation to the above integral in this limit we define the phase
function:
o(w) = = - Aw) (24)
and observe that the complex exponential factor @)t acts as a carrier wave which is
modulated by the function #(w,0). Consider an arbitrary point wg within [—z/h, 7 /h| and

expand the phase function ¢(w) in a Taylor series about this point. In this case
eiq&(w)t _ eid)(wo)tei{(w—wo)¢’(wo)+%(w*wo)2¢”(wo)+...}t
~ o)t i{w—wo)d (woldt hrvided (w—wo)’t < 1 (25)

Now consider the contribution I;(wp) to the integral (23) that comes from the small neigh-
bourhood |w — wp| ~ 1/t K l/t%:
ig(wo)t 0+1/t ,
Lwo) ~ & f“ eile=w0)' W0ty (o) 0) ey
27 wo—l/t
(wo, 0)ei¢(wo)t 0+1/t
2m /u‘;/*l/t
~ 0 due to the canceling effect of oscillations with the high frequency ¢'(wo)t (26)

Q

eHw—wo)¢(wo)}ty,, provided u(w, 0) does not vary rapidly

Such an analysis can be carried out for each such point wy in the interval [—= /A, 7/h| and

we conclude that, due to such high frequency cancellations, the contribution to the integral
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un(t) is zero except for points wq for which ¢'(wo) = 0. Thus the major contribution to
the integral comes form the immediate neighbourhood of the stationary points of the phase
function ¢(w) defined in (24). Differentiating (24) with respect to w and equating the result

to zero we obtain:

, _ oz dA(w)
ow) = t dw
= ; —ccos(wh) =0 (27)
Thus
z = ccos(wh)t = G(w)t,
where .
Glw) = dA(w)
dw

is the group wvelocity.

In figure 1 the phase velocity ratio C'(w)/c and the group velocity ratio G(w)/c are
plotted for the central difference approximation (6). We observe that for the lower fre-
quencies w ~ 0 the phase velocity of the central difference model (6) agrees well with the
wave speed c of the partial differential equation (2). However, the phase velocities of the
higher frequencies differ substantially from wave speed c. Since the wave speed for (2) does
not depend on the frequency, there is no dispersion in the case of the partial differential
equation. In contrast, it can be seen from figure 1 that the group velocity of the discrete
equation (6) varies considerably over the range of frequencies |w| < 7/h that can be rep-
resented on a discrete mesh with spacing k. Indeed the group velocity for the frequencies
in the neighbourhood of |w| = n/2h (half the Nyquist frequency) is reduced to zero - so
after some time we can expect to see a medium frequency wave group that remains fixed
in space. The group velocity of frequencies close to the Nyquist frequency is —c so we can
expect to see a high frequency wave group moving with the opposite velocity to that of the
solution for the partial differential equation (2). In figure 2 we plot the numerical solution
of a square-wave pulse that is centered about the point z = 13 and follow its progress over a
sequence elapsed time snapshots. The analytic solution (5) to the wave equation (2) will be
a translation of the initial condition to the right at the wave-speed c. We observe that after
some time the numerical solution that started out as the initial step-function has split up
into groups or wave-packets. The stationary medium-frequency group at half the Nyquist

frequency can be seen to remain at = 13 throughout. The smaller amplitude Nyquist
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frequency wave-packets can also be seen moving to the left - in the opposite direction to
the exact solution. For all time-steps, the majority of the energy is still in the form of a
low frequency wave-packet that moves to the right at the correct speed ¢. The amplitude
of the various wave-packets depends directly on the frequency components that combine
to make up the initial condition U(z,0). To illustrate this point in figure 3 we plot time
evolution of a Gaussian U(z,0) = e~ @~19?/4 which is an analytic function and therefore
has very small high frequency components. The numerical solution in this case is a very
good model of the analytic solution and no noticeable numerical dispersion can be seen.

Unfortunately, in practical elastodynamic models high frequency signals will be com-
mon because of discontinuities in the form of fault planes or joints as well as impulsive
loading conditions. The various spurious wave groups identified above are artifacts of the
finite difference approximation. Naturally the amount of the energy that is trapped in the
dispersive regime can be reduced by using a finer mesh - which unfortunately carries with
it a concomitant computing cost. The effect of this numerical dispersion can also be alle-
viated to some extent by using higher order difference schemes or totally by using spectral
methods to approximate the spatial derivatives. However spectral methods are more costly
computationally and are not suitable for nonlinear problems and problems in which there
are discontinuities such as faults or joints.

It is also interesting to note that (11) can be interpreted as a continuum model of the
difference equation (6). Thus we would expect that the dispersive properties of (6) should
be found in the continuum model too. To establish its dispersive properties we take the

Fourier transform of (11) to obtain:
&= —ci(w — ?ﬁ)a (28)

Solving for i(w,t) and using the inversion formula (3) we obtain the following expression
for u(z, ¢t):

o 2
u(z,t) = %/_ e"*’[x_c(l_h?wz)t]do(w)dw (29)

in which the phase velocity C(w) = ¢(1 — h—;wg) is clearly a function of w so that dispersive
wave motion can be expected. In fact the phase velocity in (29) is just the first two terms
in the Taylor expansion of the phase velocity of the difference equations given in (22).

If we consider a similar analysis of the continuum models of the forward and back-

ward difference approximations (14) and (17) respectively, we obtain the following integral
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representation of the solution:

1 oo chw?
u(;p,t) = .2.;/; euu(.’r—ct);t hg tzio(w)dw (30)

The plus sign in (30) holds in the case of the forward difference scheme and we see that the
problem is ill-posed because the solution will blow up. The negative sign in (30) applies
to the backward difference scheme so that the solution will decay with time due to the
dissipative effect of the small diffusion term.

In order to see how the energy in the system evolves with time we apply Parseval’s

Theorem to the solution of the original wave equation

/_O:olU(a:,t)|2dx - %/'O:oﬂ}(w,tﬂzdw
_ 2%/_0:0|(}0(w)e_ic“’t|2dw
- 5;[2|0(w,0)|2dw
(31)

and we see that the energy in the system is conserved for all time. Applying Parseval’s
Theorem to the dispersive wave model (11) we see that the central difference scheme will
also conserve energy for all time. While in the case of the forward and backward difference

models we obtain

(o9}
/ lu(z, t)|%dx

Il

1 [~
E/—oo li(w, t)[2dw

o0 X chw?
_ 1 / |euu(m—ct):l: h2 tﬁo(w)‘gdw

27 J-co

1 o 2 +chw?t
T J—c0

(32)

Thus rather than conserving energy, the forward and backward difference models will exhibit

exponential energy growth or decay respectively.

Stability properties of time-marching schemes

Once the spatial semidiscretizations have been established the numerical solution is
typically determined by solving the system of ordinary differential equations governing
the solution at each of the spatial meshpoints. The numerical schemes that have been

developed to solve systems of ordinary differential can be used to solve these mesh based
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ordinary differential equations. However, not all ODE solvers are appropriate for solving
the semidiscrete systems. This is because a particular ODE solver may not be stable when
the solution is marched forward in time. To illustrate this point we consider the following
model problem:

u =\ (33)
Equation (20) with A = —iA(w) is a special case of this equation.

Let us assume that we were to use Euler’s method
a* 1 = (14 2At)ak (34)

to solve (33). In order that the solution should not grow from one time step to the next
(and so that round-off errors do not swamp the solution) we require that p = (1 + AAt)
should satisfy the condition:

ol <1 (35)

In general A can be a complex number, so the condition (35) implies that p should fall within
the unit disk. The number A can be considered known and fixed here (as it is determined
by the ODE being solved or the spatial meshing of the semidiscretization if we are solving
a partial differential equation). Thus the only parameter available to the user of an ODE
solver to try to ensure that the stability condition (35) is satisfied is the parameter At.
Indeed it is more useful to map the stability condition (35) into the AAt plane. This is
achieved by solving for AA¢ in terms of p: AAt = p ~ 1. Under this mapping the unit disk
centered at the origin is mapped onto the unit circle |[AAt + 1| < 1 shown in figure 4. We
observe that for the central difference semidiscretization (6) for which A = —i£sin(wh) is
purely imaginary, there is no positive value of At for which AAt will fall within the stability
region. Thus Euler’s method will be unstable no matter what stepsize we choose.

A method commonly used to time-march wave problems uses a central difference ap-

proximation in time. The so-called Leapfrog method applied to (33) assumes the form:
gl = gkl L oAk (36)

To investigate the stability properties of this difference equation we assume an exponential
solution of the form:

‘ﬁk — eiak (37)
Substituting this solution into (36) we obtain the characteristic equation:

e? —2AtA e =0 (38)
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or

At\ = isin(6) (39)

This implies that the stability region for the Leapfrog method is given by the line segment
between —i and +i on the imaginary axis as shown if figure 4. Thus if the Leapfrog method
were used to time-march the central difference semidiscretization (6) then At will have to

be chosen so that:
At = —i%sin(wh)At € the line from ¢ to —i (40)

which is satisfied provided:

At <

ol

(41)

This is the typical time-step stability criterion found in finite difference schemes that use
central differences in space and time (e.g. WAVE). This is the classic CFL condition that
states that the speed with which the information travels in the numerical approximation

Ait must be faster than the physical wave speed c.
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2.3 APPLICATIONS AND CASE STUDIES

This section covers case studies of how elastodynamic models have been applied to mining
problems. The work ranges from investigating the effects of backfill in stopes, comparisons
of fault slip models in two and three dimensions with empirical and theoretical results, the
possibility of triggering a large event due to seismic wave propagation from an initial slip
event and initial attempts at a full three-dimensional back-analysis of an actual rockburst.
These contribute primarily to objectives 1.2, 1.3 and 1.4. This section also includes two
reviews: a review of rockburst literature (objective 1.1) which aims to add insight in the
investigation and representation of rockbursts and rockburst mechanisms, and a review of
possible approaches in representing seismic wave propagation in the fracture zone of stopes

(objective 1.5).

2.3.1 Literature Review on Rockburst Mechanisms

The purpose of this work was to summarize papers dealing with rockburst mechanisms
(Objective 1.1). Some of the proposed mechanisms can then be tested by means of numerical
modelling. The chronological summary is brief and incomplete, but it does provide insights
into the way in which research into rockburst mechanisms has grown over the years. Some

ideas for modelling work are suggested.

Chronological list of rockburst papers

Wood (1914): One of the first papers to recognize mining-induced seismicity on the
Witwatersrand. Concludes that "... the tremors are semi-artificial in origin, and that the
ultimate cause of them is to be found in the extraction of large amounts of rock....“, and a
suggested mechanism is "...slip by small amounts into positions of greater stability." During
discussion on the paper, the President of the Chemical, Metallurgical and Mining Society
notes that the tremors cannot always be correlated with (pre-existing) planes of discontinuity,
and cites an example of a mining-induced fracture (with rockburst damage) of 100 m extent

through a series of levels.
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Allen (1931): Notes on observations of the effects of rockbursts and hangingwall behaviour
at Robinson Deep. Induced fracture planes in the hangingwall and/or footwall are thought to
be spaced more/less frequently as the face is more/less strong. Near remnant corners, the
fractures are spaced more widely, because the face is not sufficiently strong to induce them,
whereas near remnant centres, spacing is more dense. Concludes that, in order to have a
burst, the surrounding rock mass must be sufficiently strong so that stress can be stored up
until sudden failure occurs. A weaker rock mass would allow more frequent and safer
fracturing. The suggestion is made that triangular remnants be mined so that their sides are

concave to weaken the core more rapidly.

Altson (1933): Summarizes the different types of hangingwall control at that time. It is
interesting to note that in the 1930s, backfill was thought to have a positive effect in terms of

damping the vibrations caused by a burst.

Weiss (1938): Discusses elasticity, plastic flow or creep, elastic hysteresis, temperature and
humidity effects, rock strength, rupture conditions, rockbursts, measurement techniques in
prediction of rockbursts. One of the early papers to realize plastic effects in gold mines.
Notes that creep implies differential pressures (up to that time, hydrostatic conditions had
been assumed even though evidence showed otherwise). Elastic hysteresis is suggested to be
a secondary cause of many bursts, because bursts only release a portion of the stress, and as
mining proceeds, complete dissipation of stresses is not possible (hysteresis). Stresses
accumulate with time, causing subsequent bursts. Moisture and temperature gradient is
thought to act on fissures in rock, reducing elasticity of rock, resulting in flaking and spitting
of exposed faces. It is suggested that use of an air- and water-tight paint could reduce spitting
and flaking. Seismic wave velocity is said to be a function of applied stress. Areas of rock
mass with lower wave velocity are therefore more highly stressed, and are areas of potential

failure.

Anon (1943): Summarizes the presidential address of Jeppe to the Chemical, Metallurgical
and Mining Society. Two generally postulated pressure burst theories were considered at that
time: namely "dome" and "beam" theories. Beam theory used to explain remnant bursts as a
fulcrum action at the face with tensile stresses ahead of the face. Any sudden failure in the
hanging causes a reversal of stress ahead of the face, and pressure bursts can result. Advises

using flexible support systems to cope with pressure bursts in tunnels.
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Morrison (1948): A two part paper on a general theory of rock bursts. All aspects are
explained in terms of a "dome” of fractured rock around an excavation. Suggests that this
dome (elliptical shape around a stope) controls rock bursts. Sagging hangingwalls are only
outward indications of the development of a fractured zone and its related dome. Notes that
the size of opening versus depth of mining are inter-related - i.e. a shallow large excavation
can experience more rock bursts than a deeper but smaller excavation. Notes that a grid
system of pillar support, so as to shorten spans, is ineffective and worsens the situation. The
stresses set up by such a system must ultimately overcome the resistance of individual domes

in the process of building a single dome.

Spalding (1948): General observations about rock bursts. Suggests that rocks which consist
of a single ingredient (e.g. quartz) are more likely to burst than agglomerates.
Inhomogeneities and varying grain sizes cause plastic flow and result in progressive failure.
More homogeneous rocks will tend to fail over a larger area and more violently when the

elastic limit is reached.

Hill (1954): Notes a number of factors in relation to bursts that need to be investigated in
order to determine their importance, viz. stoping method, face shapes, leads, percentage
mining, spans, support types, closure amounts, closure rates, face advance rates, depth of
workings, and geological features. Concludes that face lead/lags should be avoided,
longwalling is better than scattered mining, acute angles of incidence should be avoided,
dykes and faults have a pronounced effect on burst incidence, and blasting can act as a

trigger. Other questions remained unanswered.

Roux and Denkhaus (1954): Divide bursts into extra- and intra-dosal types. Intradosal if
source is within the fractured zone around the mining excavation, and extradosal otherwise.
Extradosal bursts occur in abutments usually, but can trigger failure remote from the source
as a result of accompanied movement in intradosal ground. Mentions destressing (natural or
imposed) as a way to alleviate face bursting. Also suggests that creep or plastic deformations

are partly responsible for causing rockbursts several hours after blasting.

Cook et al, (1966): 100 pages on all aspects of rockbursts. Summarizes research approach to
rockburst problem as a four stage effort: 1) observations, 2) attach rational significance to
documented experience and thereby develop hypotheses concerning certain aspects of
rockburst problem, 3) combine hypotheses to postulate a rockburst mechanism consistent

with observations, 4) design controlled experiments underground to test proposed
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mechanisms, and eventually aim to minimize rockburst effects. The paper summarizes key
observations, rock properties, elastic theory, and energy effects and concludes that the
"existence or otherwise of the rockburst hazard depends on whether the geometrical rate at
which energy must be released, is greater or smaller than the rate at which energy can be
dissipated non-violently as the excavation is enlarged." Rockbursts are thus postulated to be
manifested as a release of that part of the energy generated by the elastic closure which is not
absorbed in strain energy and is in excess of that which can be absorbed in fracturing of rock
and in friction along fractures. With respect to de-stressing of the face to alleviate rockburst
conditions, the authors claim that it has almost no effect, and base their argument on the type
of seismic wave radiated during preconditioning (compressional) versus during an event
(shear). The argument is flawed, and one needs to look at the evidence for destressing, not at
the type of wave radiated. In the discussion on the paper, Plewman suggests that two further
breakthroughs are needed in order to understand more fully the rockburst problem: 1) a full
understanding of in-situ fracturing processes and the behaviour of fractured materials, 2) an
understanding of the dynamic loading processes and the behaviour of rock around stopes

under dynamic loading.

Gay (1976): an excellent paper on experimental tests on blocks of quartzite and sandstone,
containing circular or rectangular holes, and subjected to uniaxial and biaxial tests over long
time periods. Experiments include the mining of slots while under load. Analysis of strain
data showed that stresses built up in rock as the mining advance towards the measuring point,
with sudden jumps in strain at each mining stage, followed by periods of creep. Fracture
patterns that developed resembled those seen underground. As holes were enlarged (or
confinement was increased) the following stages were noted: spalling, extension cracks,
larger cracks outside spalling zone, steeply dipping cracks with shearing and accompanied

collapse into holes.

Gay and Ortlepp (1979): microscopic observations suggest a sequence of development of
fault surfaces:- development of extension cracks in the region of planes of maximum shear
stress, coalescence of extension cracks to form conjugate shear planes, rapid movement along

the more favourably oriented shear planes to form major gouge zones and feather fractures.
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McGarr et al. (1979): a study of the seismicity and source parameters of tremors at E.R.P.M.
Important facts noted were:

- stress drops of mine tremors and natural earthquakes invariably are low at 1 to 100 bars,
regardless of source magnitudes; nearly all tremors at E.R.P.M, locate within 100 m of
active faces (mining depth of 3 km);

- typical shear stresses in seismogenic area are 700 bars, which is an order of magnitude
greater than the stress drops; - observed fault displacements are much larger than those
predicted from Brune model;

- shear displacements are quite variable along faults suggesting an inhomogeneous slip
mechanism involving high but localized stress drops;

- approximate time taken to create a shear fracture dynamically is limited by the dynamic
deformations of the mine stope, because the interaction between the ambient stress field
and the stope provides the strain energy to allow fracture to occur. It is thus suggested that
the formation of a fracture is slowed down considerably compared to the rate for a
fracture which occurred independently. Therefore, only a small fraction of the released
energy is radiated seismically, and this explains the discrepancy between low stress drops

and high shear stresses.

Rice (1980): all encompassing course on mechanics of earthquake rupture, covering topics
such as elasticity, Green's functions, double couples, propagating shear sources, stress drops,
fracture mechanics, elastodynamics, slip-weakeneing models, frictional slip, nonelastic
materials, shear zones, pore fluid infiltration in cracks, dilatancy, etc. Notes that stress drops
on enchelon crack systems of say 10 to 20 staggered cracks can be at least 5 to 10 times
higher than on an equivalent single planar system. In terms of stickslip mechanisms, notes
that the presence or absence of stick-slip can be explained by comparing the stress drops to

the stiffness of the system.

Brink and O’Conner (1983): research into the prediction of rockbursts at Western Deep
Levels gold mine. For cases investigated, results show that seismic events within the local
area monitored were preceded by an increased level of microseismicity, which concentrated
in the zone of eventual failure. There was usually a short-lived marked drop in activity

immediately prior to the event.

Salamon (1983): Summary of progress made until 1983 in developing effective face support,
good layout design, and control of convergence volume as ways of alleviating the rockburst

hazard. Mechanism: Seismic energy released in a region is much less than energy released by
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mining (0.1% efficiency), which raises the question of what causes a rockburst (clearly not
correlated with ERR). Salamon notes that a small mining step can cause a large rockburst,
which implies that either the rock mass must be discontinuous, or the rock must become an
unstable material under certain loads. Suggests that alleviation of rockbursts can be
accomplished through better layout design, reduction in stoping width, use of backfilling,

partial extraction, and improved support systems.

Cook (1983): "Origin of Rockbursts" paper: Conceptual model of fracture zone (needed in
order to understand origin of rockbursts) around a stope is presented, based on practical,
theoretical and experimental work. Three types of fractures are postulated: cleavage (tensile
failure), inclined shear, and vertical shear fractures. Vertical fractures are suggested to be
more likely candidates for the origin of rockbursts. Cook suggests a cycle of cleavage,
accompanied by dilatancy, which increases confining stresses and stops cleavage, followed
by inclined shear (after sufficient build up of confinement), which reduces confining stresses,
followed by cleavage again. This process continues with advance of the stope face. The
inclined shear direction coincides with Mohr-Coulomb planes of failure. The vertical shear
fractures develop along the line of maximum stress difference, on a plane through the stope

face. Cleavage is not possible here because of high confinement.

Gay et al. (1984): correlate seismicity with geology and mining in order to better understand
origin of large mining-induced seismic events. Gay stresses the importance of faults and
dykes - stiffer properties of dykes allows more energy to be stored up, and more chance of
brittle failure. He mentions that the in situ stress field in the Klerksdorp area is such that large
deviatoric stresses are present, capable of causing movement along faults and dykes. Mining
activity disturbs this potentially unstable stress field, with the result that the generation of

large events is quite possible in large volumes of rock.

Piper (1984): Experimental investigation into propagation velocities of rock fragments into
mining excavations during a rockburst situation. Initial propagation velocities of 50-55 m/s

were required to cause penetration of pipe coatings.

Gay and Jager (1986): The section of the paper dealing with rockbursts notes that the violent
energy released during a rockburst is due to falling rock fragments, enhanced stresses induced
in rock by mining, and residual stresses stored up by tectonics. Most events are near mining

activity, but some are remote, and these are due to geology.
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Brehaut and Hedley (1987): Annual report of Canada-Ontario-Industry Rockburst project.
Strain bursts, pillar bursts and fault-slip are identified as the three main mechanisms. The
authors suggest that the explosive energy liberated during a rockburst comes from the
surrounding rock mass and not from the failing structure. The violence of the failure is
controlled by the stiffness of the loading system. During rock failure, the released energy
which is liberated seismically varies with different mechanisms (low for fault slip, high for
pillar bursts). Destressing of pillars by blasting is found to alleviate the rockburst problem in

Ontario,

Lenhardt (1988): investigations into influence of geology on seismicity. In one case study on
Peggy dyke, two events within five hours of each other occurred on the same dyke. The two
events located about 300 m away from each other along the dyke and the sense of shear was
opposite. This indicates that slip along fault-like structures is an inhomogeneous process, and
that the sense of slip is not always governed purely by what would be expected from excess

shear stress lobes.

Petit and Barquins (1988): Carried out experiments to investigate whether a planar defect can
propagate in its own plane under mode II conditions, as supposed by classical rupture
mechanics models, and in particular, whether mode II can be an elementary fracture
mechanism. Results suggest that mode II cannot exist as an elementary fracture mechanism,
but can only be a macroscopic feature which must necessarily involve mode I failure. A shear
zone involving mode I fractures, can propagate in the direction of the defect if a positive but
low confining stress exists to inhibit branch fractures, and if a very dense population of
defects is present. At depth, with increasing pressure and temperature, mode II shear can
develop from preexisting joints as long as these joints are oriented in the direction of

maximum shear stress.

Singh (1989): outlines an approach for defining rockburst prone regions in mines. A
knowledge of various bursting indices, rock properties, in-situ approaches, geological
features, mining conditions, and observations can be used to facilitate classifying mine
workings according to their proneness to bursting. A "decrease modulus index" shows
correlation with a "burst proneness index", strength, brittleness, and strain energy stored in
the rock. Burst proneness is shown to depend on the Schmidt rebound hardness test and the

shear wave velocity of the rock.
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Tanimoto and lkeda (1983): Studied relationships between wave velocities, fracture
frequency, aperture size, moisture content, contact pressure on joints. Results indicate that an
aperture wider than 1 mm and a decrease of contact pressure to less than 3 MPa markedly

influence the seismic behaviour of the rock mass.

Lenhardt (1989): Seismic event mechanisms at Western Deep Levels gold mine. Geological
features (dykes, faults), abutments, pillars are high risk areas for large events. Smaller events
tend to be more blasting related. Suggested cures are to alter mining layouts (e.g. oblique
mining towards a dyke), preconditioning or triggering of an impending event, and backfill (to

effectively decrease stope width).

Ortlepp (1990): overviews the rockburst problem in RSA, and compares with El Teniente
mine in Chile. Suggests that the best way to understand rockbursts is via seismic research.
Such research and studies of rockburst damage should be used to develop guidelines (in
Chile) for improved layouts and sequences to minimize the frequency of rockbursts, and for

improved criteria for design of support to reduce damage to workings.

Huang and Turcotte (1990): Investigation into whether earthquakes are deterministically
chaotic. A simple stick-slip friction law on a two block mass-spring system is used under
static and dynamic conditions. Results show that with a simple static/dynamic friction law,
spatially inhomogeneous frictional strength is a necessary condition for the occurrence of
deterministic chaos. Chaotic behaviour was (apparently) also observed with a velocity
weakening friction law. The applicability of a spring-block model is questioned, but it is
considered possible that more realistic earthquake models can also exhibit chaotic behaviour

under a static/dynamic friction law.

Adams, Hemp and Spottiswoode (1990): studied the influence of backfill on ground motion.
Found, amongst other things, that dominant frequencies are higher in backfilled stopes than
in unfilled stopes, vibration times are reduced with increased backfilling, backfilling layout
can cause amplifications of waves in some areas, but these amplifications are apparently not

likely to be greater than the waveforms resulting due to unfilled stopes.

Knoll and Kuhnt (1990): From investigations in GDR, claim that rockbursts can be divided
into two types - mining rockbursts, associated with immediate mining activities, and tectonic
rockbursts, associated with tectonic conditions around the mine and large scale stress

redistributions around the mine. Analysis of seismic records by spectral analysis shows that
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there are different scaling laws for the seismic moment and source radius for the two types of
rockbursts. It is proposed that, according to the seismologically indicated type of rockburst,

appropriate measures can be taken to limit the effects of rockbursts in a mine.

Johnston and Einstein (1990): A survey of mining associated seismicity in a number of
countries. An attempt is made to sort events into two types. Type I: seismicity linked directly
to mining and geometry. Type II: seismicity occurring on faults, more similar to earthquakes.
Six mechanisms of failure are identified: (a) ore extruded because of high vertical stress from
overburden, (b) roof collapse, (c) slip along faults, (d) fracture of intact rock ahead of
advancing face, (e) fracture at the face from stress concentrations, (f) pillar bursting. Claim

that (d). (e) and (f) produce rockbursts.

Gibowicz (1990): Reviews types of mine tremors, double couple vs non double couple
mechanisms, moment tensors, seismic source modelling, source parameters, scaling,
attenuation and scattering. Notes that rockburst behaviour is erratic, in that large tremors do
not necessarily generate rockbursts, whereas small events can cause considerable damage.
Quotes Salamon (1983): "Virtually no systematic research has been done to elucidate the
basis of setting apart those seismic events which become rockbursts and those which do not".
However, seismic parameters can give clues as to mechanisms. For instance, high stress
drops often have simple pulses with well defined corner frequencies, steep fall offs, whereas
low stress drop events often are more complex. Large tremors with low stress drop events are
often associated with faults (double couples), and have large source sizes. Large events with
high stress drops are often due to failure of relatively intact rock (single couples), and have
smaller source sizes. Suggests that source modelling in time domain could provide insight

into double couple vs single couple mechanisms.

Muller (1991): Used FLAC to model rockbursts in a coal seam. In order to generate a violent
failure, an asperity was needed (e.g. zone of higher friction). Sliding bursts required sliding
along zone of previously enhanced friction, and pillar bursts required zone of previously

enhanced strength.
King (1991): Conducted a laboratory scale fault experiment, where 8 blocks connected by

springs are driven to slide on a frictional surface. Suggests that frictional sliding may be

chaotic. Also, rupture initiation points are not generally near maximum slip points.
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Ortlepp (1992): Elaboration on "rock-flour" of rhombic dodecahedral shape that forms part of
the comminuted filling in shear fractures (visible under scanning electron microscope in
some samples. Suggests that this is evidence of shock rebound phenomena during a
rockburst, because such shapes can only form by rapid unloading. Implication for rupture
mechanism is that this evidence implies that the formation of a pristine fault by a shearing

action is a more violent and less homogeneous process than was previously thought possible.

Mendecki (1993) describes a concept of “quantitative real-time seismology in mines”.
Defines quantitative as a reliable knowledge of source parameters beyond timing and
location, such as seismic moment, radiated seismic energy and stress drop. Real-time implies
immediate seismic processing and response to certain conditions. Proposes guidelines for
‘qualitative’ assessment of the stress and strain regime, from a ‘quantified” description of
microseismicity. Suggests a number of relationships between apparent stress and level of
stress or rock strength, and between the rate of coseismic inelastic deformation and expected

seismic events.

Van Aswegen and Butler (1993) apply the above relationships to detect variation in rock
mass behaviour in the Welkom gold-mining area. Relationships highlighted are:
- energy index (E), defined as the ratio of energy to the average energy for events of the
same moment, indicates the state of stress
- ratio of the energy index for S-waves and for P-waves, indicates the source mecanism,
whether fault slip events or dyke/pillar events.
- positions of asperities (potential large events), are identified by small events with
relatively high apparent stress
- cumulative apparent volume scales the volume of non-elastic strain of the source -

deviation in this slope reflects anomolous rockmass behaviour prior to major events.

Conclusions

A number of ideas on rockburst mechanisms, raised in the aforegoing summary, can be tested
out or confirmed using numerical modelling. What does slip really look like in time and
space on a fault surface (Wood 1914)? Can blasting act as a trigger for rockbursts (Hill
1954)? How significant an effect do plasticity and creep have on triggering events hours or
days after blasting (Roux and Denkhaus 1954)? Is it possible to trigger large events with low

stress drops (McGarr 1979 and Salamon 1983)? Under what conditions is the slip mechanism
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non-homogeneous (McGarr 1979)? How different are echelon to planar fault systems in
statics and dynamics (Rice 1980)? Are vertical fractures more likely candidates for slip than
other orientations (Cook 1983)? What effect does fault or dyke stiffness have on the amount
of slip (Gay et al. 1984)? Under what conditions does the sense of slip become non-
homogeneous on a particular fault (Lenhardt 1988)? Are faults always chaotic in behaviour

(Huang and Turcotte 1990, and King 1991)?

Future investigations of elastodynamic modelling will attempt to explain these phenomena in

terms of explicit failure and slip mechanisms.
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2.3.2 Backfill Analysis

TWO4D and WAVE were applied to consider the importance of backfill in the dynamic
behaviour of stopes. The evaluation involved comparing the overall dynamic motions in a
stope as well as the convergence and ride responses near the face, for filled and unfilled
stopes. The differences due to backfill were small if a homogenous elastic rock mass was
assumed. However, if the presence of the fracture zone was represented in some manner,
significant effects due to backfill were observed. These effects included a reduction in both
the duration of the dynamic activity and in the peak particle velocities in the vicinity of the
stope. This compared qualitatively with conclusions reached from underground seismic
measurements. No attempt was made to carry out a quantitative comparison with actual
seismic data. This work is presented in a paper by Siebrits, Hildyard and Hemp (1993). The
study contributes to objectives 1.3 and 1.4. of the project plan.

Shearing source

O+ 0
20m 1[0,. =0

Parting plane

15m
A Os=0n=0 Filled stope
AB Os=0,=0 )
T 20m 5 35 m ) 35m '

Fig 2.3.2.1: Model geometry showing positions of the stope, source and parting plane

The model considered was a simple two-dimensional stope with a twenty metre slip event,
twenty metres ahead of the face and twenty metres into the hangingwall. The fracture zone
was represented in three different ways:
- an (open) parting plane five metres in the hangingwall
- a ten metre elastic softened zone with a reduced bulk modulus of 60% and a reduced
shear modulus of 20%, relative to the rock-mass. There was no attenuation or scattering

in this softened zone.
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- a parting plane five metres in the hangingwall in a static stress field, which could open/

close under the combined static and dynamic loading.

In all cases the elastic constants in the rock mass were E = 85GPa, v =

0.19 and p =

2700kg/m’. Backfill was represented by linear normal and shear stiffnesses of 400 MPa/m

and 200 MPa/m, with the stope filled to within five metres of the face.

Figure 2.3.2.1 shows the model geometry for the case where the fracture zone is represented

by a single open parting plane. The convergence velocity envelopes for this geometry without

the parting plane (i.e. a purely elastic rock-mass) are compared for a filled and an unfilled
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Fig 2.3.2.3: Convergence velocity envelopes for unfilled and filled stopes with a parting plane
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stope in figure 2.3.2.2. In this case the fill causes only a small reduction in the convergence
velocities. Figure 2.3.2.3 shows the same envelope comparison when the parting plane is
introduced, showing that the overall dynamic motions are significantly reduced when the

stope is filled.

Figure 2.3.2.4 shows the model geometry when the fracture zone is represented by a 10 metre
zone of softened elastic material. In this case a greater effect is noticed on the ride velocities
than on the convergence velocities, and figure 2.3.2.5 compares envelopes of ride velocities
for unfilled and filled cases. The third (dotted) graph represents a bounding case with
extreme values for the backfill, with a normal stiffness of 2GPa/m and a shear stiffness

of 1 Gpa/m.
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Rock mass
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Fig 2.3.2.4: Model geometry introducing an elastic softened zone
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Fig 2.3.2.5: Ride velocity envelopes for unfilled, filled and stiffly-filled stopes with softened zone
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The third representation of the fracture zone allows for the effects of differences in the initial
static condition. The opening-closure logic in WAVE has since been improved, but no further
experiments have been done. However this is an important facet of the work, since for
example, the clamping stress on a crack has a significant influence on the transmission of
waves, and hence on the transmission and trapping of waves in the stope area (cf section 2.4,

photo-elastic experiments).

It was evident in this work that backfill can have a significant influence on the dynamic
motions in stopes in spite of its relatively low stiffness, due to the effects of the fracture zone.
The representation of the fracture zone was however crude, and further work should be done
to implement more realistic representations of the fracture zone, either volumentrically or
through explicit fractures. Differences in the initial state prior to the event can be an
important consideration. It was also noted that more information is needed on the dynamic

behaviour of backfill and other support.
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2.3.3 Comparisons between WAVE and seismological data

This work contributes towards SIMRAC objectives 1.2 and 1.3.

The correlation of numerically predicted elastodynamic ground movements and seismological
field data was investigated in order to assess the suitability of the WAVE program for the
modelling of mining related problems. An elastodynamic finite difference program, WAVE has
been used to compare fault slip and the resulting wave propagation with seismological data.
Peak particle velocities calculated by WAVE are correlated with analytical models and seismic
field studies.

The objectives of this investigation are:
1. To model fault slip and wave propagation in two- and three-dimensions.
2. To determine the effect of reducing fault cohesion according to a slip-weakening law.

3. To compare the far-field peak particle velocity attenuation calculated by WAVE with that
of the analytical model of Brune (1970/1971) and the empirical relationship of McGarr
(1984).

The WAVE model

A 60 m span horizontal stope is assumed to be subjected to a stress field at a depth of 2600 m
below surface of 70 MPa in the vertical and 35 MPa in the horizontal directions. The stress
field interacts with the stope and generates the zero excess shear stress (ESS) contour (Napier
1987, Ryder 1988) is depicted in figure 2.3.3.1. The ESS can be defined as the difference
between the prevailing shear stress prior to slip and the dynamic strength of the fault plane.
Thus,

ESS =|1 - pua ,

where = tan ¢ and ¢ is the friction angle, t is the shear stress and & is the normal stress
acting across planes of weakness in an assumed orientation. In this study the friction angle on
the fault interface is assumed to be 10 degrees. A vertical fault is situated ahead of the stope
and, with no cohesion on the fault interface, the section of the fault contained within the zero

ESS contour will rupture.
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zero ESS

E=70GPa
v=0.2

p=2700 kg/m"3
Cp =5370 m/s
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Ov=70 MPa
Oh =35 MPa

Figure 2.3.3.1 The two-dimensional WAVE model, where E is Young's modulus, v is

Poisson's ratio, p is rock density, and Cp and Cg are respectively the P- and S-wave velocity.

WAVE is a finite-difference code which is able to simulate wave propagation in a two- or three-

dimensional elastic medium. To do this second-order interlaced finite-difference equations are

used on an orthogonal grid of uniform spacing. WAVE has the ability to model dislocations

which can represent faults or tabular stopes.

The WAVE analyses are completed in two steps:

In Step 1, the fault is locked by the application of a high cohesion to the interface, the
external stress field is applied, and WAVE is cycled until the stope reaches an equilibrium

closure when the maximum velocities in the finite difference mesh are negligible.

In Step 2, the fault cohesion is reduced and the fault ruptures. Fault cohesion is either set
to zero instantaneously, resulting in sudden fault rupture along the length of the fault
situated within the zero ESS lobe, or a slip-weakening law is applied to the fault interface.
In the latter case, the cohesion along the whole fault is reduced such that slip just
commences at a point on the fault. As slip occurs at this point, the cohesion is reduced
linearly as a function of the slip (figure 2.3.3.2), and shear stress is increasingly
transferred to adjacent grid points until they slip. Thus, by the application of a slip-
weakening law to the fault interface, fault slip occurs progressively away from the initial
point of rupture. A progressive fault-rupture model is considered to be more realistic than

an instantaneous fault-rupture model.
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Cohesion

Slip
Figure 2.3.3.2 The WAVE slip-weakening relationship for three different slip-weakening rates.

The sequence of snapshots in figures 2.3.3.3, 2.3.3.4 and 2.3.3.5 illustrate the absolute velocity
in the region surrounding the two-dimensional geometry outlined in figure 2.3.3.1, at 11, 24
and 30 ms after sudden fault rupture, i.e. the fault cohesion drops to zero instantancously. The

fault and stope are oriented parallel to the y- and x-axes respectively.

The waves displayed in the carpet plots of figures 2.3.3.3 to 5 can be categorised according to
the following types:

(1) A strong shear wave demarcated by 'S' propagates away from the fault.
(i1) A Rayleigh wave ('R') propagates along the stope hanging-wall.

(1ii) The faster P-wave ('P') has propagated further than the shear or Rayleigh waves,
but absolute velocities within the P-wave are small compared with peak

velocities associated with the shear or Rayleigh waves.

In figure 2.3.3.4, the Rayleigh wave has propagated along the length of the stope hanging-wall
and, since the Rayleigh wave propagation speed is 2980 m/s versus 3290 m/s for the shear
wave speed, it lags behind the shear wave front. The P-wave is about to propagate beyond the
window for which the carpet plot was created. After 30 ms (figure 2.3.3.5), the Rayleigh wave
is reflected at the end of the stope and then propagates along the foot wall back towards the
fault.

The P- and S-waves emitted by a progressively rupturing fault are not as clearly defined as the
waves radiating from a suddenly rupturing fault. During progressive rupture multiple P- and S-
waves are initiated and the overall wave pattern is noisy and complicated. However, the
Rayleigh waves propagating along the stope surfaces are equally prominent in the sudden and

progressive fault rupture analyses.

The three-dimensional WAVE model comprises a vertical fault situated ahead of a horizontal
60 x 60 m stope. The fault-slip model is identical to the two-dimensional case: both the sudden
fault rupture and the progressive slip-weakening case are investigated. The three-dimensional

model is discretised into a grid of 82 x 64 x 64 elements consisting of 3 x 3 x 3 m elements.
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Figure 2.3.3.3 Carpet plot of the absolute velocity att = 11 ms. Also shown is a schematic

diagram indicating the fault and stope positions.
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Correlation of far-field peak particle velocities

In this section, the attenuation of far-field peak particle velocity calculated by WAVE is

compared with the analytical model of Brune (1970/1971) and an empirical relationship
determined by McGarr (1984).

The Brune Model

Brune (1970/1971) presented a model of the seismic source in which the fault is represented as
a circular area. A shear stress loading is applied to a circular area on the fault surfaces at time
zero resulting in the propagation of a pure shear stress wave perpendicular to the dislocation

surface. The effects of fault propagation and friction are neglected in the Brune (1970/1971)



model. Thus the model of Brune (1970/1971) can be closely compared with the WAVE
analyses where fault cohesion is eliminated instantaneously. He determined the initial near-field

peak particle velocity to be:
. Ar
u=—-
G B

where A7 is the shear stress pulse, G is the bulk modulus and B is the shear wave velocity.

The far-field peak particle displacement is given by

Tﬁro _
R S 2.3.3.1
u(t) = Ropg—— p ( )

where Rep = 0,57 is the median value of the radiation factor for a double-couple source
calculated at 1000 points randomly distributed over the focal sphere (Spottiswoode and
McGarr 1975), a» = 2 nfo and f,, is the comer frequency, where the low- and high- frequency
spectral asymptotes meet, R is the hypocentral distance, 7o is the source radius and 7 is the
retarded time related to the time after the event ¢' by t=¢"— R/ f; for t <0,u(t)=0.
Differentiating equation 2.3.3.1 with respect to time yields

Tﬂr" —abt

u(t) = Rsg——— GR (1- ant),

and, noting that the peak velocity occurs at the retarded time ¢t = 0,

RV max = 0,57ATT’[% .

M.
—30, thus
Yo

From Brune (1970/1971), At= %

RV max = 0,572784/7

. 2332
G V16Ar ( )

Equation 2.3.3.2 is used to calculate the analytical velocity attenuation as predicted by the
model of Brune (1970/1971). The shear stress difference, Az, before and after fault rupture is
determined for each stope-fault geometry by calculating the average ESS on the fault plane
which intersects the positive ESS lobe. The fault position is varied in 3 m increments (the
element size) from 6 to 27 m ahead of the stope. For the two-dimensional geometries, the shear
stress drop was found to vary from 5,3 MPa for a fault situated 9 m ahead of the stope to
0,4 MPa for a fault 27 m from the stope. In three dimensions, the stress drop ranged from 4
MPa for a fault 6 m ahead of the stope to 0,2 MPa for a fault 15 m ahead. The stress drops
were found to be compatible with mine seismic data (McGarr 1984, Spottiswoode 1993).
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Empirical relationships relating RV, ., to seismic moment

The model of Brune (1970/1971) and peak particle velocities calculated by WAVE are
compared with an empirical relationship that relates the product of hypocentral distance and
peak particle velocity to seismic moment. The majority of published papers relating such
relationships have concentrated on large magnitude seismic events, with measurements made at
large distances from the seismic source. McGarr ef al. (1981) provided the first relationship for
mine tremors based on 12 events. Other studies relating the peak particle velocity attenuation
of mine tremors to the event size have been conducted by, amongst others, Spottiswoode
(1984), McGarr (1984), Hedley (1990) and Butler and van Aswegen (1993). In this
investigation the following relationship by McGarr (1984) based on 24 mine induced events

and 28 non-mining related events is used:

log(RV max) = —4,78 + 0,44 log( Mo),

where R is the hypocentral distance in m, V max is the peak particle velocity in m/s and M, is

the seismic moment in Nm.
Comparing Peak Particle Velocities

To relate the far-field peak particle velocities of the numerical analysis to analytical and
seismological data, the peak velocities are calculated by WAVE along a line extending
perpendicular to the fault away from the stope. The line, which is drawn from the point of
maximum fault slip, represents the location at which, for any given time instant, the peak
particle velocities occur in the numerical model. Figure 2.3.3.6 depicts the variation of
hypocentral distance versus peak velocity for the three-dimensional model with a fault situated
9 m ahead of the stope. Using Mo = GDA (Aki and Richards 1980), where Mo is the seismic
moment, G is the bulk modulus, D is the average absolute slip over the rupture area, and A
represents the rupture area, the seismic moment for this stope-fault geometry is calculated to be
98 GNm. The local magnitude on the Richter scale can be related to the seismic moment on an
empirical basis. A number of such empirical relations have been derived from actual data.
They are all expressed in the same form, but with slightly different parameter values. Thus the
average of logMo=8,7+1,2Mc (Spottiswoode and McGarr 1975), logMo=10,2+12Mr
(Gibowicz  1975), logMo=9,2+13Mc (Brummer and Rorke 1990) and
log Mo=7,05+1,5M1 (Hanks and Kanamori 1979) is used to estimate the event magnitude as
M ~1,6. The average source radius for this event is 25 m. In this study the far-field is
assumed to be greater than twice the source radius (Spottiswoode - personal communication).
Also shown in figure 2.3.3.6 are the far and near-field peak particle velocities predicted by the
analytical model of Brune (1970/1971) and the far-field peak velocity attenuation predicted by
the empirical relationship of McGarr (1984).
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The WAVE velocity attenuation depicted in figure 2.3.3.6 radiates from a progressively
rupturing fault, i.e. a slip-weakening law is applied to the fault interface, where fault cohesion
is linearly reduced to zero after 0,1 mm relative slip. Thus it is expected that the sudden fault
rupture model of Brune (1970/1971) will predict higher velocities than WAVE. The empirical
relationship of McGarr (1984) predicts lower peak velocities than the WAVE and Brune
(1970/1971) models.

Peak Velocity (cm/s)

o ! 1 T
o 80 100 160
Hypocentral Distance (m)
—— WAVE ---- Brune (1870, 1971)
—— McQarr (1984) % Brune - Near Field

Figure 2.3.3.6 Three-dimensional velocity attenuation as predicted by WAVE, the analytical
model of Brune and the empirical relationship of McGarr (fault 9 m ahead of the stope,
M, =98 GNm, M, = 1,6 and ry = 25 m).

The velocity attenuation shown in figure 2.3.3.6 is also plotted for the two-dimensional case
(figure 2.3.3.7). The fault is again 9 m ahead of the stope, and, assuming a circular rupture
plane as suggested by Sjoberg (1993) in his two-dimensional analyses, the seismic moment is
2500 GNm and the source radius is 48 m. Compared with the three-dimensional case, the plane
strain assumption in the two-dimensional WAVE model generates a more extensive zero ESS

zone, rupture occurs along a greater fault length, and a larger event is generated.
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Figure 2.3.3.7 Two-dimensional velocity attenuation (fault 9 m ahead of stope,
M, = 2500 GNm, M, = 2,7 and r, = 48m).

In an evaluation of the effect of slip weakening and an increasing distance from the fault to the
stope, the peak particle velocity attenuation of numerous two- and three-dimensional WAVE

models was calculated.

The far-field peak particle velocity calculated by WAVE is found to be approximately inversely
proportional to the hypocentral distance, i.e. RV, ~ constant. The average standard
deviation of the hyperbola fit (RV,, = constant) for the 13 three-dimensional models is 4,9
per cent, whilst for the 20 two-dimensional models the average standard deviation is 7,2 per
cent. When the attenuation of far-field peak particle velocity is represented by an RVp,,¢
product, a single log-log chart, the abscissa representing seismic moment and the ordinate
depicting the RV 4 product, can be plotted for the comparison of numerical analyses with

various degrees of slip-weakening and a range of stope-to-fault distances.

Figure 2.3.3.8 displays such a graph for the two-dimensional model for stope-to-fault distances
ranging in 3 m increments (the element size) from 9m to 27 m with an instantaneously
rupturing fault, and 0,01 mm and 1 mm slip-weakening. Also shown is the analytical model of
Brune (1970/1971) and the McGarr (1984) empirical relationship. Some of the 52 actual
McGarr (1984) events are also plotted.

Figure 2.3.3.8 indicates that the event magnitude decreases with increasing stope-to-fault
distance. The event magnitude decreases slightly with an increasing degree of slip weakening,
but more slip weakening strongly reduces the RV, product. The two-dimensional plane-

strain approximation over-cstimates the far-field peak particle velocities, and the two-
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dimensional WAVE analyses predict higher peak particle velocities than the models of Brune
(1970/1971) and McGarr (1984).

R*Vmax (m*m/s)

100 £
10 £
1E
0.1
0.01 L1 L1 Lo Lol Lo 110
1.0E«08 1.0E-08 1.0E+10 1.0E+11 1.0E+12 1.0E~13
Selsmic Moment (Nm)
=== Brune (1970,1971) —— McQarr (1984) * actual McQGarr (1984)
X no Slip Weakening ¢ 0.01mm sSW A 1mm swW

Figure 2.3.3.8 Velocity attenuation as calculated by the two-dimensional WAVE model (slip-
weakening is abbreviated by SW). The markers (crosses, diamonds, triangles) are labelled with
the stope-to-fault distance for each model geometry analysed. In the case of the markers
representing one model geometry (but various degrees of slip-weakening) lying directly below
each other, only one label is used to specify the stope-to-fault distance. Also shown are the

results of the analytical Brune model and the empirical relationship of McGarr.

The velocity attenuation for the three-dimensional WAVE model, the Brune (1970/1971) model
and McGarr's (1984) empirical relation is shown in figure 2.3.3.9. The WAVE models were
analysed for stope-to-fault distance of 6 m to 15 m, and for an instantancously rupturing fault
and slip weakening of 0,01 mm, 0,1 mm and 1 mm. Whereas, in the two-dimensional analysis,
rupture occurs along a fault situated up to 27 m ahead of the stope, the three-dimensional zero
ESS lobe extends only 15 m ahead of the stope; thus, no rupture occurs if the fault is situated
further than 15 m ahead of the stope.

The three-dimensional instantaneous fault rupture WAVE model correlates well with the model
of Brune (1970/1971), which also analyses an instantancously rupturing fault, and it is
encouraging to note that the numerical analyses compare well with the analytical solution. As
in the two-dimensional case, by increasing the degree of slip-weakening the RV, product is

strongly reduced.
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Figure 2.3.3.9 Velocity attenuation as calculated by the three-dimensional WAVE model. Also
shown are the results by the analytical model of Brune and the empirical relationship of
McGarr.

The numerical values follow a steeper trend line compared with the McGarr (1984)
relationship and the model of Brune (1970/1971). This might be due to the slip weakening
logic applied to the fault interface, and it is recommended that alternative cohesion-weakening
logic, such as velocity weakening, should be investigated. By the incorporation of alternative
cohesion-weakening logic, numerical models might yield superior approximations of the far-
field peak particle velocities, at increasing fault-to-stope distances, than the slip weakening
model used in this study. In the interim, to approximate seismological far-field velocities
closely, the appropriate degree of slip-weakening needs to be chosen. Faults close to the stope
need to be modelled with a high degree of slip weakening (* 1 mm), whereas faults further

from the stope should be modelled with less slip weakening.

Conclusions

The finite difference elastodynamic code WAVE has been used to model fault slip and the
resulting wave propagation in two and three dimensions. The far-field peak particle velocities
have been compared to the analytical fault rupture model of Brune (1970/1971) and the
empirical relationship established by McGarr (1984).
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1. WAVE is an efficient numerical tool for the modelling of fault slip and wave propagation.
2. The far-field peak velocity comparisons showed that:

¢ The two-dimensional plane-strain assumption over-estimates the peak velocities
compared with the analytical solution of Brune (1970/1971) and McGarr's (1984)

empirical relationship.

e Velocities calculated by the three-dimensional WAVE model with instantaneous
fault rupture compare well with the analytical solution of Brune (1970/1971).

e By choosing an appropriate slip-weakening rate, peak particle velocities of the

three-dimensional WAVE analyses correlate closely with seismological field data.
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2.3.4 Fault-triggering

A stope-fault model was investigated wherein under certain conditions the waves generated

by an initial slip event trigger a much larger event. Importantly, a static analysis would not

directly predict such behaviour.

The two-dimensional model considered, is shown in figure 2.3.4.1. The dip is 20° and the
fault is at 90° to the reef plane, with a 40m throw. The left hand stope of 96m span was
mined to 4m of the fault. The effects of a number of different positions of the right hand
stope were considered (no stope, or the distance from the fault ranging from 40m down to
12m). The dip is represented by a rotatation in the applied stress field, so that the stope and
fault are aligned with WAVE’s orthogonal mesh. The model could represent mining parallel

to the fault, rather than mining toward the fault.

oy =-70 MPa
L.H. stope
span = 96m ____Fgu.]t A 30
4m fi Fault ric. Ang. =
" mmau\ Cohesion =9.5MPa
Thrf(\)av oy=-35MPa
= m
q h
R.H. stope
span = 72m

24m from Fault

Figure 2.3.4.1: Model geometry for triggered fault slip
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Figure 2.3.4.2: ESS contours for various positions of the right hand stope

Figure 2.3.4.2 shows contours of ESS (excess shear stress) from 0 to 15MPa for this fault
orientation based on a 30° friction angle and a zero cohesion - firstly for no right hand stope,
and then with the right hand stope face at 40m, 24m and 12m from the fault. What should be
noted are the two lobes of ESS which intersect the fault - a larger upper lobe and smaller
lower lobe. For closer positions of the right hand stope, the upper lobe becomes smaller and
less intense, while the lower lobe becomes more intense. At some position, conditions in the
lower area become more conducive to slip than those in the upper area. Figure 2.3.4.3(a)
shows this same trend for the ESS along the fault itself. Figure 2.3.4.3(b) shows a similar
trend where the normal stress on the fault is increasingly less compressive for the closer right

hand stope faces.
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(a) ESS (b) Normal Stress

Figure 2.3.4.3: Stress on the fault for different positions of the right hand stope

In the first case considered, the right hand stope is at 24m, and the conditions on the fault are,
a 30° friction angle and 9.5MPa cohesion (a cohesion of up to 9.9MPa was found to produce
the same effect). The maximum ESS in the upper lobe is less than 9.3MPa, while that in the
lower lobe is 10.1MPa. These static conditions will cause slip to initiate in the lower lobe,

but not in the upper.

The model was then allowed to slip dynamically. The slip-weakening law described in
section 2.2.2 was used, whereby the cohesion is reduced linearly to zero as slip takes place.
Figure 2.3.4.4 contains snapshots of particle velocity contours at 4 different times, showing
how the energy propagates from the initial slip event in the lower ESS lobe. In the second and
third snapshots one can distinguish the separate P and S wavefronts. Once the shear

wavefront reaches the upper ESS lobe, slip is triggered in the upper section of the fault.

A static analysis was performed by damping out the wave motion from the initial slip event,
and considering the final equilibrium state after stress redistribution. In this case, the second
event is not triggered - in fact the effect of this stress redistribution is to slightly decrease the

upper ESS lobe, making the second event less likely. Figure 2.3.4.5 shows how the slip on

106



(a) ESS (b) Normal Stress

Figure 2.3.4.3: Stress on the fault for different positions of the right hand stope

In the first case considered, the right hand stope is at 24m, and the conditions on the fault are
a 30° friction angle and 9.5MPa cohesion (a cohesion of up to 9.9MPa was found to produce
the same effect). The maximum ESS in the upper lobe is less than 9.3MPa, while that in the
lower lobe is 10.1MPa. These static conditions will cause slip to initiate in the lower lobe,

but not in the upper.

The model was then allowed to slip dynamically. The slip-weakening law described in
section 2.2.2 was used, whereby the cohesion is reduced linearly to zero as slip takes place.
Figure 2.3.4.4 contains snapshots of particle velocity contours at 4 different times, showing
how the energy propagates from the initial slip event in the lower ESS lobe. In the second and
third snapshots one can distinguish the separate P and S wavefronts. Once the shear

wavefront reaches the upper ESS lobe, slip is triggered in the upper section of the fault.

A static analysis was performed by damping out the wave motion from the initial slip event,
and considering the final equilibrium state after stress redistribution. In this case, the second
event is not triggered - in fact the effect of this stress redistribution is to slightly decrease the

upper ESS lobe, making the second event less likely. Figure 2.3.4.5 shows how the slip on
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Figure 2.3.4.4: Snapshots of particle velocity contours showing the wave propagation from
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Figure 2.3.4.5: Development of fault slip with time for (a) static and (b) dynamic cases
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the fault develops with time for the static and dynamic cases. In this figure, the horizontal
axis is time and the vertical axis is a position on the fault. Essentially, a vertical line shows
the slip profile of the fault at a point in time, while a horizontal line shows the slip
development with time for a particular position on the fault. This diagram shows a single slip
event in the static case, while in the dynamic case at some time after the initial event, there is

a significantly larger second event.

The ESS analysis gives insight into the conditions required for this triggered event (assuming
a homogenous fault requires two lobes of ESS similar in intensity but not size). For the
assumption of 30° friction and a homogenous fault, the optimal position of the right hand
stope was 24m. Two other cases were considered which deviate from this criterion and allow
such a mechanism to occur for other positions of the right hand stope. Taking the position at
28m from the fault, ESS in the upper lobe was less than 9.9MPa and in the lower lobe less
than 7.5MPa. Assuming a ‘point of weakness’ in the lower lobe (represented by a cohesion of
7MPa), allows slip to initiate once again triggering the large upper lobe. Finally a third case
considered a position at 32m, but with a higher friction angle of 40°, and cohesion of
4.3MPa. Whereas the previous cases represent mining parallel to the fault, this case could
also represent mining toward the fault, since no slip would occur in previous mining steps.

The size of the triggered event in this case is much smaller than the others due to the smaller

ESS lobes.

Conclusions

The importance of this work is to show that there may be underlying dynamic mechanisms
which are not directly predicted by static analysis. In this particular model, the static
condition itself was close to failure, and there is a fairly narrow band of conditions under
which the triggering occurs. The ESS analysis gives insight into the conditions required for
such a triggered event (the case of an homogenous fault required two lobes of ESS, similar in
intensity but not size). Assuming a distribution in the strength of the fault however, increases
the range of conditions under which such a mechanism could occur. There is scope for
further work, such as to examine P-wave initiation (the above work concentrated upon S-
wave initiation), to include and examine the influence of the fracture zone and to examine

simple 3D models to see under what conditions the same effect can occur.
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2.3.5 Numerical models for the propagation of seismic waves in the fractured

rockmass around a stope

Numerical modelling of the dynamic behavior of the rockmass around stopes is currently
undertaken by assuming that the rock is isotropic and elastic. In finite difference programs,
such as FLAC, WAVE or UDEC, and finite element programs such as ABAQUS and ELFEN,
large joints can be included explicitly using Coulomb friction laws for the constitutive
response. However, the rockmass surrounding stopes at great depth is highly fractured and may
consist of a number of layers of different rock types. A report has been prepared for output
1.5, based on a literature review undertaken to identify methods for modelling the effect of

seismic wave on stopes in a highly fractured rockmass (Sellers 1995).

Techniques have been developed for altering the elastic constants of cracked materials with
weak concentrations of parallel cracks (Crampin 1981, Hudson 1986). The elastic behavior of
composite materials is represented by means of a set of effective elastic constants, expressed in
terms of the crack density and direction. More complex formulations represent the cracking by
a second order crack density tensor (Sayers 1994). The equivalent elastic stiffness displays
anisotropic symmetries if the material has an overall crack alignment. Once effective elastic
constants are determined, the calculation of the effect of the cracks on the propagation of
seismic waves with wavelengths much greater than the dimensions of the inhomogeneities is
possible. Considerable controversy surrounds the assumptions made in obtaining the elastic

constants, and the maximum allowable crack density (Sayers 1994).

It is found that in the case of aligned cracks, polarization of the wave forms occurs. Shear
waves, in particular, are found to be sensitive to even a small anisotropy, and a characteristic
feature of all but the weakest crack anisotropies is the splitting of shear waves into two
orthogonally polarized waves (not necessarily SH and SV). Polarization diagrams are found to
be a reliable way of identifying shear wave splitting, and can thus be used to quantify dilatancy
in a material. The quality factor representing attenuation (Q" ) is shown to depend on the third
power of frequency which contradicts observations of constant Q"' (Aki and Richards 1980).

This discrepancy suggests that a comparative study of in-situ measurements and numerical
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modelling is required to assess whether the equivalent elastic models are relevent for

representing the rockmass around a stope.

The equivalent elastic medium has been implemented into the ABAQUS explicit finite element
program (Mitchell and Dalrymple 1995). Dynamic photoelastic experiments of idealised stope
models in layered materials, shown in Figures 2.4.1.2 to 2.4.1.7, were analysed and produced
stress wave patterns as expected. An equivalent elastic material was included around the stope,
beween two horizontal bedding planes, to simulate a fractured zone around the stope. The
model was loaded by a blast source initiated in the hangingwall. Peak velocities were found to
decrease as the crack density increases. The decrease was most significant in the footwall, and
much less in the hangingwall. The stress patterns are altered considerably and the overall stress

magnitudes appear to decrease in the cracked material.

The equivalent elastic medium formulations do not hold when the wavelength is of the same
order as the crack dimensions. The damaged solid can then be approximated by an equivalent
effective medium which is statistically homogeneous and linearly viscoelastic (Zhang and Gross
,1992). For shear waves, the attenuation is approximately constant. Constructive interference
may arise for non-random sets of cracks (Gross and Zhang 1991). The effective phase
velocity can also be greater than the wave velocity in the undamaged material. Thus, for
aligned cracks the dispersed wave may ultimately dominate the solution in contrast to the
isotropic solution for random cracks in which the interference is destructive. The analysis
neglects the multiple scattering effects between cracks, and is thus only valid for low crack
densities. The selection of combinations of viscoelastic rheological models implies that the
material behaves as a viscoelastic medium and permits the formulation of models with

constant, or near constant, attenuation (Kjartansson 1979)

The fractures or joints in an elastic material can be represented by displacement discontinuity
elements having a specific joint stiffness (Pyrak-Nolte 1990, Cook 1992). Analytical solutions
of a plane wave propagating across a single joint shows that the fracture causes reflections and
a delay in the wave front. Multiple, parallel joints are analyzed as a sum of single joints, thus
neglecting multiple reflections from the joints. Significant differences are observed between the
equivalent elastic medium and the displacement discontinuity approaches which can influence
the interpretation of observed data. Specifically, in the displacement discontinuity method, the
reflection and attenuation occurs directly at the fracture, whereas in the equivalent elastic

medium the changes are smeared throughout the material. The displacement discontinuity
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approach predicts a much greater variation of group velocities with angle of incidence than the
equivalent elastic medium. A series of welded elastic layers will lead to the attenuation of high
frequency components of incident waves by “stratigraphic filtering” and “tunnelling of low

frequency components along high velocity layers ( Deng 1994)

The models described above have assumed that the seismic wave does not affect the integrity of
the rockmass. Graham et al. (1991) investigated the shear wave anisotropy observed in
rockburst induced shear waves in South African mines. The shear wave splitting results from
microcracks which are aligned parallel to the regional stress field. Cracking due to stress
concentrations from mining excavations appeared to have a negligible effect on the shear wave

splitting as measured at the earth’s surface

However, when a seismic wave interacts with a stope at great depth, observations suggest that
failure of the rockmass occurs as intensely fractured material is expelled into the stope by slip
on the pre-existing fractures or, if the intact rock fails due to the application of a stress state
outside the failure envelope. This latter response appear to have been investigated for stopes

and so models developed for other applications must be considered.

A number of dynamic damage models have been developed for modelling fragmentation due to
blast loading and could be applied to study failure of the rockmass under dynamic loading.
Grady and Kipp (1986) consider that the elastic modulus is reduced when the material

experiences tensile stress and an isotropic damage model with a constitutive model of the form

o=FE(-D)e

is developed. The reduction in Young’s modulus E is described by defining the evolution of the
damage parameter, D, in terms of the initial distribution of flaws. The dynamic fracture
strength depends on the distribution of flaws in the material, the time t, the magnitude of the
tensile strain, and the strain rate. Once failure has occurred, the kinetic energy of expelled
particles is included in the overall energy balance. This damage model can be extended to
model a larger range of material responses by including a plasticity model to represent the

behaviour in compression (Taylor et al. 1986).
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Other procedures such as the discrete element method, which explicitly models the
rock as a series of blocks formed by pre-existing joints and fractures, have been applied
to simulate fragmentation due to blasting (e.g. Preece 1994). Progressive
fragmentation of an intially solid rockmass can be modelled using a combination of the
finite element method and the distinct element method (Munjiza et al. 1994). The
application of these techniques to represent the expulsion of fractured rock around

stopes as a result of seismic waves must still be evaluated.
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2.3.6. Rockburst back-analysis

A three-dimensional back-analysis using elastodynamic numerical models was attempted for
a rockburst event that occurred at a deep-level gold mine. Results from the numerical model
were compared with observed seismic data and a damage map. It was found that the model
can be calibrated to match observed peak particle velocities, and that there is also good
correspondence between the regions of highest particle velocities in the numerical model and

the damage map.

The event was modelled with a three-dimensional elastodynamic computer code (ABAQUS),
using parameters calculated from the seismic data. The modelling was forward-based, i.e. the
source dimensions and parameters were specified a priori, and comparisons made with the
seismic data and damage records. No attempt was made to compute the slip and opening
movements at the source from the above observed seismic waveforms, i.e. no inversion was

attempted.

Results show that three-dimensional elastodynamic models can be used to simulate observed
ground motion in a deep gold mine to a limited extent. Peak particle velocities can be
calibrated, but it was not possible to match the complete waveform because of the
complicated non-linear structure of the rock mass around a deep tabular excavation, and

because of the lack of detailed knowledge of the source mechanism.

Past work

Only a few three-dimensional elastodynamic investigations into rockburst or earthquake
phenomena have been carried out because computer hardware and software limitations have
prevented these types of investigations until recently. Yomogida and Etgen (1993) and
Frankel (1993) are two examples of such studies on basins in Southern California which have
experienced earthquakes. Both of these studies were based on finite difference methods, and
entailed runs where up to 2.4 million and 4.1 million grids, respectively, were used.
Yomogida and Etgen’s model covered a volume of 98 by 96 by 32 km, and Frankel’s model
covered a volume of 37 by 16 by 7 km. These analyses are on a much larger scale than the
scale in a rockburst study, which usually involves a volume with dimensions of less than 1

km in each direction. In both analyses, the authors concluded that the application of three-
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dimensional models was limited by insufficient knowledge of the basins under investigation,
but that numerous aspects of the observed wave motion recorded by geophones were
reproduced. Other notable three-dimensional studies include those of Hart et al. (1988) and

Bigarre et al. (1993), but these studies were based upon pseudo-static analyses.

Event statistics

The rockburst event that was back-analyzed occurred in a deep gold mine during 1994. The
seismic event located on a fault and dyke structure (figure 2.3.6.1), and had a magnitude of

3.9 (Richter) on the mine’s seismic system. Other relevant information is listed below.

location: (x,y,2) = (29 000, -41 963, 2 530) £ 25 m location error
moment M): 286 x 10" Nm

apparent stress oy 15 MPa

source type: “pop”

apparent volume V;: 9.7x 10°m’

In the above list, the apparent stress (oy) is defined as the stress available to induce seismic
ground motion, and is derived from the total work expended during slip and the dissipated
energy, or the difference between the average loading stress and the average resisting stress

(e.g. McGarr 1993, p. 4). If no dynamic overshoot occurs during slip, then the apparent stress

Figure 2.3.6.1: Mine plan showing event location and extent,

geological features, and geophone sites
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is exactly half the stress drop, so we expect a stress drop of about 30 MPa. Apparent volume
(V4) is defined as a volume of rock which experiences large inelastic strains, and is calculated
by dividing the seismic moment by twice the apparent stress (Mendecki 1993). A “pop”
source type implies that there was significant compressional wave content in the observed
seismic waveforms, as opposed to a “slip” source type, which contains significant shear wave

content.

The seismic location had an error of 25 m, and the fault and dyke (18 m throw) are within
this range. The location and source parameters listed above were based on records from 13
triaxial geophones. In figure 2.3.6.1, the geophones shown are the four nearest to the event
location for which there are records of the event. The traces from these four geophones were

digitized from seismic records for direct comparison with the results of the numerical model.

The event was modelled as slip on the fault. Although the source registered as a “pop”-type
event, the geology and location are such that the source is probably a shear event, in the sense
that it is located along the fault/dyke structure. Slip-based mechanisms can have both normal

and shear components. Alternatively, dyke-bursting could generate a “pop”-type event.

With the assumption of a planar slip source, it is unclear how the source radius and stress
drop should be inferred from the apparent volume and apparent stress data. A planar slip
structure with a finite thickness, has a much smaller “volume” than a spherical source of the
same radius. In the numerical models, extensive tests were done to determine suitable source
dimensions for given choices of fault friction. The results which best matched the seismic
data in terms of peak particle velocities, damage maps, and geophone velocity histories, were
found to be those that corresponded to a much smaller apparent volume (i.e. dyke thickness
times source area) and apparent stress, but a larger source radius than those from the seismic

data calculations.

Using MINSIM-D (1987) and assuming a single material model, reveals that the peak excess
shear stress (ESS) on the plane of the fault was 12 MPa, based on a friction angle of 15° and
no cohesion. Figure 2.3.6.2 shows the MINSIM-D ESS contours on a window in the plane of
the fault looking SE, and covering an area approximately equal to the source area. There is a
large area with ESS between 10MPa and 12MPa in the hangingwall with a radius of
approximately 70 m. Assuming ESS drops to 0 MPa during the event, gives a peak stress
drop of 12 MPa, which is less than half the expected 30 MPa based on the apparent stress of

116



15MPa calculated from the seismic data. however this must be viewed in conjunction with

the source size.

Contours of ESS
| L L L DL D D L D L L L e B I B |

Figure 2.3.6.2: ESS pattern within source dimension on fault plane, looking SE

Numerical tools

The back-analysis was performed in two and three dimensions. WAVE was used in the two-
dimensional investigations and the finite element code ABAQUS/EXPLICIT (1994) was
used in the three-dimensional ones. The choice of computer codes was governed entirely by
the availability of relevant software capable of performing the analyses required. In the case
of the three-dimensional models, ABAQUS/EXPLICIT has multiple material capabilities,
infinite element logic, slip logic, and its accuracy is established. In the case of the two-
dimensional models, WAVE has multiple material capabilities, absorbing boundaries, slip
logic, and is very efficient to run. WAVE runs are generally more accurate if a sufficient
number of elements are used in the mesh. WAVE’s three-dimensional capability was not
fully developed at the time of this study, and could not be used for the three-dimensional

analyses.
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Material type | E(GPa) | v | p(kg/m) | o (kmis) | ¢, (kmhs) | een(q) | coea(@) |
lava | 95 | 025 2 900 6.3 36| 1.13]  1.06

quartzite (q) | 751 02 2700 5.6 34|  100]  1.00]
shale | 60| 03] 2900 53 28] 095| o082

dyke | 9 | 03 2900 6.5 35| 116|103

1000m 8.0

Table 2.3.6.1: Elastic material properties
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Figure 2.3.6.3: Transverse section through the mine looking East.

Geology

The stratigraphy is indicated in figure 2.3.6.3. The stope hangingwall consists of Ventersdorp
lava and the footwall is predominantly quartzite, but contains a shale layer. The elastic
material parameters given in Table 2.3.6.1 were supplied by the mine’s Rock Mechanics

Department. In Table 2.3.6.1, E is Young’s modulus, v is Poisson’s ratio, p is density, c; is

the compressional (P) wave velocity, and ¢; is the shear (S) wave velocity.

In the numerical model, all four materials were included, viz. the lava hangingwall, the shale
and quartzite footwall, and the dyke. Plane strain modelling (using Section A-A in figure

2.3.6.1) with WAVE revealed that the material effects are important. If the hangingwall is
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assumed to consist of lava and the footwall of quartzite, then the ESS in the hangingwall is
reduced and the ESS in the footwall is increased, as opposed to the case when the entire rock
mass is assumed to be either lava or quartzite. The inclusion of the dyke also causes an

increase in the footwall ESS.

Figure 2.3.6.4 demonstrates the different material cases for identical mining geometries. A
stope dimension of 75 m was selected for this comparison, and was chosen to coincide with
the stope span over which closure was assumed to have not yet occurred. The effect of
different stope dimensions was not found to contribute significantly to the relative material
effects described above. Figure 2.3.6.4(a) is the case where a quartzite rock mass is used and
no dyke is present, and figure 2.3.6.4(b) is the case where the dyke is added. figure 2.3.6.4(c)
is the case where the hangingwall is lava and the footwall is quartzite and no dyke is present,
and figure 2.3.6.4(d) is the case where the dyke is included. Notice that the shale layer has
been excluded from these static analyses because it is outside the field of interest. It is

expected to only have an effect in the dynamic analyses.

Table 2.3.6.1 indicates, under dynamic conditions, the ratio between the wave velocities of
each rock type with respect to the quartzite (q). Notice that compressional and shear wave
velocities can vary by as much as 20 per cent from that of quartzite. It was felt that this
variation was sufficiently large to justify the use of multiple materials in the numerical
models, especially because three of the four selected geophones were located in the footwall

in or near the shale layer.

Fault ------- > E
x i
(a) Homogenous quartzite  (b) Quartzite rock-mass (c) Quartzite footwall, (d) Quartzite footwall,
rockmass and dyke lava hangingwall, no dyke  lava hangingwall, dyke

Figure 2.3.6.4: Effects of different materials on the ESS contours (portion of geometry shown)
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Numerical models

In order to develop a numerical model of the rockburst event, it is necessary to decide which
geological features are of importance, how much of the mining layout is of importance, and
most importantly, what the source parameters are. Thereafter, the numerical model must be
built up in stages, starting with a simple model, and adding complications only as needed.
The modeller must also work within any limitations imposed by the numerical tool being
used. In order to model the rockburst event, each run was split into a two-stage process.
Firstly, the virgin stress field was imposed on the mesh, and the model (with the final mine
layout, i.e. one mining step) was allowed to reach static equilibrium. Secondly, the entire
fault was unlocked and allowed to slip according to a prescribed Coulomb friction weakening

law, where friction was reduced linearly with time.

The three-dimensional model was set up in a multistage process. Firstly, MINSIM-D was
used to digitize the mine layout of interest in the dynamic model. From figure 2.3.6.1, it is
clear that the region of interest is fairly large. This large area of mining was chosen to ensure
that the ESS lobes fell within the model. The second stage was to transform the digitized
information into a data file suitable for the ABAQUS pre-processor, ARIES (1992), to read.
The third stage was to erect a three-dimensional numerical mesh around the mine layout large
enough so that ESS was zero at the mesh boundaries. This mesh contained some 36,000
elements, and covered a volume of 1.8 by 1.2 by 0.8 km. The fourth stage was to add infinite
elements to the free surfaces of the mesh so that an infinite rock mass could be simulated.
The purpose of the infinite elements is to transmit stress waves at all frequencies without
generating numerical reflections which would distort the geophone histories, and to
approximate the far-field stress conditions. The fifth stage was to decide on the seismic
source representation. This can be achieved by prescribing a source based on relevant seismic
data, or by allowing the fault/dyke structure to slip according to a frictional slip law. Both
alternatives were attempted. Assumptions were also made as to how the friction became
mobilized on the fault surface. Thereafter, numerous numerical experiments were performed
to test the sensitivity of different parameters, and to “calibrate” the model against the

available seismic and damage data.
Various friction-weakening laws were used, with friction being specified as a function of

time, as shown in figure 5 (no cohesion weakening law was available). The relationship that

produced results that matched seismic data most closely was a simple linear degradation in
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friction from a high static value (of 60°) at b (deg)
time ¢ = 0 to a lower value (of 15°) at time ¢ = 60°
50 ms (see figure 5). Fault cohesion was

assumed to be zero. A linear degradation of 300 -

friction with time is a numerical technique to 152 ]
tune the model results. In other words, a —t
35 50 65 t (ms)
sudden release of friction will cause slip to —_—
slip band

occur more violently than a slower release of

) ) Figure 2.3.6.5: Friction-weakening slip
friction would. This implies that the particle

law used in numerical model
velocities at the geophone positions will be
higher, and the stress waves will have higher frequencies if slip is allowed to occur more
suddenly. Moreover, a weakening law enables slip to start at a point, and spread out
dynamically depending on the rate of reduction of friction angle. This is more natural than

allowing slip to initiate over a large area simultaneously.

Results

The friction-weakening law was applied after obtaining static equilibrium due to the applied
stress field. Slip initiates in the hangingwall, at a friction angle of approximately 30°, and
progresses until the fault section in the footwall is also activated. The fault in the model was
active from time 7 = 35 ms (at 30° friction angle) to 65 ms (at 15° friction angle), as is

depicted in figure 2.3.6.5.

Figure 2.3.6.6 compares the measured seismic data with the velocities generated by the model
for geophone stations 10, 12, 13, and 14. The poor match in first motions suggests that the
source was not a simple slip mechanism, such as was obtained from ESS calculations.
Seismic data suggests a significant “pop” component, perhaps associated with crushing or
bursting of the dyke into the face area. There is however good agreement between the real
and numerical data for peak particle velocities and arrival times. Table 2.3.6.2 quantifies the
differences between the observed (OBS) and numerical (NUM) peak particle velocities for
each geophone (GEO). The mean ratio, between the two sets of data is approximately 1.0 +
0.27 (value + one standard deviation). Improved knowledge and better representation of the
source mechanism would enable the modeller to obtain a better match between observed and

numerical waveforms in terms of first motions.
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Figure 2.3.6.6: Comparison between the geophone and model velocity traces
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GEO | OBS| OBS ;| OBS | NUM | NUM | NUM | NUM | NUM | NUM | Average of
/OBS | /OBS | /OBS | NUM/OBS

Vi \P V3 Vi V2 V3 Vi V2 V3 ALLV

PS10 | 0.03 0.05 0.05 0.04 0.07 0.07 1.3 1.4 1.4 1.4
PS12 | 006 | 0.06 | 0.04 0.04 0.08 0.03 0.7 1.3 0.8 0.9
PS13 004, 009} 0.06 0.05 0.04 0.06 1.3 0.4 1.0 0.9
PS14}{ 006 { 009 0.05 0.03 0.06 0.06 0.5 0.7 1.2 0.8

Table 2.3.6.2: Peak particle velocities (m/s) and ratios between observed (OBS) and
numerical (NUM) data

In figure 2.3.6.7, comparisons are made between actual damage and particle velocity
predicted by the model. Figure 2.3.6.7(a) shows a damage map, compiled by the Rock
Mechanics department of the mine, indicating where the most damage to mine workings
occurred as a result of the rockburst. The degree of damage is indicated by three different
cases: severe, moderate, and minor. Severe damage implies that there were major rock falls,
support was destroyed, and the area was considered dangerous to enter. Major clean-up and
re-supporting was necessary. Moderate damage implies that there were widespread rock falls,
some support was damaged and minor clean-up and repairs to support were required. Minor
damage implies that there were scattered falls of ground but the support was still functional,

and a minor clean-up was required.

Figures 2.3.6.7 (b) to (e) show contour plots of components of particle velocities at time ¢ =
190 ms. Velocities in (b) to (d) are for a reef-parallel plane just inside the footwall, while (e)
is for a reef-parallel plane just inside the hangingwall. The figures were chosen specifically
because they represented a snapshot at which particle velocities were largest, and all indicate
good agreement with the damage map. Whether or not particle velocities should be used to
indicate the potential for rockburst damage, is debatable. In fact, Hsiung ef al. (1992) have
shown that peak particle velocities are not necessarily a sufficient measure of the potential
for rockfalls or rockbursts. The accumulation of a large number of small events can have a

greater damaging effect than a single event with high peak particle velocities. However,
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(b) x; component of footwall velocity

(d) x5 component of footwall velocity (e) x, component of hangingwall velocity

Figure 2.3.6.7: Comparison between the mine’s recorded damage map and contours of

particle velocity in the model at time t=190ms
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(d) x5 component of footwall velocity (€) x, component of hangingwall velocity

Figure 2.3.6.7: Comparison between the mine’s recorded damage map and contours of

particle velocity in the model at time t=190ms
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given a particular hangingwall, a single event that generates higher peak particle velocities
can be expected to generate more damage. This rockburst back-analysis should be repeated
for a non-damaging event in the same mining area in order to make a more definite statement

about the effect of particle velocity on possible damage to mine excavations.

The peak particle velocity obtained from the numerical analysis is approximately 1.4 m/s,
which compares well with the (near field) analytical value of o /(pcz) =15 x 10°/

(2700*3500) = 1.6 m/s for a shear driven source (Freund 1990, p98), where o; is the
dynamically applied shear traction loading. This value compares very favourably with other
mine seismic data, and the numerical result is plotted in figure 2.3.6.8. Notice that particle
velocities above 1.5 m/s are sufficient to cause stope convergence rates of over 3 m/s
(McGarr 1993) - sufficient to cause failure of rapid-yielding hydraulic props. Numerically
determined stope convergence rates were lower than this threshold and, from figure 2.3.6.7
(b) and (d), a typical value of approximately 1.0 m/s was achieved. It is unlikely that particle
velocities of this magnitude are sufficient to cause the extent of damage that was associated
with this rockburst. This may indicate an insufficiency in the continuum-based modelling
approach, viz. particle velocities are not amplified in the highly fractured rock mass close to

the mining excavations because the rock mass is assumed to be unfractured.
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Observed and numerical values of log (R*v,,,) for the four geophones are tabulated in Table

2.3.6.3. The mean value of 1.4 + 0.2 m%/s (same for observed and numerical) is shown in

figure 2.3.6.9.

GEO R OBS vy OBS NUM Vpay NUM
log(R*Vay) log(R*Vyax)
PS10 | 345 0.05 1.2 0.07 1.4
PS12 | 594 0.06 1.6 0.08 1.7
PS13 1 312 0.09 14 0.06 1.3
PS14 | 298 0.09 1.4 0.06 1.3

Table 2.3.6.3: Observed (OBS) and numerical (NUM) values of log (R*v,,,) for the geophones

Analysis of the frequency content of the observed and simulated wave forms reveals that the
corner frequencies are well matched in all cases (figure 2.3.6.10). Stations 12 and 14 are not
well matched for higher frequencies, as opposed to stations 10 and 13, which match well.
This could indicate a cut-off in the frequencies that the numerical model is able to cope with.
Mesh resolution studies would determine whether the higher frequencies could be better
matched by reducing the element size. It is not meaningful to compare the low frequencies as

this part of the frequency spectrum is based on very limited data.

The displacement waveforms obtained by numerical integration of the velocities are
compared in figure 2.3.6.11, and show that the source mechanism used in the numerical
model was poorly matched to the real one. Once again, more detailed knowledge of the
observed source mechanism would aid the modeller in obtaining a much better match

between real and synthetic waveforms.

Conclusions

This work implements a three-dimensional elastodynamic numerical model of a rockburst
event, and demonstrates that by using a dynamic fault slip model with time dependent friction
weakening the results of numerical models can be adjusted to resemble in certain respects
real seismic data. However, there are numerous factors related to source specifications, rock
material parameters, and damage properties that need to be taken into account, all of which

could have an influence.
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The above analysis represents the first rudimentary attempts to reproduce real mine data. It
should be emphasized that much useful information can still be obtained by investigating
idealized geometries as well as real data - for example examining dynamic stope
deformations and support requirements for different mining layouts. The results are
nevertheless sufficiently encouraging to suggest that back analysis is possible, and further

attempts are recommended.

It would be interesting to see the effect on the model of taking into account the non-linear
nature of the rock mass. The same runs could be repeated with a dynamic damage material
model in order to examine the effects of a damaged rock mass on the numerical geophone

data.

This type of modelling can benefit from sensitivity analyses, and it would have been
desirable to experiment with a number of aspects of this model - such as different source
mechanisms, representation of the fracture zone, cumulative damage - to determine their

effects, and in an attempt to match the seismic records more closely.

In theory the huge efficiency advantages and model turn-around times using WAVE would
make it a most useful tool in this respect. WAVE however has limitations in modelling
general geometries, more complex material for the fracture zone, static boundaries and
cumulative damage. Combining the efficiency of WAVE with these features would have
great potential for back-analysis. Initial attempts at back-analysis using WAVE are currently

in progress on mine geometries which are approximately orthogonal.

It should also be emphasized that any prediction of rockbursts is impossible with these
numerical models. In order to attempt to predict rockbursts, an absolute minimum
requirement would be a history of past seismicity with ongoing seismic monitoring of the
mine, both of which are completely excluded from this numerical study. It may however be
possible, that modelling related to seismic records could ultimately be used to understand

aspects of a mine geometry such as the condition of material in various parts of the mine.
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2.4 PHYSICAL MODELLING OF ELASTODYNAMIC PROBLEMS

The work reported here addresses SIMRAC objective 1.3.

In South African deep level gold mining, rockburst and rockfall related accidents account for
approximately 40% (Heunis 1980) of the fatalities. Due to high geological and mining-induced
stresses, sudden shear can occur on planes of weakness, and the resulting seismic waves which
interact with mining excavations can, in many cases, trigger rockbursts and rockfalls. To
reduce the fatality rate and continue mining at ever increasing depths, it is necessary to spend

considerable effort on investigations dealing with mining related seismicity.

Theoretical aspects of wave propagation and the interaction of stress waves with
discontinuities such as cracks and the interface between two dissimilar media have been
investigated in numerous studies. Amongst them Achenbach (1973), Brekhovskikh (1960),
Rinehart (1975), Borejko et al. (1992) and Fokkema (1981) have concentrated on the

geophysical aspects of wave interaction with geometrical discontinuities.

In spite of the large number of available theoretical analyses, it is difficult to obtain
quantitative information of wave interaction in terms of stress magnitudes of real wave pulses.
Of the few experimental analyses that have been conducted, dynamic photoelasticity has been
used successfully in two-dimensional models. The photoelastic technique offers full-field
visualisation and allows qualitative and quantitative interpretation of the complicated

behaviour associated with actual stress waves interacting with discontinuities.

This study concentrates on the application of the photoelastic method to investigate stress wave
interactions with a stope and the effects of propagating waves on cohesive and non-cohesive
parting planes separating the rock massif from the stope hangingwall beam. The dynamic finite
difference program WAVE (Hildyard ef al. 1995) is used to back-analyse the photoelastic
experiments. The purpose of the numerical investigation was to assess the accuracy of the

WAVE analyses when modelling stress waves propagating through layered media.
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2.4.1 Using dynamic photoelasticity to investigate stress waves interacting with
stopes

The gold mined in South Africa occurs typically in tabular ore deposits. Narrow stopes give
access to the reef, and the interaction between the mining excavations and the geological and
dead-weight stresses leads to stress concentrations in the stope vicinity. Geological planes of
weakness such as faults and the interface between dykes and the rock massif are loaded by the
stress concentrations, and sudden rupture can occur. The resulting seismic waves interact with

mining excavations, in some cases triggering rockbursts and rockfalls.

Figure 2.4.1.1 shows an idealised stope and some geological and mining induced features,
namely (1) parting planes (stope parallel geological features offering little or no cohesion), (2)
shear fractures and (3) extension fractures (Adams ef al. 1981). Also shown is the idealised
stope model used in this study. A horizontal slot, representing the stope, is cut into a strip of
bi-refringent material (Makrolon) with a lower impedance than the Araldite B bi-refringent
material. The Makrolon represents the heavily fractured, and thus softer, hangingwall and
footwall beam, whilst the stiffer Araldite B models the surrounding rock massif. The interface
between Makrolon and Araldite B is either glued or left unglued, thereby representing cither a

cohesive or non-cohesive parting plane.
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Figure 2.4.1.1 Typical mining geometry in a South African gold mine (Adams et al., 1981).

Also shown is the simplified model used for the photoelastic experiments.
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Mining induced seismicity is usually associated with shear type events. However, no
experimental technique exists currently to generate shear type events in photoelastic models. In
this study stress waves are initiated by a point blast source, located in the hangingwall so that
the blast induced waves travel through the fractured hangingwall rock and interact with the
stope. Dynamic photoelasticity, in conjunction with high speed photography, has been used to
analyse the interaction between stress waves and an open slot. The modelling techniques of
dynamic photoelasticity are well documented and detailed descriptions can be found in Dally
and Riley (1978), and Rossmanith and Fourney (1983).

The plane models are cut from 6 mm thick Makrolon and Araldite B plate. Using circularly
polarised monochromatic light, optical interference of the bi-refringent material produces
isochromatic fringe patterns, where an isochromatic contour is a line of equal maximum shear
stress. The order of interference NV is related to the state of stress in the model by the stress-
optic law, 6y — 0, = N f, / h (Dally and Riley 1978), where o; and o, are the principal

stresses, f; is the material fringe value and 4 is the model thickness.

Wave propagation through three model geometries (Models A, B and C) was investigated.
Model A was constructed from Araldite B and was used to investigate the stress wave
interaction with the stope in a homogeneous medium. Model B included a Makrolon layer in
the model centre, the interface between the Makrolon and the Araldite B being bonded; the
glued interface represents a cohesive parting plane, while the Makrolon layer above and below
the stope represents the fracture softened hangingwall and footwall beam. Model C consists of
the same elements as Model B, however the interface between the Araldite B and Makrolon
was not bonded to allow the wave interaction with a non-cohesive parting plane to be
investigated.

To represent the geological stresses at depth, the models were placed in a rigid frame and the
boundaries loaded by hydraulic jacks to 5,8 kN in the vertical direction and 3,0 kN in the
horizontal direction, giving a & ratio of approximately 0,5. These were the maximum loads the

models could sustain without becoming unstable and buckling.

A Cranz-Schardin (1929) type multiple spark gap camera was used to record the dynamic
fringe patterns. The camera is triggered by detonation of the explosive and the exposure of the
first negative occurs after a selected delay period. Twenty four frames were recorded at
discrete times during the dynamic event at a framing rate of 220 000 frames per second. A
short exposure time of 200 ns is necessary to record sharp photographic images of moving

fringe patterns.
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Numerical analysis procedure

The analysis of actual stress pulses was used to evaluate the dynamic finite difference program
WAVE in terms of its accuracy and modelling capabilitics. WAVE is a program that models
wave propagation in a two- or three-dimensional elastic medium. Second order interlaced finite
difference equations are used on an orthogonal grid with uniform grid spacing. WAVE has the
ability to model grid-aligned dislocations which can represent faults and tabular stopes, as well

as incorporating various material properties.

WAVE analyses were completed in two steps: During Step 1 the stress field was applied to the
model, and the program cycled until the velocities in the finite difference mesh were low
enough ( < 1 % of velocities generated by blast waves) to approximate the equilibrium state. In
Step 2 a point blast source generated stress waves which interacted with the stope and parting

planes. Steps 1 and 2 were superimposed in order to obtain the total elastodynamic behaviour.

The WAVE blast source was tailored such that the resulting far field stress pulse approximated
the stress amplitude, pulse period and pulse shape of the stress wave propagating through the

photoelastic models.

The non-cohesive interfaces were modelled with zero cohesion and with an interface friction

angle of 10 degrees.

Photoelastic and numerical results

The interaction of waves with geometric discontinuities results in complicated wave patterns
due to the superposition of incident, diffracted, reflected and refracted waves. In many cases
most of the waves predicted by theory cannot be identified directly in photoelastic patterns,
however the presence of the waves can be deduced from disturbances caused in the fringe
patterns of other waves. To help identify some of the weaker waves, each of the photographs
describing photoclastic fringes is accompanied by a diagram showing the theoretical wave

pattern at that time instant.

The following notation is adopted to identify wave types: longitudinal, transverse, von Schmidt
and Rayleigh waves are referred to as P, S, ¥ and R waves respectively. Reflected waves are
labelled with subscript 7, refracted (transmitted) waves are given the subscript ¢ and diffracted
waves are described by subscript d. Waves reflected from the stope are given the additional
subscript s. Diffracted waves are labelled with a superscript indicating the slot tip (a or b) at
which they are diffracted.
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Model A: Stope in a homogeneous medium

After applying the preload, Model A was loaded explosively and the resulting dynamic fringe
pattern was recorded by the exposure of 24 photographs. One photograph exposed 92 us after
detonation is chosen to highlight prominent features of the wave interactions. Figure 2.4.1.2

displays the photoelastic fringe patterns and the corresponding theoretical wave pattern.

The incident P-wave has propagated 60 % along the stope hangingwall. The comparatively
weak incident shear wave, generated by cracking at the blast hole, is just interacting with stope
tip a, creating a stress concentration which can be identified by the pseudo caustic at the
bottom left hand comner of the slot. The pseudo caustic is formed by nesting of fringes beyond
the resolution power of the high speed photographic system. The incident P-wave has
attenuated to a maximum fringe value of 7, however at the point of reflection at the slot, the
fringe number increases to 11. During reflection at the slot, most of the incident P-wave energy
is converted to a prominent shear wave (Sg; P). Effects such as fringe islands and the bending
of fringes indicate the presence of diffracted P- (Pg® P) and S- (S4@ P) waves. The
characteristic wave shape of the Rayleigh wave is apparent in the footwall and 5 fringe lines
can be discerned in the subsurface peak. Fringes indicating a von Schmidt wave at asin(cslcp)
= 359 to the stope between P4 P and S4@ P can be identified.

Figure 2.4.1.3 shows the isochromatic pattern generated by WAVE at a time of 92 ps after
source activation. The WAVE analysis compares very well with the photoelastic results and
isochromatic lines indicating the Sg; P, diffracted P- (P42 P) and S- (S4? P) waves, Rayleigh
(R) and von Schmidt (V) waves can be identified.

Model B: Stope in a softened layer bounded by cohesive parting planes

Figure 2.4.1.4 depicts the photoelastic fringes and theoretical wave positions 95 ps after
detonation. Most of the incident P-wave energy is refracted in the form of a P-wave (P; P)
across the Araldite B - Makrolon interface, and the energy of the refracted P-wave is converted
to a shear wave (Sg; P¢ P) as reflection occurs at the hangingwall surface. Due to the slight
acoustical impedance mismatch between Araldite B and Makrolon (14 % mismatch), only
slight bending of the P- and S-waves occurs as the waves propagate from one medium to the
next. The epoxy bond between the two bi-refringent material types is not separated by the

tensile components of the stress waves, and fringe lines progress smoothly from one material
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Figure 2.4.1.2 Model A: Photoelastic fringe pattern and theoretical stress wave maxima 92 ps

after detonation.

Figure 2.4.1.3 A snapshot in time of isochromatic contours generated by a WAVE analysis

92 ps after blast source activation.
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Figure 2.4.1.2 Model A: Photoelastic fringe pattern and theoretical stress wave maxima 92 ps

after detonation.

Figure 2.4.1.3 A snapshot in time of isochromatic contours generated by a WAVE analysis

92 us after blast source activation.
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Figure 2.4.1.4 Model B: Photoelastic fringe pattern and theoretical stress wave maxima 95 us

after detonation.

Figure 2.4.1.5 A snapshot in time of isochromatic fringes generated by a WAVE analysis

95 ps after blast source activation.
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into the next. Fringe patterns indicating Rayleigh and von Schmidt waves can be identified by

comparing the photoelastic fringes with the theoretical wave positions.

Figure 2.4.1.5 shows the isochromatic pattern generated by WAVE 95 us after source
activation. The overall isochromatic WAVE contours compare well with the photoelastic
results, and isochromatics indicating the S P, Py P, S P; P as well as von Schmidt waves can
be identified.

Model C: Stope in a softened layer bounded by non-cohesive parting planes

The frame chosen to describe wave interaction in Model C was exposed 93 s after detonation
(figure 2.4.1.6 describes the photoelastic fringes and the theoretical wave positions). The
energy of the incident P-wave has been partitioned into reflected P- and S-waves, and refracted
P- and S-waves. Traces of all four of these wave types are apparent in the photograph,
however the most prominent are the S, P and Py P wave. As in the photographs describing the
fringes of Models A and B, the formation of a strong shear wave due to the reflection of the
transmitted P-wave (Sg; P P) is visible. The Sy Py P wave is reflected at the Araldite
B/Makrolon interface and the energy is redirected back towards the stope in the form of a
S¢ Sgr Py P and P Sg; P P wave.

The wave pattern of Model C is quite different to that of Model B. The non-cohesive boundary
traps energy in the form of reflected waves, whereas the cohesive boundary transmitted most of
the shear wave energy. This is an important effect which will influence the dynamic
hangingwall behaviour.

The isochromatic contours calculated by WAVE 93 us after source activation for Model C are
displayed in figure 2.4.1.7. Prominent wave types consistent with the photoelastic results are a
strong shear wave reflected by the material interface (S P), the reflection of the transmitted P-
wave at the stope (S Pt P), and the high density of reflected waves within the hangingwall
beam. The isochromatic contours calculated by the numerical analysis correlate closely to the

actual contours observed in the photoelastic experiments.
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Figure 2.4.1.6 Model C: Photoelastic fringe pattern and theoretical stress wave maxima 93 us

after detonation.
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Figure 2.4.1.7 A snapshot in time of isochromatic fringes generated by a WAVE analysis

93 s after blast source activation.
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Figure 2.4.1.6 Model C: Photoelastic fringe pattern and theoretical stress wave maxima 93 Us

after detonation.
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Figure 2.4.1.7 A snapshot in time of isochromatic fringes generated by a WAVE analysis

93 ps after blast source activation.
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Analysis of Results

High dynamic stresses in the rock immediately adjacent to the stope are critical as they can
initiate rockbursts and rockfalls which endanger human life and disrupt mining operations. By
plotting the isochromatic fringe order distribution along the hangingwall skin, the dynamic
stresses can be determined, and the effect of cohesive and non-cohesive parting planes can be
evaluated. To allow a direct comparison of the stress magnitudes, the fringe orders are

normalised relative to the peak stress propagated within the incident P-wave.

It is instructive to plot the stress in three-dimensional form, the two horizontal co-ordinate axes
representing hangingwall position (X-axis) and time (Y-axis), and the vertical axis representing
normalised dynamic stress ( (o) +0,)/2 ). Figures 2.4.1.8, 2.4.1.9 and 2.4.1.10 give the
three dimensional plots for the normalised hangingwall skin stress of Models A, B and C,

respectively.

Ridge of high stresses
due to reflection of incident P-wave.

Surface Isotroplc Point

150

Figure 2.4.1.8 Normalised dynamic stress along the hangingwall skin for Model A as

determined from photoelastic experiment.

Model A: The most prominent feature of figure 2.4.1.8 is a ridge of high stresses propagating
along the hangingwall at the point where the incident P-wave is reflected. Also apparent is the
surface isotropic point (zero stress) bounded by the leading and trailing surface peak of the

Rayleigh wave propagating at just under half the P-wave speed.
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Ridge of high stresses
dua to reflaction of PtP wave.

150

Figure 2.4.1.9 Normalised dynamic stress along the hangingwall skin for Model B as

determined from photoelastic experiment.

Model B: In this model a portion of the incident energy is reflected by the Araldite B-Makrolon
interface, less energy is propagated by the P; P wave compared with the incident P-wave, and

the hangingwall skin stresses are lower in Figure 2.4.1.9 compared with figure 2.4.1.8.

Stresses propagating behind the reflection point of the Py P wave are due to Rayleigh, von
Schmidt and comparatively low magnitude S, S¢r Py P and P, Sg. Py P waves which are

reflected by the material interface back towards the stope.

Model C: The incident P-wave energy refracted across the non-cohesive interface decreases as
the angle of incidence increases (measured from vertical), and thus the stress at the P; P wave
reflection point decreases with increasing distance along the hangingwall. Most of the refracted
incident energy is reflected by the stope in the form of a shear wave (Sg; Py P), which is
reflected at the Araldite B-Makrolon material interface and redirected back towards the stope,
thus accounting for the high stresses propagating behind the P; P wave ridge shown in figure
2.4.1.10.

Equivalent carpet plots generated by the numerical back-analyses showed that the wave
interactions calculated by the numerical analyses correlated closely with the experimental data
(Dachnke ef al. 1995).
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150

Figure 2.4.1.10: Normalised dynamic stress along the hangingwall skin for Model C as

determined from photoelastic experiment.

A third order interpolation function in space and time was applied to the data generating the
carpet plots of the experimental and numerical models. The interpolation function was
integrated along the stope from 0 to 150 mm and in time from 60 to 129 ps, thus giving an

energy measure describing the influence of cohesive and non-cohesive parting planes.

In the photoelastic case the total energy relative to Model A of Models B and C is 76% and
96% respectively. In the numerical analyses the relative energies of Models B and C are 70%

and 92% respectively.

The cohesive parting plane reflects a portion of the incident energy, the waves reflected by the
stope are transmitted back into the bulk material, and thus it is expected that the total

hangingwall energy is less in Model B than in Model A.

In Model C the non-cohesive parting plane traps reflected waves in the hangingwall beam, and

the total hangingwall skin energy of Model C is similar to the energy of Model A.

Conclusions

Dynamic photoelasticity is a useful experimental technique for visualising complex stope-wave
interactions and obtaining quantitative information in terms of stress magnitudes of real wave

pulses. The experimental technique is one of the few means available for judging the quality of
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numerical simulations of dynamic behaviour. The dynamic finite difference program WAVE
has been proven to model accurately the diffraction, refraction and reflection of stress waves in
a homogeneous medium and the interaction of waves propagating across cohesive and non-

cohesive interfaces separating two material types.

The experimental and numerical work described here has demonstrated that parting planes
reflect a portion of the incident energy and thus shield the stope. However, a non-cohesive
parting plane traps energy within the hangingwall beam, thereby negating any shielding

benefits associated with parting planes.

This work is limited by the simplified and idealised nature of the model geometries analysed. It
is recommended that further investigations are conducted, using dynamic photoelasticity, on the
wave interactions in more complicated model geometries incorporating discontinuities

representing shear fractures and additional parting planes.
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2.4.2 Modelling of photoelastic experiments with high angle fractures

Further dynamic photo-elastic experiments were performed to study the effects of high angle
fractures in the vicinity of the stope. The emphasis in these studies is on the wave interaction
with fractures, and the growth of pre-existing fractures under dynamic stress loading. The
experimental work was not carried out under this project. However attempts were made to
model the wave interaction using TWO4D and WAVE. There was no attempt to model

fracture extension, although this is an important future topic.

A series of photo-elastic experiments were made for cases analogous to those in section 2.4.1
(i.e. a homogenous material, softened material with bonded interface and softened material
with unbonded interface), but with the addition of high angle fractures intersecting the stope.
The experiment which was modelled is that of the homogenous material, shown in figure
2.4.2.1. Both compressional and shear waves were generated by an explosive source at the
surface of the model. A compressive load of 1MPa in the vertical direction and 0.75MPa in
the horizontal direction, was applied to the sample. To capture wave patterns in the
experiments, a series of photographs of isochromatic fringe patterns indicating lines of equal

maximum shear stress, were recorded.

blast
source

= \
B \ /
2\ 4 6 fracture

Figure 2.4.2.1: Geometry for the single material model, showing the approximate positions
of the stope, fractures and source. The fractures are numbered 1 to 6, while points A and B

are positions for which synthetic seismograms are shown.
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A first comparison was made using TWO4D which has the advantage of being able to
accurately represent the positions and orientations of the cracks. As the simplest first
approach, all cracks were modelled as open (no contact possible), and the static loading of
the experiment was neglected. (The static load is a small percentage of the stress due to the
dynamic waves). Figure 2.4.2.2 reproduced from Siebrits et al (1995), compares the
experimental isochromatic fringe patterns with the TWO4D maximum shear stress contours
at a time of 206 psec. This is just after the arrival of the shear wave and some time after the
arrival of the P-wave. It can be seen that the transmission and reflection of the shear wave at
crack 1 is represented accurately. This indicates that crack 1 (c¢f: figure 2.4.2.1 for crack

numbering) behaves as an open crack - at least for shear waves. The shear wave reflected by

the stope from the incident P-wave (S,SP) is however poorly developed, indicating that there

is insufficient P-wave transmission at crack 1 and insufficient S-wave transmission at crack 3.

(a) Experiment, t=206sec (b) TWOA4D, t=206psec

Figure 2.4.2.2 Comparison between the experiment and the TWO4D result after 206 usec,

Jjust of the arrival of the shear wave

In the experimental results at earlier times (figure 2.4.2.3, 1a and 2a), it is evident that there is
both P-wave transmission and reflection at crack 1, very little transmission at crack 2, and
significant S-wave transmission at crack 3. This reveals that the cracks behave differently
from one another, in terms of their response to P- and S- waves. A large number of numerical
experiments were made using WAVE and implementing different crack conditions, in an
attempt to understand the important characteristics and also to more accurately reproduce the
experiment. In WAVE the correct orientations of the cracks were replaced by vertical cracks

as can be seen in the WAVE models in figure 2.4.2.3.
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Figure 2.4.2.3 compares five different WAVE models (b to f) with the experiment (a) at four
different time steps. The following discussion refers to this figure. In the first case (b), all
cracks are once again open (with no closure allowed) and there is insufficient P-wave

transmission at cracks 1 and 3, resulting most noticably in the shear wave reflection by the

stope from the incident P-wave (SrSP) being very weak (2b and 3b). The second case (c) has
closed cracks, where the surfaces of each of the cracks are always in contact and there is a
high normal and shear stiffness (Kn = 1e5 GPa/m, Ks=le3 GPa/m), so that both

compressional and shear waves are transmitted, and it behaves virtually as intact rock. It can
be seen that the reflection from the transmitted P-wave (SrSP), prominent in the experiment, is

more evident in the closed case than it is in the open case. The reflected waves (S,CP) from
cracks 1 and 2, also visible in the experiment, are not captured. The third case (d) also has
closed cracks but with slip allowed and assuming 0° friction. This captures the correct P-
wave transmission and reflection at cracks 1 and 2 (1d and 2d), and shear wave transmission
at crack 3 (2d). However the shear wave behaviour at cracks 1 and 2 is poorly modelled. In
the fourth case (e) the cracks have a non-linear contact law, such that they behave as either
open or closed cracks depending on the normal loading. In this case the P-wave is fully
transmitted (le) which is incorrect. However the interaction of the shear wave with each
crack is well represented. Finally, in (f) both contact and slip laws are combined, and there is

a close correspondence between the model and the experiment for all time-steps.

Figure 2.4.2.4 records the seismograms for the x and y velocities at position A in the
hangingwall (cf: figure 2.4.2.1) for each of the above models. Similarly figure 2.4.2.5 records
the seismograms for the x and y velocities at position B in the footwall (cf: figure 2.4.2.1) for
each of the models. No seismograms were recorded in the experiment, although to some
extent these could be approximated by analysing the photoelastic fringes over all time-steps.
It is assumed that the experimental seismograms would correspond most closely to the last
case (cracks with both contact and friction laws), since this model produces closely matching
wave patterns. There are significant variations in the behaviour captured by the seismograms
for the different crack types. This is encouraging for back-analyses performed from seismic
data alone, without the detailed visual wave patterns. As a step toward the back-analysis of
more complex experiments, it would be useful to perform similar photo-elastic experiments
which also record selected seismograms, and to perform equivalent simple experiments in

rock where only the seismic data can be recorded.

148



X

(1f) Contact and 0° friction (2f) Contact and 0° friction (3f) Contact and 0° friction (4f) Contact and 0° friction

(1) 141 psec (2) 169 psec (3) 206 psec (4) 264 psec

Figure 2.4.2.3: Comparisons between the experiment at four different time-steps and five WAVE
models with different crack conditions (a) experiment, (b) open cracks, (c) closed cracks, (d)
closed cracks with a 0° friction, (e) contact law on cracks, (f) contact law and 0° friction.
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Figure 2.4.2.4: Seismograms at point A in the stope hangingwall for the various crack conditions
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Figure 2.4.2.5: Seismograms at point B in the stope footwall for the various crack conditions

The analysis obtained when the applied load is also included, is compared with the
experiment in figure 2.4.2.6 for the four time-steps. Although the error in crack orientations
causes differences in the orientations and positions of some of the wave-fronts, it is clear that
the actual wave interaction with the fractures is represented very accurately. Therefore,
provided that crack slip and contact laws are included, these models can accurately represent

wave interaction with discrete fractures.
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(d) WAVE, t=169usec

(e) Experiment, t=206usec

. ?vg ;

(g) Experiment, t=264psec (h) WAVE, t=264psec

Figure 2.4.2.6: Comparisons between the experimental and WAVE models showing
snapshots of maximum shear stress at four different points in time
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The experiments contain further detail, specifically the extension of fractures due to the
dynamic loading. Figure 2.4.2.7 compares the experiment just after the shear wave has passed
crack 1, with the final state after all dynamic motions have died down. The area ‘A’
highlights where fracture extension has occurred. In the numerical models, there was no
attempt to model fracture extension. This is an important future topic, for which

representation of accurate crack orientations is likely to be important.

(a) =204 psec (b) Final state

Figure 2.4.2.7: Fracture growth in the photoelastic model occurred in the area marked ‘A’

Conclusions

The above comparisons with experiments show that these numerical tools can accurately
represent wave interaction with fractures, excluding actual fracture growth. It has been
highlighted that non-linear slip and contact laws are essential for the representation of
dynamic crack behaviour. For WAVE, the above suggests that the representation of
numerous cracks would be accurate, provided these are orthogonal. Given the orthogonal
limitation, a number of useful experiments can be performed to look at the effects of large
scale fracturing. For more general fractures and in particular fracture growth, arbitrarily
oriented fractures are necessary. In this regard, boundary element methods such as TWO4D
would be useful, if stability and efficiency limitations can be solved. TWO4D could then be
re-applied with slip and contact behaviour on the cracks. The above experiment would also

be a useful test case in simulating fracture growth.
It is suggested that further photo-elastic experiments should provide a bridge for the

modelling of dynamic experiments with fractures in rock, both in two and three dimensions,

since the existence of full wave patterns greatly simplifies the back-analysis.
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