
Generic Process Model Structures: Towards a Standard
Notation for Abstract Representations

Alta van der Merwe
School of Computing

University of South Africa
P O Box 392, UNISA, 0003

+27 12 4296339

vdmeraj@unisa.ac.za

Paula Kotzé
School of Computing

University of South Africa
P O Box 392, UNISA, 0003

+27 12 4296677

kotzep@unisa.ac.za

Aurona Gerber
Meraka Insitutute

CSIR
P O Box 395, Pretoria, 0001

+27 12 8413595

agerber@csir.co.za

ABSTRACT
The identification of process model structures is usually complex
and costly. If these structures can be reused across boundaries,
this could not only benefit the internal structure of one application
domain, but could also benefit organizations where it is not
feasible to initiate expensive process re-engineering innovations.
Furthermore, a reusable process is not worth much if the process
is not available. The preservation and availability of objects are
therefore important, through libraries in the case of objects, or
repositories in the case of process models. The creation of the
MIT Process Handbook was a step in this direction. However,
although the authors used object-oriented concepts in the abstract
representations, they did not rigorously apply object-oriented
concepts in the abstract representations used in publications on
their process repository. Especially in the notation used and
reference to specializations, there are some inconsistencies. To
address these issues, we suggest the use of polymorphism, where
specializations inherit from the generic base process model, and
the use of more formal object-oriented notation for defining
specialization.

Categories and Subject Descriptors
D.2.9 Management Software process model; K.6.3 Software
Management Software process.

General Terms
Performance, Design, Standardization, Theory.

Keywords
Reusable process models, process model repositories.

1. INTRODUCTION
According to the IEEE glossary, reusability refers to the “degree
to which a software module or other work product can be used in
more than one computing program or software system” [6]. The
preservation of objects for reuse is nothing new; the earliest form
of reuse of information is the stories told and re-told for
generations. Books were the next form of storing information for
reuse and until very recently, the only way to preserve

information. With the computer revolution starting in the 1950s, a
new form of preservation evolved through data storage on
computer disks. The most popular way of storing and accessing
data is still through the use of databases, e.g. student records in a
university or patient records at a hospital.

In programming languages, the sensible reuse of program code is
an innovative way of reducing costs, which not only reduces the
cost of development, but also increases reliability and the
effective use of specialists, and enforces standards [13]. In a
programming environment, reuse refers to ‘the use of some pre-
existing product, e.g. existing requirements, design, code, test
software, and documentation’ [4:395]. A function or piece of code
developed for one application is stored and made available for
reuse by programmers as part of other program developments.

In the business application domain, researchers at the
Massachusetts Institute of Technology (MIT) grasped the value of
reusability and introduced the notion of reusable process model
structures through the building of business process repositories
[8]. The abstract representation of the process repository was
developed during the early 1990s in the form of a Compass
Explorer and in the mid 1990s the Phios software used for data
access and manipulation of the process model structures was
released [12]. The concepts used is described in detail in a Process
Handbook by Malone, Crowston and Herman [9] as a model that:
� Uses object-oriented concepts for the preservation of the

process model structures.
� Supports the notion of specialization and generalization.
� Supports the identification of generic process model structures

for reuse by more than one company.
� Provide tools to access the process repository using the web.

The representation that Malone et al. [9] uses to construct the
MIT Process Handbook, is based on the notion of specialization
of processes from an object-oriented programming perspective
and on the management of dependencies from a coordination
theory [8] perspective.

The problem with the approach followed is firstly that in
publications that describe the approach [8, 9] the authors use
object-oriented concepts but do not represent models in object-
oriented notation. One of the many advantages of consistent use
of a modelling notation standard is the consistent interpretation
thereof. Modellers would attach the same meaning to a model,
and derive the same conclusions. This leads to reusability of
models and representations. We recognise that Malone et al. [9]
are traditionally not from an software development paradigm
environment. However, when applying concepts from an agreed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
SAICSIT 2007, 2 - 3 October 2007, Fish River Sun, Sunshine Coast, South Africa
Copyright 2007 ACM 978-1-59593-775-9/07/0010…$5.00

standard, in this case the Unified Modeling Language (UML) and
object-orientation, care must be taken to adhere to the original
intention thereof, even if it is applied in a different domain. UML,
published by the Object Management Group (OMG) is widely
accepted as a standard notation for object-orientated notation [10,
11]. The same argument would hold for a researcher in
information systems using an accepted mathematical notation. It
is not acceptable to argue that one could borrow concepts from a
model in one domain, but apply it using a different notation just
because the application domain is different.

Furthermore, the way that inheritance is used in Malone et al.’s
[9] approach, is in contrast with accepted rules of inheritance in
object-orientation. We are aware that object-oriented languages
often implement generalization/specialization differently. For the
purpose of this paper, we propose to adhere to UML as the
standard language used to model object-oriented concepts
according to the OO-paradigm, as specified by the OMG.

In section 2, we give a brief overview on the components used in
the process repository. In section 3, we follow with a discussion
on the problems encountered with the current notation and use of
inheritance, followed by some suggestions in section 3. In section
4 we give a brief overview on comments on the adapted changes
to the process model structure by field specialists, followed by
some comments from using the adapted abstract representations in
a case study at the University of South Africa (UNISA) in section
5. Section 6 highlights some advantages of using the adapted
repository abstraction and section 7 provides some concluding
remarks.

2. THE PROCESS REPOSITORY
A repository is described as a place where data is stored. It could
be in a database or as files, and could be distributed over a
network or directly accessible to the user without using a network
infrastructure. There are three important concepts in the building
of a repository: the abstract representation used, the physical
storage of the data, and the software used to access and view the
data.

For abstract representations we draw schemas or models to
present the structure of the data. For example, in a database
environment an entity relationship diagram is used to show the
entities and the relationships between the entities [3]. In the
process repository the authors refer to a representation when they
discuss the structure used in concepts. In this paper, we adapt the
use of the word ‘representation’ when describing the elements and
relationships between the elements in abstract representations.
The physical storage of data is done on data storage devices such
as hard drives and typically managed through software.

For the process repository [9], these concepts are illustrated in
Figure 1, where the process model representation is used as a
guideline in the development of the physical structures, which are
in turn accessible through the Phios software from a computer
system.

Sell Product

Sell by Mail
Order

Sell in Retail
Store

Obtain
Mailing

List

Mail Ads
to Mailing

Lists

Receive
Order by

Mail

Deliver
Product

Receive
Payment

Identify
Potential

Customers

Inform
Potential

Customers

Obtain
Order

Deliver
Product

Receive
Payment

Attract
Customers
to Store

Wait on
Customers

Receive Order
at Register

Deliver
Product

Receive
Payment at

Register

Process model representation

Physical
storage

<

<

Access through
Phios software

Used in development
of physical structures

Figure 1. Components in the process repository

In this paper we focus mainly on the abstract representations,
where the Process Handbook [9] suggests the use of a ‘process
compass’ with two dimensions for analyzing business processes.
The vertical dimension distinguishes between the parts of the
process, while the horizontal dimension distinguishes between the
different types of a process (Figure 2).

Figure 2. Compass Explorer [12]

2.1 Concepts in the Process Repository
Representation
The process repository representation uses the specialization
concept to show how process models can be inherited. The
process repository representation extends existing process
mapping techniques and, not only uses the break-down of a
process into subprocesses or parts, but also defines different types
for the process. Authors involved in research in the process
repository regularly use the Sell Product example to describe the
process repository representation for specialization of the
processes [7-9, 12]. The process representation of Sell Product is
given in Figure 3.

Sell Product

Sell by Mail
Order

Sell in Retail
Store

Obtain
Mailing

List

Mail Ads
to Mailing

Lists

Receive
Order by

Mail

Deliver
Product

Receive
Payment

Identify
Potential

Customers

Inform
Potential

Customers

Obtain
Order

Deliver
Product

Receive
Payment

Attract
Customers
to Store

Wait on
Customers

Receive Order
at Register

Deliver
Product

Receive
Payment at

Register

Figure 3. Generic sell product [9]

Figure 4. Parts and specializations

Sell Product

Sell by Mail
Order

Sell in Retail
Store

Obtain
Mailing

List

Mail Ads
to Mailing

Lists

Receive
Order by

Mail

Deliver
Product

Receive
Payment

Identify
Potential

Customers

Inform
Potential

Customers

Obtain
Order

Deliver
Product

Receive
Payment

Attract
Customers
to Store

Wait on
Customers

Receive Order
at Register

Deliver
Product

Receive
Payment at

Register
Parts of generic Sell Product

Specialization of Sell Product

In this representation the Sell Product is broken down into parts,
also called ‘subactivities’ or ‘subprocesses’. The subprocesses
include the identification of potential customers, to inform
potential customers, to obtain an order, deliver a product and to
receive payment. For each generic process representation (such
as Sell Product) it is also possible to map the representation to
special cases of the process. For example, Sell by Mail Order
and Sell in Retail Store are examples of special cases for the
generic Sell Product (Figure 4).

The concept that the process repository supports is based on
inheritance used in object-oriented development. According to
Firesmith and Eykholt [4:203] inheritance is the ‘incremental
construction of a new definition in terms of existing definitions
without disturbing the original definitions and their clients’. In
inheritance, the child class (subclass) inherits the properties
from the parent class (superclass). For example, in an IT
company employees could either be full-time employees or
contractors. In the case of full-time employees the employee
will receive a salary. In the case of a contractor, the employee
will receive a payment at the end of the month based on his
hourly wage and the hours that the he worked (Figure 5).

In this example, the subclasses Full-time employee and
Contractor inherit the Number, Name and Contact details from
the superclass Programmer. The Full-time employee also has an
additional attribute Salary and the Contractor includes two
additional attributes, Hourly rate and Hours worked. The Full-
time employee and Contractor are called specializations of

Programmer. If the diagram is read from the top-down, object-
orientation refers to the concept of generalization.
Generalization is the ‘process of creating a generalization from
one or more specializations’ [4:183]. In our example, the
Programmer is a more general element than the Full-time
employee or the Contractor. Therefore, the Programmer is a
generalization for Full-time employee and Contractor.

Figure 5. Employee types in an IT company

Programmer

Number
Name
Contact details

Full-time
employee

Salary

Contractor

Hourly rate
Hours worked

A parent has characteristics
that are inherited by all
the child classes

The symbol for
generalization

Subclasses have specialized characteristics
that are uniq

Parent class

Child class Child class

}

ue to each subclass

Therefore, in the process repository representation the Sell by
mail order and the Sell in retail store inherits the Sell Product
from the parent. Both are specializations of Sell Product and it

is possible to deduce that Sell Product is the more general
structure, or the generalization. There are, however, two

ent the model in object-

the path where it meets the more general element’
(Figure 6).

problems with the way that the structure is presented.

2.2 Problem 1: Notation Used in Process
Repository
The first problem with this model is that authors used object-
oriented concepts but do not repres
oriented notation, in this case, UML.

 In the 2001 UML specification [10:3-86], generalization is
‘shown as a solid-line path from the child (the more specific
element, such as a subclass) to the parent (the more general
element, such as a superclass), with a large hollow triangle at
the end of

Figure 6. Generalization relationship

Note that the hollow triangle points towards the more general
class, or the parent. In the notation used by Malone et al. [9],
and also graphically illustrated in Figure 3 and Figure 4 the
arrow points away from the parent. The danger of not using the
UML notation standard consistently is that it may lead to

used for a class in an object-

misunderstanding of the abstract representation.

2.3 Problem 2: Changes in the Specialization
Another difference between true object-oriented use of
inheritance and the process repository representation is that the
process repository representation allows changes to the parts of
the specialization. To describe this in more detail, it is first
necessary to look at the notation
oriented environment (Figure 7).

Window

Window

Window {abstract,
 author=Joe,
 status=tested}

size: Area
visibility: Boolean

+size: Area=(100,100)
visibility: Boolean=true

-xptr:Xwindow*

+default-size:Rectangle
#minimum-size:Rectangle

display()
hide()

+display()
+hide()
+
-attachXWindow(xwin:Wsindow*)

create()

Details
suppressed

>

>
Implementation-
level details

Figure 7. Class Notation [10:3-37]

Process models relate to the analysis level of the class notation
where the data and methods are displayed in the class. In the

example above, the Window class has two attributes, size and
visibility. It also has two methods, display() and hide(). If a
subclass inherits from this class, it will inherit all the attributes
and the methods. For example, if there are two subclasses
Blinking_window and Wave_window for the Window class that
display a window on the screen, both these will inherit the
ability to display and to hide (Figure 8).

Window

Blinking_window Wave_window

size: Area
visibility: Boolean

seconds: integer position: integer

display()
hide()

blink() wave()

Parent

The symbol for
generalization

Child

Figure 8. Two subclasses inherit methods from Window class

In the example, the Blinking_window subclass will also be able
to ‘blink’ and the Wave_window will be able to ‘wave’. The
programmer is allowed to add methods and attributes to the
subclasses and he is allowed to change the way that the two
windows are displayed and hidden (methods inherited from the
superclass), but he is not allowed to change the function of the
method. If the function was to display the window, the window
must still be displayed, irrespective of the inner workings of the
program manipulating it to display. The result should only be a

 a change in the

ore
formal object-oriented notation for defining specialization.

window that is displayed on the screen.

In the process repository example, the authors allow a change to
the function of an inherited subprocess. For example, Sell in
Retail Store inherits from Sell Product the subprocess Wait on
customers. The function in the original process structure was to
inform clients, which is done in the Sell by Mail Order
specialization. But in the Sell in Retail Store specialization the
function is not to inform, but to wait. This is
original intention of the subprocess (Figure 9).

3. SUGGESTED IMPROVEMENTS
In a specialization hierarchy, the objects (or processes) inherit
the features of their parent and modify them incrementally,
promoting comprehensibility, maintainability and reusability
[15]. Furthermore, the use of a process hierarchy also supports
the generation of design alternatives and suggests an
organizational framework where relevant processes could be
sought [8]. The model in the MIT Process Handbook is based
on specialization and generalization taken from the object-
oriented paradigm. We suggest two modifications to the process
repository, the use of polymorphism, where specializations
inherit from the generic base process model, and the use of m

Figure 9. Specialization changing the function of the inherited process

Sell Product

Sell by Mail
Order

Sell in Retail
Store

Obtain
Mailing

List

Mail Ads
to Mailing

Lists

Receive
Order by

Mail

Deliver
Product

Receive
Payment

Identify
Potential

Customers

Inform
Potential

Customers

Obtain
Order

Deliver
Product

Receive
Payment

Attract
Customers
to Store

Wait on
Customers

Receive Order
at Register

Deliver
Product

Receive
Payment at

Register

Specialization inherits process
and functionality stays the same

Specialization inherits process
and functionality changes to wait

Figure 10. Suggested notation for specialization in the educational process repository

<<Process composition>>

<<Process composition>>

<<Process composition>>

Process

Process

Process

Subprocess

Subprocess

Subprocess

Subprocess

Subprocess

Subprocess

Subprocess

Subprocess

Subprocess

Subprocess

Subprocess

Subprocess

P1

P1

P1

P11

P11

P11

P12

P12

P12

P13

P13

P13

P1n

P1n

P1n

....

....

....

We therefore suggest an adaptation of this model to support the
notation used for generalization and specialization in the object-
oriented paradigm, with the arrow pointing to the generalization
and not the other way around. In Figure 3, 4 and 9 the arrow

3.1 Suggested Improvements with regard to
Notation
As stated above, the MIT Process Handbook approach claims to
use generalization and specialization from the object-oriented
paradigm. Our analysis, however, revealed that according to the
Sell Product example used in most of the published papers on
the process repository, the notation does not agree with the
notation used for specialization in the object-oriented paradigm.
In object technology, the arrow shows from the child object to
the parent and not as in this example, where the arrow shows
from the generic process to the specialization. We believe that
the notation in this model may not have a significant meaning as
the notation is never discussed in the papers where the authors
refer to this example [1, 12].

shows from the parent to the specializations and in the adapted
model, Figure 10, it goes from the specializations to the parent.

Furthermore, we also suggest the use of a new stereotype called
the Process Composition Stereotype to formalize the
specialization between the generic process and the
representations. Stereotypes are used to extend the existing
object notation and therefore formalize the model within the
bject-oriented paradigm. The description for the Process

position stereotype is the following:

o
com

UML
Metaclass
Extended

Class

Semantics
d to derive the goal for the

the process is

The generic process consists of one or more
subprocesses use
process. If only one subprocess,
called ‘atomic’.

Constraint Must produce at least one output.
Diagram
Notation

The notation used is <<process composition>>.

Predefined
process
composition

ngle with the generic process
nd subprocesses drawn in the rectangle as a

process hierarchy.

In a diagram the process composition is
described by a recta
a

<<Process composition>>

Generic process
hierachy

Each generic process composition consists of a
generic process with a subset of subprocesses. In
a specialization, polymorphism is applied – the
method of reaching the goal of the subprocess
may differ, but the output stays the same. In a
specialization, subprocesses may be added.

3.2 Suggested Improvements with regard to
Inheritance
Consider the generic process P1 with subprocesses P11 to P1n
(Figure 11).

Figure 11. MIT Process Handbook process model

The MIT Process Handbook specifies that: ‘Each activity
inherits automatically the subactivities and other properties of
its generalization, except where the specialized activity adds or
changes a property’ [12:15]. The implication in the model above
is that the model may be extended (properties may be added to
include another subprocess P1(n+1))) or any property of the
subprocesses may be changed (P12 may be changed to another
rocess Pkl). p

As mentioned previously in section 2.2, this is in contrast with
the rules in object-orientation. The implication is that the
process repository representation does not support the concept
of polymorphism, which specifies that the output of an
inheritance should stay the same (even if the methods change).

In the object model, using the concept of polymorphism allows
the user to change the way in which a method arrives at the
desired output, but the output stays the same.

We suggest that the rule that applies to polymorphism to the
effect that the output of a subprocess should stay the same,
should be enforced. As a result, fewer subprocesses will be
included on a higher level, where all the subprocesses have the
same goal as the subprocesses in the base model. In other words,
the specialization inherits the original subprocesses from the
generic model and, if necessary, subprocesses can be added to
the specialization. The suggested change to the structure is
illustrated in Figure 12.

Figure 12. Inheritance and additions of subprocesses

Process

Subprocess
with as

output
A

Process

Subprocess
with as
output

B

Subprocess
with as
output

A
Added

subprocess

Process

Specialization 1
with output format
different for
subprocess.

Specialization 2
with output format
the same for subprocess.

Generalization 1

Process
Name P1

Subprocess
Name

Subprocess
Name

Subprocess
Name

Subprocess
NameP11 P12 P13 P1n

....

<<Process composition>>

The adapted model suggests that Specialization 1 is not allowed,
where the output of the subprocess differs from the output of the
parent, but Specialization 2 is allowed where the output of the
subprocess has the same form as in the parent abstraction.

4. FEEDBACK FROM FIELD
SPECIALISTS

Process
P1

Generic Activity

As a triangulation exercise we wanted to know how the adapted
model would be perceived by peers. The model was discussed
with 3 practitioners using object notation in development
projects at different software development houses and 3 staff
members at UNISA that is actively involved in courses using
object-orientation concepts. The three practitioners were all
previously involved in the use of process models in
development of systems. The staff members at UNISA were all
involved in courses related to Structured System Analysis and
Design and Object-Oriented System Analysis and Design.

Subprocess Subprocess Subprocess Subprocess
P1n

....

The adapted model with the implications (Figure 13) was used
in information interviews to discuss the notation and the
limitation on specializations.

P11 P12 P13

Figure 13. Sell Product in the process repository and using the suggested adaptations

Sell Product

Identify
Potential

Customers

Obtain
Order

Deliver
Product

Receive
Payment

Sell in Retail
Store

Attract
Customers
to Store

Receive Order
at Register

Deliver
Product

Receive
Payment at

Register

Sell by Mail
Order

Obtain
Mailing

List

Mail Ads
to Mailing

Lists

Receive
Order by

Mail

Deliver
Product

Receive
Payment

<<Process composition>>

<<Process composition>>

<<Process composition>>

Sell Product

Sell in Retail
Store

Identify
Potential

Customers

Obtain
Mailing

List

Attract
Customers
to Store

Inform
Potential

Customers

Mail Ads
to Mailing

Lists

Wait on
Customers

Obtain
Order

Receive
Order by

Mail

Receive Order
at Register

Deliver
Product

Deliver
Product

Deliver
Product

Receive
Payment

Receive
Payment

Receive
Payment at

Register

Sell by Mail
Order

Phios model representation

Phios model representation after changes

1. Less subprocesses in base model

2. Use of stereotype allows specialization
notation

3. Process with different output added on
specialization level

1.

2.
3.

The following are significant comments recorded during
discussions with interviewees:

� The use of process models in the object paradigm is an
unfamiliar concept.

� If one wants to use concepts from the object paradigm such
as specialisation and generalization it is necessary to select a
notation (preferably a standard notation such as UML) and
define the way in which concepts will be used.

� The stereotyped notation defined and the enforcement of the
polymorphism rule with regard to the output of subprocesses
in a specialization are only moves in the direction of a more
formal notation of the environment. More research is needed
on sequence of execution and information lost in the
diagrams such as the input and outputs associated with each
process.

� Some comments were made on the nature of the
implementation of polymorphism in applications. One
interviewee claimed that it is possible to change the output of
a specialization when used in combination with dynamic
bounding. The problem is that this is not true to the object
paradigm. He did agree that this is an advanced topic and
should be handled as an exception rather than a rule.
Therefore, this should not be enough reason to be lenient

when using object notation such as specialization and
generalization in this application domain, and it therefore
does not apply to the abstract level of process models as
suggested by the adapted model.

The concerns raised by the respondents were the same as our
own which was the motivation for suggesting the adaptations to
the Phios process model representation. This confirms the
proposition that the suggested notation is a better representation
in an object environment from both a theoretical and practical
perspective.

5. A CASE STUDY: UNIVERSITY
REGISTRATION SYSTEM
The suggested adapted representations were used in a
specification document during a reengineering effort at the
UNISA, which formed part of a PhD study [14]. In this
reengineering effort, the preservation of educational process
model structures were investigated, and the process model
structures were composed using the new adapted model
introduced in section 3. An example of one of the process
compositions is the UNISA application process, illustrated in
Figure 14.

Figure 14. Specializations for UNISA Application Process

<<Process composition>>

<<Process composition>>

<<Process composition>>

<<Process composition>>

Application
Process

Mail
Application

Process

Mail
Application

Process

Electronic
Application

Academic
Verification

Academic
Verification

Academic
Verification

Academic
Verification

Registration

Electronic:
Existing
Student

Mail: New
Student

Mail:
Existing
Student

Payment
Verification

Payment
Verification

Payment
Verification

Payment
Verification

Course Material
Distribution

Course Material
Distribution

Course Material
Distribution

Course Material
Distribution

One of the biggest advantages is the extensibility of the model.
Any user of the model may extend it to include new
subprocesses according to new specializations. For example, the
focus of the case study was based on undergraduate studies; if
the user wants to add a registration that is for postgraduate
students only, it could be implemented easily by adding a new
specialization for the generic REGISTRATION process. This
specialization will then inherit the four generic subprocesses
defined for the REGISTRATION process. The developer only
needs to map these processes according to his pre-knowledge on
the application domain and decide whether the processes are
sufficient or whether an additional process is needed. This
emphasizes another characteristic of the repository model,
namely its reusability. The specialization of a generic process
model enables the developer to reuse what has already been
identified previously and extend only if needed.

The maintenance of the process model repository is
uncomplicated. Processes can be added at any time to describe a
specific specialization. A problem that should be addressed is
the sequence of execution of processes on the same level. It is
assumed that the sequence of processes is from left to right in
the representation of the educational process model. If a set of
processes is inherited for a new specialization, there may be a
process that is added between two existing processes. If the
developer is not aware of the sequence of process execution, a
model that is not a real representation of the real world could
easily be created.

The use of an accepted object-oriented notation for presentation
of the specializations enhances the usability of the models. If a
notation is used that is accepted generally as a standard notation
by different role players in development, the ‘language’ for

discussions is the same and the developers can focus on the
solutions and not on what the current environment actually
looks like. In implementing the adaptations of a more formal
way of representing the specializations through stereotypes and
the use of polymorphism, this model moves in the direction of
supporting a standard notation. The use of accepted standard
notation implies that this model supports more characteristics of
the object notation than the previous model does.

In the object-oriented paradigm, the models used should be easy
to understand, easily maintained, support object-oriented
modelling concepts, be information-rich to model different
concepts and be reusable [2, 5, 10].

6. ADVANTAGES OF USING THE
ADAPTED REPOSITORY
REPRESENTATIONS
From the feedback received from object specialists and using
the adapted representations in a reengineering effort, it is
possible to summarize that the adapted model conforms to the
following”

� The model is understandable: The goal of models is to make
the ‘picture’ clearer for the reader using it as a reference tool.

� The model is easily maintainable: Using the generic process
with specializations allows the user to add processes on
lower levels if the higher level neglects a needed process.

� The model supports object-oriented modelling concepts: We
suggested the use of polymorphism and stereotypes to make
the model more object-oriented. The creators of the process
repository suggested the use of generalization and
specialization from the object-oriented paradigm without

using the object-oriented notation in their own models. From
the interviews it was confirmed that the adapted model
supports more object notation than the initial model does.

� The model is information-rich: The adapted model gives
information on the parts and the specialization of the
environment. Using the model will enable the reader to
derive logical arguments on the generic process models and
on the parts represented in different scenarios. This was not
added to the model but only confirmed as being an advantage
of the model in general.

� The model is reusable: The generic process model and the
specializations thereof can be used and reused because of the
generic characteristic of the models. Simply by discussing
the models with the respondents, the models were already
used as a reference model.

7. CONCLUSION
The creation of the MIT Process Handbook was a giant leap
towards the creation of an environment where process model
structures can be preserved in a process repository environment.
However, although they used object-oriented concepts in the
abstract representations, they did not rigorously applied object-
oriented concepts in the representations used in publications on
their process repository.

To address these issues, we suggest the use of polymorphism
where specializations inherit from the generic base process
model and the use of more formal object-oriented notation for
defining specializations.

As a case study, the abstract representations for a university
registration system were created using the suggested changes.
The adapted models were easy to understand, easily maintained,
support object-oriented modelling concepts, information-rich to
model different concepts and reusable

8. REFERENCES
[1] Bernstein, A., Klein, M., Malone, T.W., The Process

Recombinator: A Tool for Generating New Business
Process Ideas. In: T.W. Malone, K. Crowston, and G.A.
Herman, (eds.): Organizing Business Knowledge: The MIT
Process Handbook. The MIT Press, London, England,
2003.

[2] Booch, G., Jacobson, I., Rumbaugh, J., Rumbaugh, J.: The
Unified Modeling Language User Guide. Addison-Wesley,
Boston, (1998).

[3] Cardenas, A.F.: Data base Management Sytems. Allyn and
Bacon, Massachusetts, USA, (1985).

[4] Firesmith, D.G.,Eykholt, E.M.: Dictionary of Object
Technology; The Definite Desk Reference. Sigs Books,
New York, (1995).

[5] Harmon, P.: Objects In Action: Commercial Applications of
Object-Oriented Technologies. Addison-Wesley, Reading,
MA, (1993).

[6] IEEE: IEEE Standard Computer Dictionary: A Compilation
of IEEE Standard Computer Glossaries. Institute of
Electrical and Electronics Engineers, New York, NY,
(1990).

[7] Klein, H.K.,Myers, M.D.: A Set of Principles for
Conducting and Evaluating Interpretive Field Studies in
Information Systems. MIS Quarterly, Special Issue on
Intensive Research. 23(1) (1999), 67-93.

[8] Malone, T.W., Croston, K., Lee, J., Pentland, B.,
Dellarocas, C., Wynor, G., Quimby, J.: Tools for inventing
organizations: Toward a handbook of organizational
processes. Management Science. 44(3) (1999), 425-443.

[9] Malone, T.W., Crowston, K., Herman, G.A.: Organizing
Business Knowledge: The MIT Process Handbook. The
MIT Press, Cambridge, Massachusetts, (2003).

[10] OMG: OMG Unified Modeling Language Specification.
(2001) [cited 2002 15 June 2002]; Available from:
http://www.omg.org/.

[11] OMG: OMG Unified Modeling Language Specification
version 2.0. (2003) [cited 2005 April 2005]; Available
from: http://www.omg.org/.

[12] Phios: New Tools for Managing Business Processes. [White
Paper] (1999) [cited 1999 March 1999]; Available from:
http://www.phios.com/phioswhitepaper.pdf.

[13] Sommerville, I.: Software Engineering. 6 ed. Addison-
Wesley, Boston, MA, (2000).

[14] Van der Merwe, A.: Towards a Reusable Process Model
Structure for Higher Education Institutions (PhD thesis).
Thesis, School of Computing, University of South Africa,
Pretoria, 2005.

[15] Wyner, G.M.,Lee, J., Defining Specialization in Process
Models. In: T.W. Malone, K. Crowston, and G.A. Herman,
(eds.): Organizing Business Knowledge: The MIT Process
Handbook. The MIT Press, London, England, 2003.

