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Abstract A stress intensity factor (SIF) analysis for two-
dimensional fractures with frictional contact (crack fric-
tion) is presented. This analysis is carried out using the
symmetric-Galerkin boundary element method, and a
modified quarter-point crack tip element. As in case of
non-contact fracture, it is shown that highly accurate SIFs
can be obtained, even with the simple Displacement Cor-
relation SIF technique. Moreover, with the modified crack
tip element, the mesh on the crack does not need to be
excessively refined in order to achieve high accuracy. This
meshing advantage is especially important in the context
of the nonlinear frictional contact problem, as the com-
puting time for the iterative process strongly depends on
the number of elements used. Several numerical examples
are presented and the SIF results are compared with
available analytical or reference solutions.

Keywords Stress intensity factor, Crack friction, Modified
quarter-point element, Boundary element method,
Symmetric-Galerkin approximation

1
Introduction
The two principal approaches for computational fracture
analysis are the finite element method (FEM) (e.g., [1])
and boundary element method (BEM) [2–5]. The key
feature of the integral equation approach is that only the
boundary of the domain is discretized and only boundary
quantities are determined. As a result, for fracture analy-
sis, the singular stress field ahead of the crack is not

approximated, and moreover, remeshing a propagating
crack is easier.

In both finite and boundary element modeling of dis-
crete cracks, the standard approach consists of incorpo-
rating the critical stress singularity and

ffiffi

r
p

displacement
behavior at the crack tip by means of the ‘quarter-point’
(QP) element [6, 7]. Use of this QP element at the crack tip
has significantly improved the accuracy of SIF calculations
(e.g., [8, 9]). Nevertheless, in either finite or boundary
element analyses, the prediction of KII and KIII has not
been nearly as accurate as for KI . Recently, Gray and
Paulino [10] have proved that, for an arbitrary crack
geometry, a constraint exists in the series expansion of the
crack opening displacement at the tip. As discussed in
[10], the QP element in general fails to satisfy this con-
straint, and this has led to the development of an improved
QP element [11]. It was demonstrated in [11] that the
accuracy of the computed crack tip SIFs can be signifi-
cantly improved by using the modified quarter-point
(MQP) element.

Contact friction boundary conditions arise in problems
relating to rolling and sliding between machine compo-
nents or other bodies [12–14] and are ubiquitous in the
fields of earthquake science, rock mechanics and geo-
technical engineering, where multiple interacting faults
and discontinuities are present. The numerical treatment
of these problems often presents a number of difficulties in
that boundary conditions are specified in the form of
inequality constraints rather than in terms of fixed trac-
tions or displacements. Further difficulties arise when ei-
ther kinked cracks or multiple intersecting junctions are
considered. For two-dimensional (2-D) problems, a rosette
of interacting wedge structures have to be analyzed with,
in general, power law displacement functions on each
wedge face. Three-dimensional (3-D) junctions can obvi-
ously be considerably more complicated and demanding.
Numerical methods that have been employed for crack
friction problems include FEM [15], BEM using an integral
equation for the resultant forces along a crack [16–18],
muti-domain BEM [19], dual BEM [20], displacement
discontinuity method (DDM) [21–24], and Symmetric-
Galerkin BEM (SGBEM) [25].

Note that all the BEM and the DMM are collocation
methods as they employ collocation at either boundary
nodes or internal nodes (internal collocation), while the
SGBEM employs a Galerkin approximation. The major
disadvantage associated with a collocation scheme is that
the relaxation of continuity requirements at element
boundaries and junctions will lead to singularities in the
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stress field in the vicinity of these points. If multiple,
closely spaced crack assemblies are to be analyzed, this
can, in certain cases, lead to numerical difficulties. The
SGBEM offers two key advantages following from the
Galerkin procedure. First, unlike collocation, there is no
smoothness requirement on the displacement [26, 27] in
order to evaluate the hypersingular integral; thus, standard
continuous elements can be employed. The Galerkin ap-
proach can therefore easily exploit the highly effective
quarter-point quadratic element to accurately capture the
crack tip behavior. Second, the weighted averaging for-
mulation of Galerkin, by avoiding direct collocation at
corners and junction points, provides a smoother solution
in the neighborhood of geometric discontinuities. This
may explain why a simple frictional contact algorithm
such as the one proposed in Reference [25] can be em-
ployed with the SGEBM to successfully treat crack friction
problems.

The focus of this paper is on SIF evaluation for 2-D
crack friction problems, and more specifically, for difficult
kinked and intersection crack geometries. The method is a
combination of a successful frictional contact algorithm
[25] based upon the SGBEM [28, 29], and the MQP crack
tip element mentioned above. The goal is to demonstrate
that this approach yields highly accurate SIFs, even with a
simple local SIF method such as Displacement Correlation
Technique. Moreover, accurate results are obtained with-
out highly refined meshes, and thus fewer iterations are
required to solve the nonlinear friction problem.

For completeness, the next section provides a brief re-
view of Symmetric-Galerkin fracture analysis and the MQP
element, while the SGBEM frictional contact algorithm is
reviewed in Sect. 3. Section 4 presents the SIF results
obtained using these methods for several crack configu-
rations. These solutions are compared with either exact
results or with numerical solutions obtained using a
numerical method due to Gerasoulis [30] or the DDM [3].
Some concluding remarks are in Sect. 5.

2
SGBEM fracture analysis
This section provides a very brief review of boundary
integral equations for elasticity, their approximation via
the symmetric-Galerkin procedure, and the application to
fracture. The reader is asked to consult the cited references
for further details.

The boundary integral equation (BIE) without body
forces for linear elasticity is given by Rizzo [31]. For a
source point P interior to the domain, this equation takes
the form

ukðPÞ �
Z

Cb

UkjðP;QÞsjðQÞ � TkjðP;QÞ ujðQÞ
� �

dQ ¼ 0 ;

ð1Þ
where Q is a field point, sj and uj are traction and dis-
placement vectors, Ukj and Tkj are the Kelvin kernel ten-
sors or fundamental solutions, Cb denotes the boundary of
the domain, and dQ is an infinitesimal boundary length
(for 2-D) or boundary surface (for 3-D cases).

It can be shown that the limit of the integral in Eq. (1)
as P approaches the boundary exists. From now on, for
P 2 Cb, the BIE is understood in this limiting sense.

As P is off the boundary, the kernel functions are not
singular and it is permissible to differentiate Eq. (1) with
respect to P, yielding the hypersingular BIE (HBIE) for
displacement gradient. Substitution of this gradient into
Hooke’s law gives the following HBIE for boundary
stresses:

rk‘ðPÞ �
Z

Cb

Dkj‘ðP;QÞ sjðQÞ
�

�Skj‘ðP;QÞujðQÞ
�

dQ ¼ 0 : ð2Þ

Expressions for the kernel tensors Ukj;Tkj;Dkj‘ and Skj‘ can
be found in [28].

The Galerkin boundary integral formulation is obtained
by taking the shape functions wm employed in approxi-
mating the boundary tractions and displacements as
weighting functions for the integral equations (1) and (2).
Thus,
Z

Cb

wmðPÞ ukðPÞdP�
Z

Cb

wmðPÞ
Z

Cb

½UkjðP;QÞ sjðQÞ

� TkjðP;QÞ ujðQÞ�dQ dP ¼ 0 ; ð3Þ
Z

Cb

wmðPÞ rk‘ðPÞdP�
Z

Cb

wmðPÞ
Z

Cb

½Dkj‘ðP;QÞ sjðQÞ

� Skj‘ðP;QÞ ujðQÞ�dQ dP ¼ 0 : ð4Þ

A symmetric coefficient matrix, and hence a symmetric-
Galerkin approximation, is obtained by employing Eq. (3)
on the boundary CbðuÞ where displacements ubv are pre-
scribed, and similarly using Eq. (4) is employed on the
boundary CbðsÞ with prescribed tractions sbv. Note that
Cb ¼ CbðuÞ þ CbðsÞ.

A solution procedure that employs a collocation ap-
proach enforces the BIE (1) and HBIE (2) at discrete
source points whereas these equations are satisfied in an
averaged sense with the Galerkin approximation. The
additional boundary integration is the key to obtaining a
symmetric coefficient matrix, as this ensures that the
source point P and field point Q are treated in the same
manner in evaluating the kernel tensors Ukj; Tkj; Dkj‘ and
Skj‘. After discretization, the resulting equation system can
be written as

H11 H12

H21 H22

� �

ubv

u�

� �

¼ G11 G12

G21 G22

� �

s�
sbv

� �

: ð5Þ

Here, the first and second rows represent, respectively, the
BIE written on (CbðuÞ) and the HBIE on (CbðsÞ). Further, u�
and s� denote unknown displacement and traction vectors.
Rearranging Eq. (5) into the form ½A�fxg ¼ fbg, and
multiplying the HBIE by �1, one obtains

�G11 H12

G21 �H22

� �

s�
u�

� �

¼ �H11ubv þ G12sbv

H21ubv � G22sbv

� �

ð6Þ
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The symmetry of the coefficient matrix, G11 ¼ GT
11,

H22 ¼ HT
22 and H12 ¼ GT

21 now follows from the symmetry
properties of the kernel tensors.

2.1
Cracks in finite domains
A finite domain or body, B, of general shape is shown in
Fig. 1. The body is shown to include a crack surface denoted
as Cc on which only tractions are prescribed. Initially, the
crack is composed of two coincident surfaces according to
Cc ¼ Cþc þ C�c where Cþc and C�c denote the upper and
lower crack surfaces, respectively. As a result, the outward
normals to the crack surfaces, nþc and n�c , are oriented
oppositely so that n�c ¼ �nþc . Thus, the BIE and HBIE
written for an interior point P then take the following
forms:

ukðPÞ ¼
Z

Cb

UkjðP;QÞ sjðQÞ � TkjðP;QÞujðQÞ
� �

dQ

þ
Z

Cþc

UkjðP;QÞRsjðQÞ � TkjðP;QÞDujðQÞ
� �

dQ ;

ð7Þ

rk‘ðPÞ ¼
Z

Cb

Dkj‘ðP;QÞ sjðQÞ � Skj‘ðP;QÞ ujðQÞ
� �

dQ

þ
Z

Cþc

Dkj‘ðP;QÞRsjðQÞ � Skj‘ðP;QÞDujðQÞ
� �

dQ ;

ð8Þ
where, only the upper crack surface Cþc needs to be
modeled as on the two crack surfaces, the displacements
uþc and u�c are replaced by the single crack opening dis-
placement (COD) Duc ¼ uþc � u�c , and the tractions sþc
and s�c by the sum of tractions Rsc ¼ sþc þ s�c . However,
since the crack surfaces are usually symmetrically loaded,
i.e s�c ¼ �sþc , one gets

ukðPÞ ¼
Z

Cb

UkjðP;QÞ sjðQÞ � TkjðP;QÞujðQÞ
� �

dQ

�
Z

Cþc

TkjðP;QÞDujðQÞdQ ; ð9Þ

rk‘ðPÞ ¼
Z

Cb

Dkj‘ðP;QÞ sjðQÞ � Skj‘ðP;QÞ ujðQÞ
� �

dQ

�
Z

Cþc

Skj‘ðP;QÞDujðQÞdQ : ð10Þ

It can be shown that a symmetric coefficient matrix can be
achieved by using Du as variables on Cþc . Following the
Galerkin approximation, the limit of (9) and (10) is taken
as P! CbðuÞ and CbðsÞ, respectively. At this point, it is
convenient to convert the stress equation (10) into a
traction equation through the identity skðPÞ ¼
rk‘ðPÞn‘ðPÞ, with n‘ðPÞ being the outward normal at P.
After discretizing, the following system established from
Eqs. (9) and (10) is obtained:

½Gbb� fsbg ¼ ½Hbb� fubg þ ½Hbc� fDucg ; ð11Þ
where b and c denote the outer boundary and upper crack
surface, respectively.

Since tractions are prescribed on the crack, only
Eq. (10) is written for source points on Cþc . Again, fol-
lowing the Galerkin approximation, the limit of (10) as
P! Cc, the conversion of (10) into a traction equation,
and discretization, the result is

½Gcb�fsbg � ½Gcc�fsþc g ¼ ½Hcb�fubg þ ½Hcc�fDucg :
ð12Þ

Note that sþc now appears on the left hand side of Eq. (12)
due to the limit process as P! Cc. Combining Eqs. (11)
and (12), the equation system of the problem can be
written as follows:

Hbb Hbc

Hcb Hcc

� �

ub

Duc

� �

¼ Gbb 0
Gcb Gcc

� �

sb

�sþc

� �

; ð13Þ

where it can be proved that the coefficient matrix on the
left hand side of (13) is also symmetric.

2.2
Cracks in unbounded domains
When an unbounded domain is considered and is sub-
jected to uniform remote stress �rrij, Eq. (12) reduces to the
following system:

�½Gcc�fsþc g ¼ ½Hcc�fDucg ; ð14Þ
where fsþc g on the upper crack surface Cþc is now the
superposition of the prescribed tractions directly applied
on Cþc and the tractions �rrijn

þ
j due to the remote stresses

�rrij. Note that nþj are the components of the outward

normal nþc to Cþc .

2.3
Modified quarter-point element
For a crack geometry, the crack opening displacement
(COD) Duk, k ¼ 1; 2 in the neighborhood of the tip is [32,
33]

Dukðr; hÞ ¼ bkðhÞr
1
2 þ ckðhÞr þ dkðhÞr

3
2 þ � � � ; ð15Þ

where r; h are the distance to, and the direction emanating
from, the tip, respectively.

Fig. 1. A body B containing a fracture394



It has been proven that, irrespective of the problem
geometry or boundary conditions, the series expansion in
Eq. (15) must have ck ¼ 0 for Du on the crack surface [10]
(for related work see Ref. [34]), i.e.

Dukðr; hÞ ¼ bkðhÞr
1
2 þ dkðhÞr

3
2 þ � � � : ð16Þ

It is known that the above equations have initially been
established for crack opening. However, as these rela-
tionships are valid if there is an applied traction on the
crack surface, they also apply for crack closure cases.

The 2-D QP element is based upon the three-
equidistant-noded quadratic element. For t 2 ½0; 1�, the
shape functions for this element are given by

w1ðtÞ ¼ ð1� tÞð1� 2tÞ ;
w2ðtÞ ¼ 4tð1� tÞ ;
w3ðtÞ ¼ tð2t � 1Þ :

ð17Þ

As Du ¼ 0 at the crack tip, which is assumed to be at t ¼ 0
(Fig. 2), the geometry and COD representations of the
crack tip element are

CðtÞ ¼
X

3

j¼1

xjwjðtÞ; yjwjðtÞ
� 	

; ð18Þ

DukðtÞ ¼
X

3

j¼2

Du
ðjÞ
1 wjðtÞ;Du

ðjÞ
2 wjðtÞ

� 	

; ð19Þ

where ðxj; yjÞ are the coordinates of the three nodes
defining the crack tip element, and Du

ðjÞ
k the nodal values

of the COD.
By moving the mid-node coordinates ðx2; y2Þ three-

fourths of the way towards the tip (see Fig. 2), the
parameter t becomes

ffiffiffiffiffiffiffi

r=L
p

, with L being the distance
from ðx1; y1Þ to ðx3; y3Þ [6, 7]. As a consequence,

the leading order term in Du
ðjÞ
k at t ¼ 0, which is t, is the

correct square root of distance. Note however, that the
next term, which is t2, is r=L. According to Eq. (16), this
term should vanish, and the modification presented in
Ref. [11] accomplishes the cancellation of this t2 term. The
resulting shape functions for the MQP element are

ŵw2ðtÞ ¼ �8
3ðt3 � tÞ ;

ð20Þ
ŵw3ðtÞ ¼ 1

3ð4t3 � tÞ ;
which should be used in Eq. (19) instead of wjðtÞ. It can be
observed that the modified shape functions (20) still satisfy
the Kronecker delta property ŵwiðtjÞ ¼ dij. This new
approximation is only applied to the COD, as we keep the
representation of the crack tip geometry as in Eq. (18).
This ensures that the property t �

ffiffi

r
p

remains.

2.4
Stress intensity factors
SIFs provided by both the modified and standard QP
elements will be calculated by means of the DCT. The
point here is to assess the quality of the MQP in the
context of frictional contact fracture by means a very
simple method such as the DCT. The general expressions
of SIFs by means of the DCT technique are given by

KI ¼
G

jþ 1
lim
r!0

ffiffiffiffiffi

2p
r

r

Du2 ;

KII ¼
G

jþ 1
lim
r!0

ffiffiffiffiffi

2p
r

r

Du1 ;

ð21Þ

where Du is the COD in the coordinate system associated
with the crack tip under consideration, G is shear modu-
lus, m is Poisson’s ratio, and

j ¼ 3� 4m ðplane strain); j ¼ 3� m
1þ m

ðplane stressÞ :

ð22Þ
For the standard QP element, it is known that by substi-
tuting Eqs. (17) and (19) in Eq. (21), one gets

KI ¼
G

jþ 1

ffiffiffiffiffi

2p
L

r

4Du
ð2Þ
2 � Du

ð3Þ
2

� 	

;

KII ¼
G

jþ 1

ffiffiffiffiffi

2p
L

r

4Du
ð2Þ
1 � Du

ð3Þ
1

� 	

:

ð23Þ

The SIFs in case of the MQP element are obtained similarly
[11], resulting in

KI ¼
G

3ðjþ 1Þ

ffiffiffiffiffi

2p
L

r

8Du
ð2Þ
2 � Du

ð3Þ
2

� 	

;

KII ¼
G

3ðjþ 1Þ

ffiffiffiffiffi

2p
L

r

8Du
ð2Þ
1 � Du

ð3Þ
1

� 	

:

ð24Þ

Thus, SIFs are given directly in terms of the nodal values
of the COD at the crack tip element.

3
SGBEM crack friction algorithm
In this section we review the SGBEM algorithm for mod-
eling cracks with frictional contact presented in [25];
further details can be found in this paper. Crack friction is
a nonlinear boundary value problem that requires an
iterative scheme. The SGBEM algorithm enables the
determination of two important quantities, namely the
normal tractions and crack sliding displacements (slip) on
the sliding crack surfaces. Thus, a mode-II SIF can be
found by using the slip result in Eq. (24). In the sub-
sequent section, it is shown that the symmetric-Galerkin
procedure can resolve problems of friction sliding in cases
where the friction constraint condition may be different on
each branch of a common junction point.

3.1
Problem formulation
Without loss of generality, consider an unbounded do-
main containing internal cracks subjected to prescribed

Fig. 2. Crack tip element
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global tractions sc. As mentioned in Sect. 2.2, sc combines
the prescribed tractions directly applied on crack faces and
the tractions due to remote loading. Let Dun and Dut be,
respectively, the crack opening/closing and sliding dis-
placements in the local coordinate system ðt; nÞ. After the
final solution of the iterative scheme is converged, addi-
tional local tractions t ¼ ðtt; tnÞ on the sliding crack sur-
faces are determined such that no material interpenetration
occurs. Note that tn and tt are, respectively, the normal
and tangential components of t. The boundary conditions
for the final solution are

1. Either Dun ¼ 0 and Dut ¼ 0 (the crack is not sliding), in
which case t ¼ 0, or

2. Dun > 0 (the crack is open), also in which case t ¼ 0, or
3. Dun is forced to be 0 (no material interpenetration, the

crack is sliding) by applying additional tractions t on
those crack surfaces; the normal and tangential com-
ponents of t are related by jttj ¼ � tanð/Þtn with /
being the friction angle. The sign of tt is such that the
sliding movement of the crack surfaces is opposed.

Note that tn is nonlinearly dependent on the Dun values on
all other cracks and on the field stress.

3.2
Iterative procedure
For crack friction problems, the numerical solution
with the initial traction boundary conditions on the crack
surfaces provides negative Dun (material interpenetration)
in the region of contact. This negative Dun solution is
obviously unphysical, and thus an iterative procedure is
employed to determine tn and tt such that Dun � 0.

1. From the SGBEM solution for the global COD Duc,
compute the local displacement components Dun and
Dut.

2. If Dun < 0 at a given node on the crack, set

(a) normal traction at the ith step as t
ðiÞ
n ¼ t

ði�1Þ
n � kDun,

where t
ði�1Þ
n is the normal traction at the previous

step, and k ¼ ðaGÞ=b with a, G and b being the
relaxation factor, shear modulus and crack length,
respectively,

(b) tt ¼ signðDutÞ tanð/Þtn.

3. At the crack tips of a sliding crack, normal tractions t
ðiÞ
n

are determined by interpolating those at the other
nodes of the crack tip elements.

4. Convert the local traction components tn and tt to the
global traction vector sþca on the upper crack surface.

5. Superpose the above additional tractions sþca to the
initially prescribed tractions sþc on the crack surface.
Re-solve the SGBEM system.

6. Repeat from the first step until convergence.

The error indicator of convergence is calculated after each
iterative step as the maximum difference between the
current and previous computed local normal traction
component

� ¼ max jtðiÞn � tði�1Þ
n j ð25Þ

The iteration process is converged when the error indi-
cator � is below a specified tolerance �0.

Note that in applying the friction interface model, we
have specified an inequality constraint that requires the
friction resistance on the sliding interface to be greater than
or equal to the shear stress acting across the interface.
Consequently, the frictional contact problem does in gen-
eral depend on the loading history and the solutions that
satisfy this form of boundary condition are not necessarily
unique. For example, if one of the existing solutions was
considered and a small reverse slip was applied to a section
of the sliding interface, then the inequality could still be
satisfied although the ‘‘solution’’ would be different but still
valid in terms of the stated boundary constraint. Here the
path-dependency inherent in frictional contact problems is
handled by a suitable routine that numerically implements
Step 2(a) where an incremental load kDun is employed to
adjust the normal traction tn obtained from the previous
step until no material interpenetration occurs. In addition,
we do not treat explicit time dependent rate/state friction
constitutive rules or general time dependent evolution of
the solution. In order to provide a ‘‘sensible engineering’’
result, satisfying the boundary conditions, it is necessary
therefore to consider all loading steps to be suitably
‘‘small’’ through the use of relaxation factor a and to be
arranged in a defined sequence.

4
SIF calculations
As noted in the introduction, the purpose of this
paper is to demonstrate that the above techniques
produce accurate SIF results. Three problems are con-
sidered in this section, the last two involving kinked and
junction cracks. Unless otherwise noted, the plane strain
state is considered, the material constants employed
are Young’s modulus E ¼ 70000 MPa and Poisson’s ratio
m ¼ 0:2, and a convergence criterion �0 ¼ 10�6 MPa is
chosen.

4.1
Single crack under compression
A relatively simple geometry, a single crack of length 2b in
an unbounded domain and subject to a compressive
remote stress r (see Fig. 3), is considered first, as an
analytical solution is available for comparison. Results are
presented for various inclination angles of the crack rela-
tive to the applied stress, denoted by a, and friction angles
/ ¼ 0�; 15�; 30�; 45�.

Fig. 3. A crack under compression in an unbounded domain
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It is obvious that the mode-I SIF KI ¼ 0 as the crack
surfaces remain closed under compression. The analytical
solution for the mode-II SIF is given by [35]

KII ¼ r
ffiffiffiffiffiffi

pb
p

sin aðcos a� tan / sin aÞ : ð26Þ
For the first set of calculations, the crack is discretized into
ten uniform quadratic elements. The numerical solution
obtained with the MQP for KII=r

ffiffiffiffiffiffi

pb
p

(normalized KII) is
plotted in Fig. 4 together with the analytical solution. The
solutions are almost identical. The performance of the
MQP versus standard QP elements is compared in terms of
the ratio KII=Kexact

II listed in Table 1 for different inclina-
tion and friction angles a and /. While the accuracy is
consistent regardless the values of a and /, the solutions
obtained with the MQP element are roughly three orders of
magnitude more accurate than those obtained with the
standard QP element. This remains valid for a ¼ / ¼ 45�.
However, a comparison in terms of KII=Kexact

II can not be
shown as Kexact

II ¼ 0 in this case.
The primary advantage of the MQP over standard QP

element in solving crack friction problems is illustrated by
the comparison shown in Table 2. This table reveals that,
for equivalent accuracy, the mesh for the MQP calculation
can be significantly coarser than that required by the
standard QP element. This advantage has also been ob-
served in Ref. [11] in the context of non contact crack
modeling. However, this is much more significant in case of

contact fracture, as the computing time required by the
nonlinear iteration is very much mesh dependent. For the
single crack under consideration, even a mesh of 100 ele-
ments with standard QP crack tip elements produces less
accurate KII result than that obtained from a mesh of only
five crack elements with MQP crack tip elements. In
addition, while the former case requires 2478 iterative
steps, the latter only needs 178 steps. It is also interesting to
note that with the same number of crack elements em-
ployed, the use of MQP element not only provides much
more accurate solution, but also requires fewer iterative
steps. This lower number of iterations might be explained
by the more accurate solutions for crack opening and crack
sliding displacements near the crack tips provided by the
MQP element. Finally, note that the MQP solution accuracy
actually decreases slightly for more than ten elements; this
decrease may be explained by the fact that the crack tip
element should be ‘long enough’ for the t3 terms in the
MQP shape functions (see Eq. (20)) to exhibit their pres-
ence [11]. However, the asymptotic value for KII is still
more accurate than the respective standard QP solution.

Fig. 4. Numerical results vs. analytical solutions for normalized
KII

Table 1. KII=Kexact
II as functions of inclination angle a and friction

angle / (10 crack elements)

Angle
a

Crack tip
element

Friction angle /

0� 15� 30� 45�

15� QP 1.02334 1.02334 1.02335 1.02335
MQP 0.99994 0.99994 0.99994 0.99994

30� QP 1.02334 1.02334 1.02334 1.02335
MQP 0.99994 0.99994 0.99994 0.99994

45� QP 1.02334 1.02334 1.02335 N/A
MQP 0.99994 0.99994 0.99994 N/A

Table 2. KII=Kexact
II and number of iterative steps as functions of

number of crack elements (a ¼ 20� and / ¼ 30�)

Number of
crack elements

Crack tip
element

KII=Kexact
II Number of

iterative steps

5 QP 1.05015 186
MQP 1.00144 178

10 QP 1.02335 329
MQP 0.99994 319

20 QP 1.01097 607
MQP 0.99961 585

30 QP 1.00698 866
MQP 0.99956 836

40 QP 1.00500 1113
MQP 0.99954 1079

50 QP 1.00383 1351
MQP 0.99953 1313

75 QP 1.00227 1929
MQP 0.99953 1871

100 QP 1.00149 2478
MQP 0.99953 2403

Fig. 5. Numerical results vs. analytical solutions for KII
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The performance of using the SGBEM and MQP element
in modeling crack friction problems can also be demon-
strated by comparing these SIF results with those obtained
from FROCK [24]. Consider a single closed crack in an
infinite medium (see Fig. 3) with 2b ¼ 0:0127 m, a ¼ 45�

and tan / ¼ 0:364. For numerical analysis, the crack is
discretized into ten uniform quadratic elements. Figure 5
shows the mode-II SIF results obtained from the exact
solution Kexact

II and from SGBEM using the MQP element
for different magnitudes of r, while results for the ratio
KII=Kexact

II are listed in Table 5. Again, these illustrations
reveal that both solutions are almost identical. While the
MQP solutions for KII remain consistently accurate
regardless any value of applied stress r (see Table 3), those
obtained from FROCK and shown in Ref. [24] appear to be
less accurate when the remote compressive stress r exceeds
20 MPa. Note that with frictional contact boundary con-
ditions, the solution is not a linear function of the stress.

4.2
Two-wing crack under compression
In this section, a two-wing crack in an unbounded domain
and under uniaxial far-field compression as shown in
Fig. 6 is investigated. This is the problem of kinked crack
extension from an initially closed crack [36]. Due to the
symmetry of this problem, SIFs at both crack tips are
identical. The MQP element is employed to calculate these
SIFs for different values of ratio c=b and kink angle h,
fixing orientation angle a ¼ p=5 and friction coefficient
tan / ¼ 0:3. For numerical analysis by the SGBEM, non-
uniform quadratic elements are used to discretize the
initially closed crack and its two wings. This mesh
refinement technique needs to be employed to treat the
singularity in the dislocation densities at the crack kinks
(junction points) [16].

The normalized SIF results (KI=r
ffiffiffiffiffiffi

pb
p

and KII=r
ffiffiffiffiffiffi

pb
p

)
are plotted in Figs. 7 and 8. It can be observed that these
results agree very well with those presented in Ref. [36]
where a numerical method due to Gerasoulis [30] is used
to solve a singular integral equation derived for this
problem. It should be noted that, for a given value of c=b,
h, a and /, the wings remain closed when the angle h is
smaller than a certain value, and thus KI ¼ 0 in these cases
(see Fig. 7). While the SGBEM KI solution properly
interprets this closure situation, the numerical method
employed in [36] provides KI < 0 which represents
material interpenetration.

To provide reference data, Tables 4 and 5 list the values
of the normalized SIFs used to build the graphs shown in
Figs. 7 and 8, respectively.

4.3
T-crack problem
Finally, consider a T-crack in an unbounded domain and
subject to a remote compressive stress r ¼ 100 MPa acting

vertically (see Fig. 9). The lengths of the vertical (opening)
and horizontal (sliding) crack segments of this kinked
crack are c ¼ 100 m and 2b ¼ 50 m, respectively. The
vertical segment is horizontally pressurized to

Table 3. KII=Kexact
II as a func-

tion of r Remote compressive stress r (MPa)

5 10 15 20 25 30 35 40
0.99994 0.99994 0.99994 0.99994 0.99994 0.99994 0.99994 0.99994

Fig. 6. Two-wing crack in an unbounded domain

Fig. 7. Normalized KI solution (a ¼ p=5, tan / ¼ 0:3)

Fig. 8. Normalized KII solution (a ¼ p=5, tan / ¼ 0:3)
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p ¼ 100 MPa internally and intersects the the middle of the
horizontal segment at right angles.

The SGBEM and MQP element are used to compute SIFs
at the tips A, B, and C for frictional angle / ¼ 30�. The
numerical results are compared with those obtained from

the DDM using internal collocation [23]. For the DDM
simulations, 50/200 and 100/400 uniform elements (mesh
1/mesh 2) are employed to discretize the horizontal and
vertical cracks, respectively. For the SGBEM calculations,
the corresponding numbers of elements are only 26 and
41. Again, as this is a kinked crack problem, mesh
refinement technique needs to be used for the SGBEM
analysis, with shorter elements being placed near the
junction point. SIF results from both methods are listed in
Table 6. Note that due to symmetry, at crack tips A and B,
KIIA ¼ �KIIB. Very good agreement from the numerical
solutions can be observed. However, DDM needs to use a
highly refined mesh to obtain the equivalent accuracy
obtained by a coarser SGBEM mesh.

5
Conclusion
The SGBEM combined with a simple frictional contact
algorithm and the MQP crack tip element provides an
efficient approach for accuarately evaluating SIFs for
fractures with frictional sliding. Two important advantages
of the SGBEM are exploited, namely the ability to use
standard continuous elements to solve crack problems,
and the ability to accurately handle corners and junction
points. As a result, the elegant quarter-point element can
be employed to accurately capture the crack tip singular-
ity, and a simple iterative scheme proposed in Ref. [25]
can be adopted to solve crack friction problems. Of par-
ticular interest herein was the investigation of difficult
kinked or junction crack geometries, and it was found that
they do not appear to pose any problems. SGBEM results
are almost identical to the analytical solutions for the
problem of single crack under compression; and agree
very well with a numerical method due to Gerasoulis [30]
for the problem of two-wing crack under compression. A
key advantage of the MQP is that accurate results can be
obtained without refined meshes. This meshing advantage
is amplified for nonlinear crack friction analysis, as the
solution requires an iterative procedure.

The DDM, employed in the T-crack example to
provide comparison with the SGBEM results, requires
refined mesh to yield comparable accuracy obtained by
a coarser SGBEM mesh. Due to the use of internal
collocation, it is expected that the ‘non-conforming’
DDM will be, compared to SGBEM, even more compu-
tationally expensive in treating 3-D problems. Extension
of this work to three dimensions is currently in
progress.
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