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Fig. 1. Monostatic RCS pattern of a square metallic plate (2�� 2�) with
three circular slots(r1 = 0:15�; r2 = 0:25�; r3 = 0:7�): MoM (exact)
versus AWE (approximate); multiple expansion points,�1 = 14�, �2 = 38�,
�3 = 58� [Pad̀e (L = 3;M = 1)], �4 = 75� [Pad̀e (L = M = 1)].

of the CPU time used by the MoM. This comparison clearly shows
how monostatic RCS patterns can be obtained much faster by means
of AWE. Of course, as the number of angular points in the reference
MoM solution increases, AWE becomes more attractive in terms of
CPU cost.

To provide AWE users with some guidelines, we performed a
systematic study of AWE order versus the angular band of the
approximation. We observed that if one expansion point is chosen
for every angular sector containing a single pattern lobe/null, a
Pad̀e approximation withL = 1, M = 1, or M = 0 results in
a sufficiently accurate approximation. However, for angular sectors
containing lobes and nulls, higher order expansions are necessary.
For instance, expansions with(L=M) lower than(3=1) for the first
sectors of the example (see Fig. 1) would deteriorate the agreement.

III. CONCLUSION

In this letter, we presented an implementation of AWE for gener-
ating broad-band RCS patterns using only a few points of the exact
solution. It was observed that AWE can result in considerable CPU
time savings when an iterative solver is employed. We should point
out that the accuracy and extrapolation range of the AWE implemen-
tation depend on several factors such as pattern shape, location of the
expansion points, and the order of the Padè representation.
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The Diffraction of an Inhomogeneous Plane Wave
by an Impedance Wedge in a Lossy Medium

Giuliano Manara, Paolo Nepa,
Robert G. Kouyoumjian, and Barendt J. E. Taute

Abstract—The diffraction of an inhomogeneous plane wave by an
impedance wedge embedded in a lossy medium is analyzed. The rigorous
integral representation for the field is asymptotically evaluated in the
context of the uniform geometrical theory of diffraction (UTD) so that
the asymptotic expressions obtained can be employed in a ray analysis of
the scattering from more complex edge geometries located in a dissipative
medium. Surface wave excitations at the edge and their propagation along
the wedge faces are discussed with particular emphasis on the effects of
losses.

Index Terms—Absorbing media, electromagnetic scattering, wedges.

The diffraction of an inhomogeneous plane wave by an impedance
wedge embedded in a lossy medium is considered in this letter. The
uniform analysis presented in [1] for a perfectly conducting wedge is
extended here to the case in which impedance boundary conditions
(IBC’s) occur at both faces of the wedge to account for its material
properties. The aim is to extend the uniform geometrical theory of
diffraction (UTD) to this case. We note that a uniform plane wave
impinging on the interface between air and a lossy medium gives rise
to an inhomogeneous plane wave in the lossy medium; consequently,
the above problem is important in the analysis of electromagnetic
scattering from buried objects.

The geometry for the two-dimensional scattering problem is de-
picted in Fig. 1, where all the parameters are defined as in [1]. The
edge of the wedge is positioned on thez axis and the observation
point P is located at�; � in the polar coordinate system. The two
faces of the wedge (� = 0 and� = n�) are characterized by different
surface impedancesZ0 andZn, respectively. In the following, both
polarizations are treated at the same time, i.e., the total fieldu may
denote eitherHz in the TE (hard) case orEz in the TM (soft) case.
An exp(j!t) time dependence is assumed and suppressed. Since the
medium surrounding the wedge is lossy the wave numberk = ��j�
is complex. The incident inhomogeneous plane wave exhibits both a
real (k0) and an imaginary(k00) wave-vector component; the angle
between the two is
 < �=2, shown in Fig. 1. As described in [1], the
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Fig. 1. Geometry for the scattering problem.

Fig. 2. Field amplitude versus the observation angle� for the TE case: GO
contribution (dashed line), surface wave contribution (dotted line), and total
field (continuous line). Geometrical and electrical parameters:n = 11=6,
�0 = 90�,  = 5�(� = 4:06�), sin �0 = 0:1 + j0:54(�sw0 = 18:5�),
sin �n = 0:1 � j0:54.

incident fieldui = expfjk� cos[��(�0�j )]g can be interpreted as
a uniform plane wave impinging on the edge with a complex angle
of incidence�0 � j .

A rigorous spectral integral representation for the total field in the
presence of an impedance wedge has been given by Maliuzhinets in
[2]

u(�; �) =
1

2�j 


G(� + �� n�=2)ejk� cos � d� (1)

which is valid also for complex incidence angles. In (1),
 = C 0�C
is the standard Sommerfeld integration path shown in [1, Fig. 2] and

G(�) =
M(�)

M(�0 � j � n�=2)
�(�) (2)

where�(�) is a trigonometric function containing the geometrical
optics (GO) poles andM(�) is the Maliuzhinets special function.1

Both �(�) andM(�) are defined in [2], where a summary of the
properties of the Maliuzhinets special function is also given. We
note that due to the use of a different coordinate system, in the
expressions in [2]�, ', and'0 must be replaced byn�=2, ��n�=2,
and�0 � j � n�=2, respectively. Also,i in [2] must be replaced
by �j because of the different time convention.M(�) depends on

1Note that the Maliuzhinets function is usually denoted by	(�).

the Brewster angles�0 and �n of the face� = 0 and � = n�,
respectively. These latter are defined bysin �0;n = Z0;n=� in the TE
(hard) polarization case andsin �0;n = �=Z0;n in the TM (soft)
polarization case, where� is the characteristic impedance of the
medium surrounding the wedge, which is complex in the case of
a lossy medium. Several approximations ofM(�), which are suitable
for its efficient calculation have been proposed in the literature (see
[3] and its bibliography).

The procedure for deriving a uniform asymptotic expression for
the total field is the same as that adopted in [1], except for the
presence of the surface wave poles. As far as the GO fields are
concerned, the presence of the IBC’s at the wedge faces simply
implies multiplying each reflected field contribution by the reflection
coefficient of the pertinent face. Since the regions of existence of
the GO fields are not affected by the IBC’s at the wedge faces, the
displacement� (see Fig. 1) of the shadow (SB) and reflection (RB)
boundaries from their conventional locations is the same as that given
in [1]. Moreover, the surface wave contributions at the faces� = 0
and� = n� can be written asusw0 = C0 expf�jk� cos(�+�0)g and
uswn = Cn expf�jk� cos(� � n� � �n)g, whereC0 andCn equal
C� andC+, respectively, in [2]. We note that due to the presence of
losses in the medium surrounding the wedge, a surface wave excited
at the edge and propagating along a face is attenuated, even when the
face exhibits a purely reactive surface impedance. This effect may be
important in the scattering from structures with edges located in lossy
media, if it significantly reduces the contributions to the scattered
field from surface wave excitation and diffraction. Note that these
contributions can be calculated from this solution. When the exterior
medium is lossy, the shapes of the two steepest descent paths (SDP’s)
shown in [1] are changed and both the surface wave excitations and
the extent of their lit regions are modified with respect to those given
in [2]. The lit regions are defined by0 � � � �sw0 for the face� = 0
andn� � �swn � � � n� for the face� = n�, where

�sw0;n=sin�1 1�(�=�)2 tanh[Im(�0;n)]

1+�=f� cosh[Im(�0;n)]g � Re(�0;n)

(5)

with the excitation condition requiring�sw0;n > 0. It is evident that
Im(�0;n) must be positive for a surface wave to exist.

Finally, employing the same asymptotic evaluation of the integrals
along the SDP’s through the saddle points at� = �� adopted in [1],
we obtain the following uniform expression for the diffracted field:

ud � �e
�j�=4

p
2�k

G(� + �� n�=2)�G(�� + �� n�=2)

�
p

Res[G(�); � = �p]

� 1�F k�[1+cos(�p��+n�=2)]
2 cos[(�p � �+ n�=2)=2]

e�jk�

p
�

(6)

where the summation includes both the GO poles and the surface
wave poles at� = �p when these poles lie either between the two
SDP’s shown in [1, Fig. 2] or in the complementary exterior region of
the complex� plane, but at a distance from the closest SDP (measured
along the real axis) less than�. See the discussion in [1, Sec. 4.2].
F [�] is the UTD transition function extended to complex arguments.

A sample of numerical results is shown in Fig. 2, where the
amplitude of the GO field contribution, the surface wave contribution
and the total field at a constant distance(� = �=jkj) from the edge
of an impedance wedge are plotted as functions of the observation
angle�. The lossy medium surrounding the wedge is characterized



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 11, NOVEMBER 1998 1755

by �=jkj = 0:98 and�=jkj = 0:199. Because of the values chosen
for the Brewster angles, only the face� = 0 supports a surface wave.
It is apparent that the total field pattern is smooth and continuous, as
expected from a uniform asymptotic solution. To check the accuracy
of this calculation, a direct numerical evaluation of the rigorous
Maliuzhinets representation along the SDP’s was carried out. The
resulting pattern was found to superimpose exactly on that shown
in Fig. 2.
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Calculation of Diffraction Coefficients of Three-
Dimensional Infinite Conducting Wedges Using FDTD

Veeraraghavan Anantha and Allen Taflove

Abstract—The finite-difference time-domain (FDTD) method is applied
to obtain the three-dimensional (3-D) dyadic diffraction coefficient of
infinite right-angle perfect electrical conductor (PEC) wedges illuminated
by a plane wave. The FDTD results are in good agreement with the
well-known asymptotic solutions obtained using the uniform theory of
diffraction (UTD). In principle, this method can be extended to calculate
diffraction coefficients for 3-D infinite material wedges having a variety
of wedge angles and compositions.

Index Terms—Electromagnetic scattering, FDTD methods.

We extend the two-dimensional (2-D) approach discussed in [1]
to obtain numerically the three-dimensional (3-D) dyadic diffrac-
tion coefficients for right-angle perfect electrical conductor (PEC)
wedges. This method exploits the temporal causality inherent in finite-
difference time-domain (FDTD) modeling. In principle, this method
can be extended to calculate diffraction coefficients for 3-D infinite
material wedges having a variety of wedge angles and compositions.

Diffraction from a PEC wedge illuminated by an obliquely incident
plane wave can be described by a dyadic diffraction coefficient [2]. By
choosing the appropriate ray-fixed coordinates [Fig. 1(a) and (b)], the
diffraction coefficient is described as a sum of two dyads [2], which,
in matrix notation, is represented by a diagonal 2� 2 matrix. The
two nonvanishing elements are the soft and the hard scalar diffraction
coefficientsDs and Dh. Fig. 1(a) shows the edge-fixed plane of
incidence(ŝ0; ê) with the ray-fixed unit vectorŝ�0

0 and �̂0 parallel
and perpendicular to it, respectively. Also shown is the edge-fixed
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(a)

(b)

Fig. 1. (a) Three-dimensional geometry of the PEC scatterer showing the
edge-fixed plane of incidence and diffraction, the ray-fixed coordinate system,
and the FDTD coordinate system. (b) Top view of the scattering edge showing
the angles made by the projections of the incident and diffracted wavevectors
in plane ABEF.

plane of diffraction(ŝ; ê) with the ray-fixed unit vectorŝ�0 and �̂
parallel and perpendicular to it, respectively. The radial unit vectors
of incidence and diffraction are given bŷs0 = �̂0��̂0

0 andŝ = �̂��̂0.
In order to obtain the numerical dyadic diffraction coefficient,

we first find the diffracted-field impulse response of the scatterer
numerically using FDTD. By illuminating the wedge with a pulsed
plane wave having an electric field (E-field) component parallel
to the plane of incidence, we obtain the diffracted-field impulse
responseh� ;num polarized parallel to the plane of diffraction.
An analogous procedure is performed with the incidentE-field
component perpendicular to the plane of incidence, yieldingh�;num
polarized perpendicular to the plane of diffraction. The Fourier
transforms of these diffracted-field impulse responsesH� ;num and
H�;num, give the corresponding spectra of the diffracted fields.Ds
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