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Abstract

A new displacement discontinuity method is developed for the analysis of multi-layered elastic media. This approach is based

on a novel superposition scheme and the analytical solution to the problem of a displacement discontinuity element within
bonded half-planes. A three-layered elastic region is obtained by superposing two sets of bonded half-planes and subtracting one
in®nite plane. The advantages of this approach are: (1) it is not necessary to introduce elements at the interface, (2) the method
is applicable for three dimensional modelling and (3) it can be extended to an N (N>3) layer system easily. The accuracy of the

model is illustrated by comparing the numerical results with the analytical solutions for a hole in an in®nite strip in tension and
with the numerical solution for a pressurized crack within a three-layered system. In order to show the e�cacy of the developed
model, the simulation results of a typical South African mining problem and general tunnel excavation problems are also

presented. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Boundary element models are widely used in geome-

chanic problems for computing stresses and displace-

ments around underground excavations. Most of these

models assume the rock mass to be a homogeneous,

isotropic, linearly elastic solid, although inhomogeneity

and anisotropy can also be analyzed by the boundary

element method [1±3]. An important development of

the boundary element approach is that half-plane and

bonded half-plane problems can be solved without

making additional numerical approximations [2,4,5].

Problems involving layers of ®nite thickness are more

di�cult to treat as closed form fundamental singularity

solutions are di�cult to derive. The fundamental sol-

ution for a multi-layered medium can be derived using

the Fourier Transformation method, but the solution

contains improper integrals which must be calculated
numerically [6±12].

Many important rock engineering problems involve
analysis of the stress ®elds of multi-layered systems.
For the problem of mining a tabular orebody with
di�erent hangingwall and footwall, in order to under-
stand the potential instability in relation to the ma-
terial contrast, it is necessary to consider the problem
as a layered system composed of formations with
di�erent material properties. A stope approaching a
dyke with di�erent properties from the host rock,
which may trigger slip along the interface or may
induce seismic activity related to rockburst, is another
typical problem involving material contrast and inter-
face. Similarly, in the hydraulic fracturing operation
for enhanced oil recovery, the material contrast and
the existence of interface(s) play important roles on
the behaviour of the man-made hydraulic fracture
propagation. Assembling appropriate numerical tech-
niques, capable of representing holes and cracks in a
layered system, is essential for those problems.

The objective of this study is to develop a two-
dimensional displacement discontinuity method for the
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stress analysis of multi-layered elastic media. This
approach is based on the principle of superposition
and the analytical solution to the problem of a displa-
cement discontinuity element within one of two per-
fectly bonded half-planes. A three-layered elastic
region is obtained by superposing two di�erent bonded
half-plane regions. The advantages of this approach
are: (1) it is not necessary to introduce elements at the
interface, (2) the method is applicable for three dimen-
sional modelling and (3) it can be extended to an N
(N>3) layer system easily. The derivation of the super-
position scheme for a general N (N>3) layer system
will be presented in another paper.

2. Fundamental solution

In order to demonstrate more clearly the establish-
ment of the fundamental solution for a displacement
discontinuity element in a three-layer medium, the sol-
ution for a displacement discontinuity element in an
in®nite plane, a half-plane and bonded half-planes are
presented brie¯y for completeness.

2.1. Solution for an in®nite plane

The solution for the displacements and stresses at a
point (x, y ) due to displacement discontinuity (Dx,
Dy ) over the line segment jxjRa, y � 0, can be
expressed as

ux � �2�1ÿ n�fx,y ÿ yfx,xx� � �ÿ�1ÿ 2n� fy,x ÿ yfy,xy�

uy � ��1ÿ 2n� fx,x ÿ yfx,xy� � �2�1ÿ n�fy,y ÿ yfy,yy�

sxx � 2G�2fx,xy � yfx,xyy� � 2G� fy,yy � yfy,yyy�

syy � 2G�ÿyfx,xyy� � 2G� fy,yy ÿ yfy,yyy�

sxy � 2G� fx,yy � yfx,yyy� � 2G�ÿyfy,xyy�

�1�

where

fi�x, y� � ÿ1
4p�1ÿ n�

�a
ÿa

Di�x�ln
���������������������������
�xÿ x�2 � y2

q
dx

i � x, y,

�2�

G is the shear modulus and n is Poisson's ratio.
In the original displacement discontinuity formu-

lation, i.e. the constant strength element presented by
Crouch [13], the mid-element stresses and displacements
were assumed to adequately represent the e�ective
values over the length of the discontinuity. For the lin-
ear variation element, with four degrees of freedom,
two nodes within the discontinuity must be chosen at
which the representative measures of stresses and dis-
placements are evaluated. In this study, the two Gauss±
Chebyshev integration points (at x �2a=

������������������
2, y � 0
p

)
are used [14] and the local displacement discontinuity
components can be expressed as

Di�x� � N1�x�Di�1� �N2�x�Di�2� i � x, y �3�
where

N1�x� � 1

2
ÿ x���

2
p N2�x� � 1

2
� x���

2
p �4�

and Di( j ) (i=x, y and j = 1, 2) are the nodal displace-
ment discontinuities.

2.2. Solution for a half-plane

The fundamental solution for a constant strength
displacement discontinuity element in a semi-in®nite
region y R 0 can be obtained by using the method of
images [2,15]. Based on the principle of superposition,
the method of images can be used to ®nd the solution
of the problem in two steps. In the ®rst step, consider
a displacement discontinuity element, the `actual' el-
ement, in the region y < 0 and suppose that a second
element representing its `image', re¯ected about y = 0,
exists in y>0. By symmetry, this setting ensures zero
shear traction on y = 0, however, the normal traction
is not zero. In the second step, a supplementary sol-

Fig. 1. Steps to obtain half-plane solution.
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ution, related to a prescribed normal traction on
y = 0, is obtained to make the normal traction vanish
(see Fig. 1). Therefore, the complete solution for the
half-plane y R 0 can be written as:

ui � �ui �A � �ui �I � �ui �S
sij � �sij �A � �sij �I � �sij �S

�5�

where subscripts A, I, and S denote the displacements
and stresses due to the actual element, the image el-
ement and the supplementary solution.

2.3. Solution for bonded half-planes

For a displacement discontinuity element within
bonded half-planes, the fundamental solution can be
obtained by the method of images with one more step
(see Fig. 2) to the half-plane solution. This is accom-
plished by introducing a general form of solution ui

�

and sij
� for the upper half-plane and an additional sup-

plementary solution ui
�� and sij

�� for the lower half-
plane. Superposing the lower and upper half-planes,
the induced boundary conditions at the surface y = 0,
which ensure that the stresses and displacements are

continuous at the interface are as follows:

ux � u�x uy � u�y sxy � s�xy

syy � s�yy for ÿ1<x<1, y � 0
�6�

where

ui � �ui �A � �ui �I � �ui �S � u��i

sij � �sij �A � �sij �I � �sij �S � s��ij
�7�

is the complete solution for the half-plane y R 0 and
where ui

�� and sij
�� represent the displacement and

stress components in the lower half-plane due to the
stresses applied to the negative side of the interface
y = 0ÿ. The complete solution for the upper half-
plane is ui

� and sij
�, which depends only upon the nor-

mal and shear stresses applied to the positive side of
the interface y = 0+. Based on the theory of elasticity
[16], the solutions ui

��, sij
��, ui

� and sij
� can be expressed

in terms of displacement potential functions. We can
derive these potential functions by considering the con-
tinuity conditions speci®ed by Eq. (6). The solutions ui
and sij can be obtained by introducing the terms ui

��

and sij
�� in Eq. (7).

2.4. Solution for a three-layer medium

In this study, the solution of a displacement discon-
tinuity element within a three-layer medium was de-
rived by a superposition procedure, which is based on
the appropriate combination of appropriate bonded
half-plane solutions. In particular, a three-layered elas-
tic region, with Young's moduli E1, E2 and E3, can be
obtained by superposing two sets of bonded half-plane
regions and an in®nite plane. This is accomplished by
introducing two sets of bonded half-plane solutions
with di�erent elastic modulus sets (E2, E3) and (E1, E2)
and subtracting a supplementary in®nite domain sol-
ution, as shown in Fig. 3. The complete solution can

Fig. 2. Steps to obtain the bonded half-plane solution.

Fig. 3. Steps to obtain solution for a three-layered medium.
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be written as:

ui � �ui ��A� � �ui ��B� ÿ �ui ��C�
sij � �sij ��A� � �sij ��B� ÿ �sij ��C�

�8�

For each layer, the solution can be expressed in
more detail as:

1. Layer 1 ( y>H ):

u�1�i � �ui ��AU� � �ui ��BU� ÿ �ui ��C�

s�1�ij � �sij ��AU� � �sij ��BU� ÿ �sij ��C�
�9�

2. Layer 2 (Hryr0):

u�2�i � �ui ��AU� � �ui ��BL� ÿ �ui ��C�

s�2�ij � �sij ��AU� � �sij ��BL� ÿ �sij ��C�
�10�

3. Layer 3 ( y < 0):

u�3�i � �ui ��AL� � �ui ��BL� ÿ �ui ��C�

s�3�ij � �sij ��AL� � �sij ��BL� ÿ �sij ��C�
�11�

where subscript [A] represents the bonded half-
planes with parameters (E2, n2) and (E3, n3), [B] rep-
resents the bonded half-planes with parameters (E1,
n1) and (E2, n2) and [C] represents the in®nite plane
with parameters (E2, n2). The additional subscripts
U and L represent the solutions for upper and
lower half-planes, as the bonded half-planes sol-
utions are di�erent for the upper and lower half-
planes.

It is noteworthy that it is di�cult, if not impossible,
to obtain an analytical solution to the three layer pro-
blem. The justi®cation for the scheme is discussed in
Appendix A.

3. Numerical implementation

Based on the developed fundamental solution, a sol-
ution procedure can be applied to establish the displa-
cement discontinuity method. To demonstrate the
solution procedure for the displacement discontinuity
method for boundary value problems, a cavity in an
in®nite layered body is chosen as an example. The cav-
ity is assumed to be very long with its axis parallel to
the layers. Therefore, a representative slice perpendicu-
lar to the plane of the ®gure is considered. We can ap-
proximate the boundary B of the cavity by N straight
line segments joined end to end (see Fig. 4).

For the jth segment, the shear and normal displace-
ment discontinuities applied to this segment are
denoted as D j

s and D j
n and the actual stresses as s j

s

and s j
n . The actual stresses, s j

s and s j
n , are induced by

the discontinuity values arising on all N segments
along the boundary of the cavity. With suitable coordi-
nate transformations to account for the orientations of
the line segments, we can express the stresses sis and sin
(i = 1 to N ) at suitable collocation points within each
segment of curve C. The values of the shear and nor-
mal stress components at the ith collocation point can
be expressed as

sis �
XN
j�1

Aij
ssD

j
s �

XN
j�1

Aij
snD

j
n � Pi

s

sin �
XN
j�1

Aij
nsD

j
s �

XN
j�1

Aij
nnD

j
n � Pi

n

�12�

where Aij
ss, etc., are the boundary stress in¯uence coe�-

cients and Pi
s and Pi

n are the ®eld stress components.
The coe�cient Aij

ss, for example, gives the shear stress
at the ith collocation point, sis, due to a unit applied
shear displacement discontinuity at the jth collocation
point (D j

s � 1). Introducing prescribed boundary stres-
ses into Eq. (12), we can obtain a system of 2N alge-
braic equations to determine the applied displacement
discontinuity D j

s and D j
n for j = 1 to N. We can then

obtain the solutions for other points within the domain
since the solutions can be expressed as linear combi-
nations of the displacement discontinuities. The fore-
going equations can be used to develop a numerical
model for solving two-dimensional boundary value
problems. A constant strength element numerical
model was ®rst developed and then extended to a

Fig. 4. Displacement discontinuity method for the problem of a cav-

ity in a layered medium.
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more accurate linear element model THREEL, using
two internal nodes in each element [14].

4. Veri®cations

The accuracy of the model is illustrated by compar-
ing the numerical results with the analytical solution
for a hole in an in®nite strip in tension and with the
numerical solution for a pressurized crack within a
three-layered system. The results for a circular hole of
radius a in a strip of width 2c under uniaxial tension
are presented in Fig. 5 for di�erent geometric par-
ameter l=c/a, where c is the distance from the center
of the hole to the surface. The ®nite strip was simu-
lated by setting E1 and E3 to be very small and
E2=50000 MPa, n2=0.2. We ®nd that the results are
in reasonable agreement with Savin's [17] analytical
solution for a ®nite strip. The relative error is less than
5 % for the 72 element simulation.

As a further check on the solution accuracy a linear
variation displacement discontinuity model DIGSMM
[18], in which double elements are placed at the bima-
terial interfaces to enforce the continuity conditions
across the interface(s), is applied for the numerical ver-
i®cation. For completeness, a brief description of this
model is given in Appendix B. The numerical results
were compared for a pressurized crack within a layer

and for a crack crossing an interface (E3=2E2=4E1,
E2=50000 MPa, internal pressure P=200 MPa). In
the DIGSMM solution 316 additional elements of
di�erent sizes were placed on the interfaces. The nu-
merical results in Figs. 6 and 7 are in good agreement
with discrepancies of less than 1% for the former case
and 3% for the latter case. However, using a Pentium

Fig. 5. Tangential stresses along a circular hole in an in®nite strip

under tension.

Fig. 6. The closure of a pressurized crack within a three-layered sys-

tem.

Fig. 7. The closure of a pressurized crack crossing the interface of a

three-layered system.

K.-J. Shou, J.A.L. Napier / International Journal of Rock Mechanics and Mining Sciences 36 (1999) 719±729 723



II computer, the run time for THREEL (0.06 s) is far
less than for DIGSMM (684 s), as the former saves
both memory and run time by not using elements
along the two interfaces. The explicit interface model
would evidently be improved if `in®nite' or other higher
order elements were introduced along the interface.

5. Application to mining problems

The orebodies of the Witwatersrand Basin are pre-
dominantly associated with sedimentary and minor
volcanic rocks [19]. A stope approaching a dyke, with
di�erent material properties from the host rock may
trigger slip along the interface or may induce stress
concentrations within the dyke leading to seismic ac-
tivity related to rockbursts. An example problem of a
stope approaching and penetrating a dyke from di�er-
ent angles (see Fig. 8), with the properties as in Table
1, is analyzed. The approaching angle y is de®ned as
the angle between the mining direction and the dip
direction of the dyke.

The principal stresses along the interface (see Fig. 9a
and b) reveal that the di�erence in the stresses is maxi-
mized for the approaching angle nears 608 to 758
which might be related to the maximum sliding also
found by York and Dede [20] and the failure mode

near the interface might change from shear to tensile
as the approaching angle gets smaller (see Fig. 9c).

The in¯uence of the contrasting of material proper-
ties was also investigated in two sets of simulations,
one for di�erent Young's modulus ratios rE=Ed/Eh

(Ed for dyke and Eh for host rock, nd/nh=1) and the
other for di�erent ratios of Poisson's ratio rn=nd/nh
(nd for dyke and nh for host rock, Ed/Eh=2). In both

Fig. 8. The problem of a stope approaching a dyke.

Fig. 9. (a) The in¯uence of approaching angle of stope on the major

principal stress along the positive (dyke) side of interface between

host rock and dyke. (b) The di�erence of major principal stress

along the interface of host rock and dyke for di�erent approaching

angle of stope. (c) The in¯uence of approaching angle of stope on

the minor principal stress along the positive (dyke) side of interface

between host rock and dyke.

Table 1

E (host rock) 78 GPa

n (host rock) 0.21

E (dyke) 120 GPa

n (dyke) 0.38

sv (vertical in situ stress) 54 MPa

sh (horizontal in situ stress) 27 MPa (i.e. k = 0.5)

t (width of dyke) 5 m

d (step I distance from the mining face

to dyke)

5 m

y (angle between the stope and interface) 908, 758, 608, 458, 308
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sets, we let the distance from the mining face to the

®rst interface of host rock and dyke be d = 5 m, the

approaching angle be 908, Eh=78 GPa and nh=0.21.

The results in Fig. 10 show that: (1) both the stress

concentration and stress di�erence, between positive
and negative sides, increase as rE becomes extreme
(larger than 5 or less than 0.2); (2) the stress concen-
tration occurs in the harder, i.e. negative, side and

Fig. 10. (a) The in¯uence of Young's modulus ratio Ed/Eh on the

major principal stress along the positive (dyke) side of interface

between host rock and dyke. (b) The di�erence of major principal

stress along the interface of host rock and dyke for di�erent Young's

modulus ratio Ed/Eh. (c) The in¯uence of Young's modulus ratio Ed/

Eh on the minor principal stress along the positive (dyke) side of

interface between host rock and dyke.

Fig. 11. (a) The in¯uence of the ratio of Poisson's ratio nd/nh on the

major principal stress along the positive (dyke) side of interface

between host rock and dyke. (b) The di�erence of major principal

stress along the interface of host rock and dyke for di�erent ratio of

Poisson's ratio nd/nh. (c) The in¯uence of the ratio of Poisson's ratio

nd/nh on the minor principal stress along the positive (dyke) side of

interface between host rock and dyke.
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shifts from the center by about 1.25 d for a rE=0.2
softer dyke and (3) the case with higher rE possesses
higher major principal stress and lower minor principal
stress, which illustrates a higher risk of failure. The
results in Fig. 11 reveal that the in¯uence of rn on the
minor principal stress is not signi®cant and that both
the stress concentration and stress di�erence increase
for higher rn.

Using the developed model, a series of analyses,
focusing on tunnel problems, was performed. Results
of two typical tunnel problems for a three-layered sys-
tem are given in this paper. For a circular hole in a
three-layer medium with c/a = 2 and di�erent E1/E2

ratios (E2=50000 MPa), the results in Fig. 12 show
that the softer the outer layer the larger the stress con-
centration at the crown or invert, and the signi®cant
e�ect for an E1/E2 ratio from 0.1 to 10. For a double-
tube tunnel, the width d of the pillar between tubes is
important. From the numerical solution for di�erent
d/a ratios presented in Fig. 13(a) and (b), we can ®nd:
(1) a softer outer layer producing greater displacement
at the crown or invert more signi®cantly than the side-
wall, (2) the displacement is always greater at the pillar
sidewall than at the non-pillar sidewall and (3) both of
the above e�ects enlarge when d/a is less than 2.

6. Conclusions

The results show that the proposed approach works

well in describing the mutual interaction of multiple
layers. The boundary element model based on this
approach o�ers a reasonably good numerical solution
for the example problems. This is established by com-
paring the results to both analytic and numerical sol-
utions. The model is capable of analyzing multi-
layered systems consisting three layers. The procedure
can be intended to treat problems with more than
three layers as well as the analysis of three dimensional
problems.

The boundary element method presented in this
paper also provides reasonable numerical solutions for
the example mining problems. The current numerical
model THREEL may be suitable for the analysis of
fracture propagation, underground excavation and
other rock engineering problems in multi-layered rock
masses. In certain cases it can be applied to geological
inhomogeneity problems such as dyke structures.

Fig. 12. Tangential stresses along a circular tunnel in a three-layered

system (c/a=2).

Fig. 13. (a) Radial displacement of a double-tube tunnels for di�er-

ent d/a ratio in a three-layered system (E1=E2=E3, c/a= 2). (b)

Radial displacement of a double-tube tunnels for di�erent d/a ratio

in a three-layered system (E1=E3=0.1E2, c/a= 2).
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Appendix A

As a solution for a general three-layer system is not
available, a solution from the superposition scheme
will be checked for special to general cases:

1. In®nite plane solution:
An in®nite plane can be obtained by letting

E1=E2=E3, which gives the following relation:

�ui ��A� � �ui ��B� � �ui ��C� � �ui ��INF�

�sij ��A� � �sij ��B� � �sij ��C� � �sij ��INF�
�A:1�

where (ui )[INF] and(sij )[INF] are the in®nite plane sol-
utions. Introducing Eq. (A.1) to Eq. (8), we get

ui � �ui ��A� � �ui ��INF�

sij � �sij ��A� � �sij ��INF�
�A:2�

2. Half-plane solution:
Let E1<<E2=E3 to simulate a half-plane com-

posed of layers 2 and 3. This setting gives

�ui ��A� � �ui ��HALF�

�ui ��B� � �ui ��C� � �ui ��INF�

�sij ��A� � �sij ��HALF�

�sij ��B� � �sij ��C� � �sij ��INF�

�A:3�

where (ui )[HALF] and (sij )[HALF] are the half plane
solutions. Introducing Eq. (A.3) to Eq. (8), we get

ui � �ui ��A� � �ui ��HALF�

sij � �sij ��A� � �sij ��HALF�
�A:4�

3. Bonded half-planes solution:
In order to simulate bonded half-planes, we let

E1$E2=E3 and obtain the following relation:

�ui ��B� � �ui ��BOND�

�ui ��A� � �ui ��C� � �ui ��INF�

�sij ��B� � �sij ��BOND�

�sij ��A� � �sij ��C� � �sij ��INF�

�A:5�

where (ui )[BOND] and (sij )[BOND] are the bonded
half-planes solution. Introducing Eq. (A.5) to Eq.
(8), we get

ui � �ui ��B� � �ui ��BOND�

sij � �sij ��B� � �sij ��BOND�
�A:6�

4. Solution for three-layer system:
From Eqs. (9)±(11), the solution, layer 2

(Hryr0) for example, can be expressed as

u�2�i � �ui ��AU� � �ui ��BL� ÿ �ui ��C �

s�2�ij � �sij ��AU� � �sij ��BL� ÿ �sij ��C�
�10a�

in which ®rst and second terms on the right hand
side represent the in¯uence of E2/E3 and E1/E2

interfaces, respectively, and the third term subtracts
the `extra' in¯uence which overlaps the ®rst two
terms. Conceptually, it is also necessary to make the
conservation of mass. The continuous interfacial
conditions are also satis®ed automatically, as the
stress and displacement are continuous along the
interfaces in all of the three terms.

In order to further clarify the interfacial condition, a
®nite strip case is considered by letting E1=E3<<E2

and obtaining the following relation:

�ui ��A� � �ui ��HALF,2� �ui ��B� � �ui ��HALF,1�

�ui ��C� � �ui ��INF� �sij ��A� � �sij ��HALF,2�

�sij ��B� � �sij ��HALF,1� �sij ��C� � �sij ��INF�

�A:7�

where (ui )[HALF,1], (sij )[HALF,1], (ui )[HALF,2] and
(sij )[HALF,2] are the half-plane solutions for free sur-
faces at interface 1 and 2. Looking at the solution,
according to Eq.(5), we ®nd

�ui ��HALF,2� � �ui �A � �ui �I,2 � �ui �S,2
�ui ��HALF,1� � �ui �A � �ui �I,1 � �ui �S,1
�sij ��HALF,2� � �sij �A � �sij �I,2 � �sij �S,2
�sij ��HALF,1� � �sij �A � �sij �I,1 � �sij �S,1

�A:8�

where sub-indices 1 and 2 refer to the free interface 1
and 2. By introducing Eqs. (A.8) and (A.9) into Eq.
(8), the following relation can be obtained for the ®nite
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strip problem:

ui � �ui �A � ��ui �I,1 � �ui �S,1� � ��ui �I,2 � �ui �S,2�

sij � �sij �A � ��sij �I,1 � �sij �S,1� � ��sij �I,2
� �sij �S,2�

�A:9�

Eq. (A.9) reveals that free surface 1 is achieved by
sub-index 1 terms and free surface 2 is achieved by
sub-index 2 terms. However, the in¯uences of sub-
index 2 terms on the interface 1 and the in¯uences of
sub-index 1 terms on the interface 2 can be neglected
as the in¯uence is equivalent to an element more than
thickness H away from the interface. Eq. (A.9) can be
illustrated as Fig. (14) in which the in¯uence is equiv-
alent to an element di away from the interface and
di $ (H, 2H ).

Appendix B

Multiple material regions could be modelled by for-
mulating four additional relationships, for a general
two-dimensional problem, to de®ne the interface con-
ditions. These relate to the normal and shear com-
ponents of the displacement and traction vectors at
each point of the interface. To satisfy these interface

constraints it is necessary to superimpose two lines of
displacement discontinuity elements along each inter-
face, as depicted in Fig. 15.

Let the unknown displacement discontinuity com-
ponents in the adjacent elements a and b be designated
as Ds

a, Dn
a and Ds

b, Dn
b, respectively. For a perfectly

bonded interface, the following conditions must be sat-
is®ed for displacement components and traction com-
ponents.

Uaÿ
s � Ub�

s Uaÿ
n � Ub�

n sas � sbs

san � sbn
�B:1�

The total traction components were expressed in Eq.
(12), which can be rewritten in `self' terms and `exter-
nal' terms Es

i , En
i as below:

sis � Aii
ssD

i
s � �

XN
j � 1
j6�1

Aij
ssD

j
s �

XN
j�1

Aij
snD

j
n � Pi

s �

� Aii
ssD

i
s � Ei

s

sin � Aii
nnD

i
n � �

XN
j � 1
j 6�i

Aij
nnD

j
n �

XN
j�1

Aij
nsD

j
s � Pi

n �

� Aii
nnD

i
n � Ei

n

�12a�

Designating the external traction in¯uence com-
ponents at the point of interest Q as Es

a, Es
b, En

a, En
b,

the total traction components at point Q can be writ-
ten in the form

sas � KaD
a
s � Ea

s san � KaD
a
n � Ea

n

sbs � KbD
b
s � Eb

s sbn � KbD
b
n � Eb

n

�B:2�

where Ka and Kb are the traction kernel self-e�ects
evaluated using Eq. (2) and the relevant shape func-
tions given by Eq. (4) for region a (with elastic modulli
Ga, na ) and b (with elastic modulli Gb, nb ), respect-
ively.

Similarly, if Fs
a, Fs

b, Fn
a, Fn

b designate the external dis-
placement in¯uence components at the point of inter-
est Q, the total displacement components on the outer
sides of the double element can be written in the form

Uaÿ
s � 1=2 Da

s � Fa
s Uaÿ

n � 1=2 Da
n � Fa

n

Ub�
s � ÿ1=2 Db

s � Fb
s Ub�

s � ÿ1=2 Db
s � Fb

s

�B:3�

Substituting Eqs. (B.2) and (B.3) into Eq. (B.1), it
can be shown that the unknown displacement disconti-
nuities are given by

Fig. 14. The in¯uence of (I+S), 1 on interface 2 and the in¯uence of

(I+S), 2 on interface 1.

Fig. 15. Superimpose two displacement discontinuity elements along

an interface.
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2664
Da

s

Da
n

Db
s

Db
n

3775 � 1

Ka � Kb

2664
Kb 0 1 0
0 Kb 0 1
Ka 0 ÿ1 0
0 Ka 0 ÿ1

3775
2664
2�Fb

s ÿ Fa
s �

2�Fb
n ÿ Fa

n�
Eb

s ÿ Ea
s

Eb
n ÿ Ea

n

3775 �B:4�

Coupling the above scheme to a general two-dimen-
sional displacement discontinuity method, we can
develop the model DIGSMM to simulate the multiple
material problems.
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