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We present a new form of the discrete Fourier transform, which has a clear physical meaning and
can be used for interpolation purposes. The relation to the continuous Fourier transform and the
Fourier series is pointed ont. We also discuss the operations of smoothing and filtering on this form

of the discrete Fourier transform.
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Introduction

This paper originated from the author’s dissatisfaction
with the way the discrete Fourier transform is usually
presented in the literature. Although mathematically
correct, the physical meaning of the common repre-
sentation is unsatisfactory, and no direct relationship
exists with the continuous Fourier transform and the
Fourier series. We present the discrete Fourier trans-
form in a form that is physically relevant and relates
obviously to the continuous Fourier transformation and
the Fourier series. We discuss some consequences of
this form for the smoothing and filtering of the Fourier
expansion. In a brief section on applications we discuss
the usefulness of this discrete Fourier transform for
interpolation purposes and its limitations, in particular
the problem of aliasing. We also comment on the ap-
plication of the fast Fourier transform (FFT) methods
in the new context.

Basic Fourier theory

Let us first recall the standard Fourier theory for pe-
riodic functions. For a time function x(¢) with period
T we can expand x(¢) as follows:

M) =ay+ 2 i {a,, cos (27;11)
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. {2t
+ b, sin (T)} N
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where
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a, = }[.\‘(r) cos (LT”[) dt n=10

r
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b, = %f.r(r) sin (“7;”) dt nz=1

0

This so-called Fourier series is well known in the lit-
erature (e.g., Ref. 1, p. 204, and Ref. 2, p. 11). Also
well known is the continuous Fourier transform (Ref.
1, p. 7, and Ref. 2, p. 11):

X0 = f X(f yexp (2mf1) df 3)
X(f) = J x(t) exp (—i2nft) dt ()

-3

In statistics, engineering, and seismology one usually
uses the coordinate ¢ to indicate time (as in a time
series), with the conjugate coordinate f representing
the frequency and 2#f the angular frequency w. In
wave mechanics (Ref. 3, p. 118) one uses in addition
to the conjugate pair (w, ¢) the space (r) and conjugate
momentum coordinate (k = p/f). In these latter cases,
multiples of (27)"? appear in the transformation for-
mulas (compare also the three different conventions
listed by Bracewell! p. 7). In Fourier optics* one en-
counters yet another set of conjugate pairs, namely,
the (x, y) coordinates of the observer and those of the
object, with additional factors coming in for dimen-
sional reasons.

In practice one does not observe a continuous time
series but, for example, measures x(r) at equidistant
time intervals in a limited interval:

Appl. Math. Modelling, 1991, Vol. 15, Nov..Dec. 657



Discrete Fourier transform: J. M. Greben

t=rAt r=0,1,... N—1 (5)
A similar situation can happen in Fourier optics when
only a finite set of (equidistant) “‘observers’’ is present.
In these cases the continuous Fourier transformation
is replaced by the discrete Fourier transform (DFT),
which is usually formulated as follows (Ref. 1, p. 358;
Ref. 2, p. 12; Ref. 5, p. 100):

L ¥ 2kr
Xk=ﬁr=20x,exp(—i Z')
k=01,....N—1 (6)

The discrete time series can then be written in terms
of the amplitudes X,

o 2k
X, = >, X;exp (1’ ;’)

k=0

r=01,... N—-1 (7)

where the ‘‘frequencies’” are discretized according to
SN = (8

While the mathematical symmetry of (6) and (7) is
appealing, it is clear that (6)—(7)} do not follow naturally
from the set (3)—-(4), since the frequencies in (6)—(7)
run only over positive values, while the frequencies in
(3) run equally over positive and negative values. Al-
though equations (6)—(7) are mathematically correct,
as can be easily proved using the identity

! ,2arkr
> exp(—t 5 )

A=0
N r=20
_{Or:Ll“qN—[(%

they lack a clear physical meaning, as can be shown
in various ways.

First, we note with Bracewell' (p. 360) that f, cannot
really be considered as a physical frequency. A time
series {x,}, with sampling period A¢, can be represented
by a Fourier series consisting of a constant term plus
multiples of the fundamental frequency f, = 1/NAt.
The highest frequency possible will be v = 1/2A¢, with
two samples per period. However, f; in (8) runs up to
v = (N — 1)/NAt = 1/At; hence roughly half the fre-
quencies in (8) are too high to be physically meaningful.
The time series with interval time Af should not be
represented by functions that strongly oscillate be-
tween interval points.

A second way to demonstrate the physical inade-
quacy of (6)—(8) is to actually perform the summation
in (7) and to see whether x, behaves reasonably be-
tween the sample points r = integer, i.e., to see whether
x(rAt) is a reasonable approximation to the original
(continuous) time series x(¢). We can do the summation
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(7) for any real r and obtain

{ Hc N-1
x(rAt) = % E‘B X, EXp { i Py w(r — 3)}

sin {m(r — 5)}
sin {m(r — 5)/N}

It is easy to check for integer » between 0 and N — 1
that x(rA¢) = x,, proving the mathematical correctness
of (6)—(7). But if we want to determine x(rA¢) midway
between two integer values, we obtain

(10)

]N—l
M+ DAL=+ 3 x,
s=0

s N—1 ‘—'+T|F
+ﬁmaw%ﬂj%é%(m

As (11) shows, expression (7) is not a good approxi-
mation halfway between the sample points: first, the
real part assumes the overall average X independent of
the value of r; second, the imaginary part can be con-
siderable, even if the original time series is real (note
that the cotangent is proportional to N if s = ). This
unphysical behavior is obviously due to the presence
of the high frequencies in the series (7), so that, for
example, the real part fluctuates wildly between the
values x, and X.

The solution to these problems is to rewrite (7) into
positive and negative frequencies as follows (take N
is even first):

N/2 2 k
X, =3 X.exp (lﬂ) (1 = $6c.m)
k=0 N
N-1 2 k .
+ > X.exp (l%) (1 =38 nn)  (12)

k=NI2

In the second sum we first replace £ by N — m and
then replace Xn-,, by X_,,, where we have extended
the definition (6) for X, to negative frequencies. We
find

Ni2 o
X = Xiexp (i T }) (1 — 48, nn)
k=0 N

N2 N s
+ > X_,exp {,M} (1 — 28,,.nm)
m=1 N
(13)

Since r is an integer, we can drop the term exp (i2r)
and obtain after changing m — — k the following result:

iz 2akr
x.= > X.exp (i N ) (I = 28y nr) (14)
k=— N2

The odd case (N is odd) can be treated similarly, and
we obtain the overall result

L 2k
= 2 Xexp|i N (1 = 28.ns2)
k=[N

r=20,1,..

N =1 (15)



where [N/2] = (N — 1)/2 for odd N. Equation (15)
has to be supplemented by the definition (6) for neg-
ative &,

] =l 2arkr
X, —K,r_zﬂ).,exp<—zT)
k=0,x1,...,=[N/2] (16)

Since (15)-(16) were derived from (6)—(7), they are
obviously correct mathematically. However, they also
represent a natural extension of the continuous Fourier
expansion (3)-(4) because of the symmetry in positive
and negative frequencies. Nonetheless, I have not found
a statement of (15)—(16) in the literature. An expression
similar to (15) for even N is given by Bracewell’ (p.
362). In his formulation the term Xy~ exp (iwr) is
combined with the term $X_ 5, exp (—i@r), using the
fact that X _n;> = Xws. This leads to the expression

Ni2Z—1 2 k_
=3 X‘exp(i 7;,') (17)

k=—Nf2

However, this expression lacks the symmetry of (15),
and if we allow r to become continuous in (17), we do
not get the same physical acceptable results as in the
case of (15)-(16), as we will see shortly.

In the case of (15)—(16) we get the following results
for continuous r:

s 5 e =)

"sin {#(r — 5)/N}
N = odd (18)
and

sin {7 (r — 5)}

| N-
x(rAr) = K’ g] mcos {’JT(J' - S)."N}

N = even (19)

Obviously, x(rAr) now stays real, if the original time
series x; is real. By comparison, Bracewell’s sugges-
tion, (17) leads to
l N-1
x(rAn) = —= 3 x,exp{—im(r — 5)/N}
N s=10
sin {w(r — s)}
sin {7 (r — 5)/N}

Hence x(rAr) is not real between interval points, even
if the original series was real. Although this violation
is not as serious as in the original expression, (10), it
is still not acceptable physically, and we must insist
on the set (15)—(16) as the physically acceptable dis-
crete Fourier transform.

(20

Relation of DFT to Fourier series

We have demonstrated how our discrete Fourier trans-
form (DFT), equations (15)-(16), resembles the con-
tinuous Fourier expansion (3)—(4). Now we also want
to establish a relationship with the Fourier series, {(1)-(2).
We rewrite (15) as follows:
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hic 21k 2wk
= 9. 7 _—
X, a0+.~k§1 {a;‘cos( N)+b;\sm( N)}

1
X (1 - ’&.-.N/z) 2
2
where
1 R 27ks
a, = E(Xk +X_)= E‘E)-x_\.cos ( N )
k=0,1, LINI21T (2
and
i b 2rks
b= (X, — X _,) = — :
4 Z(XA X_ ) Nﬂgoxssm( o )

k=1,... (N - 1)2] (23

We thus see that there is an obvious relationship be-
tween the Fourier series (1)-(2) and the expression
(21)—(23) derived from (15)—(16) if we identify ¢ as rAt
and T as NAr. Only the coefficient 4, which occurs for
N is even if & = N/2, was not obvious if one starts
from (1)—(2). For real time series we can simply set

a;=Re [X,] b= —Im [X/]
k=0,1,...,[N2] (24)

as X_, = Xf for real x,.

Smoothing and filtering

Often the time series x(¢)} contains noise, which typi-
cally has a high frequency. We can eliminate these
frequencies by cutting out these contributions in (13).
To do this process on the original series (7), which
contains frequencies above the Nyquist frequency (k
= N/2), is clearly unphysical. Instead we have to apply
this process equally to the positive and negative fre-
quencies in the physical series (15):

i Darkr
=3 Xkexp(i ’;j') (25)
k==M

where M < [N/2]. The effect on the interpolation for-
mulas (18)—(19) is easy to establish:
1 NV sin {@r(r — 5)2M + 1)/N}

WA = X T e OIN]

(26)

For r is integer the dominant term in (26) occurs for s
= r, leading to [(2M + 1)/N] x,, i.e., x, with a reduced
coefficient of <1. In addition, other x, values now con-
tribute to x,. Obviously, expression (26) is no longer
exact for r integer. Since band-pass and other filters?
are often displayed for positive frequencies only, we
may prefer to use (21)-(23), which contain only posi-
tive values of & but feature both sine and cosine func-
tions. It should be obvious that a positive frequency
filter applied to the original expression (7) leads to
incorrect results, since the original expression is un-
physical and contains frequencies higher than the
Nyquist frequency. That is why we have some serious
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difficulties with the literature on seismic data process-
ing (Ref. 2, p. 21), where positive frequency filters
seem to be applied directly to (7).

Applications

The representation of a (time) series x, by the discrete
Fourier transform (15) should mainly be seen as a means
of displaying the frequency content of the original se-
ries. Now that we have derived the correct physical
representation of this series ((15) instead of (7) or (17)),
one might ask how useful this series is for interpolation
purposes. We must then keep in mind that the DFT
automatically satisfies the periodicity property,

x{(r + N)At} = x(rA1) 27)

so that the DFT does not just try to mimic the original
time series but also fits (27). The value of the DFT
therefore depends strongly on whether the original
physical time series is also periodic in accordance with
(27). For example, if we try to represent the function

. {mrAt
x(t) = 28
x(z,;) = sin ( N Ar) (28)
with ., = rAtforr = 0,1, ... ,N — 1, then the original
function (28) satisfies the periodicity condition,
x(t, + NAD = —x(1,) (29)

while the DFT satisfies (27). The DFT, which in this
case reads

2 4 27
OFT () == — — e
PP (1) pr 3ﬂ_cos( N)

— icos (ﬁ) - ... (30
aw

will thus give an accurate description only on the in-
terval 1 = [0, NAt], while on the interval [NA?, 2NA{]
it will give the wrong sign but about the right magni-
tude.

We found already that the expressions for the DFT
known in the literature give an unphysical description
of the original time series midway between the sample
points. In these midway points our expression (18) or
(19) leads to the approximation (we just include con-
tributions of the closest points)

2
x{(r + DA = ;(A‘r + x.41) (31)
This result looks a bit counterintuitive, since one would

expect the average of the contributions x, and x,, .
However, we have to realize that the sample points
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are equidistant, so that the points at » — 1l and r + 2
also contribute and improve the estimate through (15},
or consequently, (18)—(19). In particular, for the spe-
cial case of N = 2 we do obtain

X (%AI) = %(xn + x1) (32)

It is also fairly easy to show that for constant x, = X
we get x(rAt) = X for N is even and odd.

Let us finally comment on the case where the fre-
quency v of the time series is higher than the Nyquist
frequency »y, = 1/2Ar. In this case we encounter the
problem of aliasing, when the higher-frequency com-
ponent v is represented by a lower-frequency com-
ponent ¢’ in the DFT:

V= vny — (v = vny) (33)

as is described extensively in the literature.> We con-
clude that the DFT is especially suitable for interpo-
lation purposes if the time series is periodic, with a
periodicity manifest in the given time series.

Conclusions

We have given a new representation of the discrete
Fourier transform, which correctly represents the fre-
quency content of the given time series. The resulting
series is related in a natural way to the continuous
Fourier transform and the Fourier series. It can be used
for interpolation purposes, especially when the given
time series is periodic, and the periodicity is manifest
in the given time series. The given representation also
allows the correct use of frequency filters, by applying
such filters equally to positive and negative frequen-
cies. Since the common formulation of the DFT is
mathematically correct, our results do not affect the
usual fast Fourier methods,® although they may modify
the interpretation of the frequency amplitudes and the
use of filters.
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