ROUNDTABLE DISCUSSION: INTEGRATING WORKING WITH NATURE AND NATURE-BASED SOLUTIONS INTO LONG-TERM SUSTAINABLE SEDIMENT MANAGEMENT

35th PIANC World Congress 29 April – 3 May 2024 Cape Town, South Africa

Future Ready Waterborne Transport Unlocking Africa

Victor S Magar, PhD, PE

Ramboll, Chicago, Illinois, USA PIANC Environmental Commission US Representative

Burton Suedel, PhD

US Army Corps of Engineers (USACE), Mississippi, USA PIANC Environmental Commission Chair

Andrew McQueen, PhD

USACE, Mississippi, USA Engineer Research and Development Center (ERDC) PIANC Young Professional

Luca Sittoni DEME Group, Rome, Italy Lanre Badmus West Coast Business Support Services, Lagos, Nigeria

Roy Ballegooyen WSP, Cape Town, South Africa Steven Weerts CSIR, Durban, South Africa

PANELIST INTRODUCTIONS

Victor S Magar, PhD, PE

Ramboll

Chicago, Illinois, USA **PIANC Environmental Commission US Representative** vmagar@ramboll.com

Burton Suedel, PhD

US Army Corps of Engineers (USACE), Engineering Research and Development Center (ERDC) Vicksburg, Mississippi, USA **PIANC Environmental Commission Chair** ERDC Burton.Suedel@usace.army.mil

Andrew McQueen, PhD

USACE, ERDC Vicksburg, MS, USA andrew.d.mcqueen@usace.army.mil

Luca Sittoni

DEME Group Rome, Italy Sittoni.Luca@deme-group.com

Lanre Badmus

West Coast Business Support Services Lagos, Nigeria lanre.badmus@ymail.com

Roy Ballegooyen

WSP (Water and Maritime) Cape Town, South Africa Roy.VanBallegooyen@wsp.com

Steven Weerts

Coastal Systems and Earth Observation, CSIR Durban, South Africa sweerts@csir.co.za

NATURE-BASED SOLUTIONS AND ECOSYSTEM SERVICES: A GROWING PRIORITY

Executive Order on Strengthening the Nation's Forests, Communities, and Local Economies

PRIFEING ROOM

APRIL 22, 2022 • PRESIDENTIAL ACTIONS

WHITE HOUSE ROUNDTABLE – "KNOWLEDGE IN NATURE: HOW NATURE CAN HELP GROW A BETTER FUTURE"

Executive Order on Tackling the Climate Crisis at Home and Abroad

IANUARY 27 2021 • PRESIDENTIAL ACTIONS

America the Beautiful 30x30 Justice40 Initiative

UNITED NATIONS DECADE ON ECOSYSTEM RESTORATION 2021-2030

GUIDANCE FOR ASSESSING CHANGES

IN ENVIRONMENTAL AND ECOSYSTEM

SERVICES IN BENEFIT-COST ANALYSIS

Office of Information and Regulatory Affairs Office of Management and Budget

Published: August 2023

WORKING WITH NATURE

WwN: a framework to design new infrastructure or rehabilitate existing infrastructure in a way that works with natural processes

EWN: The intentional alignment of natural and engineering processes to efficiently and sustainably deliver economic, environmental and social benefits through collaboration

Engineering with Nature® (EWN) is a USACE Initiative to align nature and engineering processes (<u>https://ewn.erdc.dren.mil/</u>)

SEDIMENT BU LINKS TO UN SUSTAINABILITY DEVELOPMENT GOALS (SDGS)

2018 PIANC REPORT

- EnviCom Working Group 176
- 90 pages plus appendices
- Free for PIANC Members
- https://www.pianc.org/publications/

PIANC

EnviCom WG Report n° 176 - 2018

GUIDE FOR APPLYING WORKING WITH NATURE TO NAVIGATION INFRASTRUCTURE PROJECTS

The World Association for Waterborne Transport Infrastructure

WWN FRAMEWORK

Step 1 Establish project objectives

Step 2 Understand the environment

Step 3 Stakeholder engagement

Step 4 Design to benefit navigation and nature

Step 5 Build and implement

Step 6 Monitor, evaluate, and adapt

Nature based Solutions (NbS)

...solutions inspired and supported by nature, which are cost-effective, simultaneously provide environmental, social and economic benefits, and help build resilience."

DEME Proprietary Information | Commercial in confidence (see last page)

ECOSYSTEM SERVICES – CHANGING BARRIERS TO OPPORTUNITIES

https://www.pianc.org/publications/envicom/wg195

MEASURING SUCCESS – PROJECT COST FORMULATION

Investment, operational, and financial costs
Avoided risk costs

WWN CASE STUDIES

PORT OF OAKLAND, SAN FRANCISCO BAY, BENEFICIAL USE

Ellen Joslin Johnck,

RPA Consulting Oakland,

California USA

MIDDLE HARBOUR BASIN PROJECT

MHEA (180 acre/72 ha)

- Shallow-water habitat
- Eelgrass
- Salt marsh bird roosts
- Fish habitat

MHSP (38 acre/15 ha)

- Public access
- Bike/walk paths
- Bay views and viewing platforms
- Picnicking and BBQ

LE HAVRE-PORT 2000

Paul Sherrer

Deputy General Manager Port of Le Havre Authority PIANC First Delegate for France Section

Le Havre, France

LE HAVRE-PORT 2000

- Port 2000 container port expansion
 - Built 2001-2006
 - -3,500 m quays with 16+ meters draught
 - 900MM € public + 600MM € private funds
- Commensurate move toward environmental restoration of the Seine Estuary (50 M €)
 - Intertidal wetland (1.5 Million m³)
 - Built an artificial island two bird resting areas

AFRICA PERSPECTIVES

Roy Roy Ballegooyen

Steven Weerts

EWN AND WwN IN AFRICA - CHALLENGES

• Multiple sources of funding

- Complex projects funded by multiple parties with different priorities
- Often governed by modis operandii and "best practise frameworks"

• Diverse and uncertain regulatory regimes

- Diverse regulatory regimes in the various countries
- Guidelines and practises from other countries often adopted, "somewhat on the fly"
- Lacking explicit regulatory requirements, EWN and WwN options often not considered

• Inadequate consideration of EWN and WwN options during early project phases

- EWN and WwN opportunities inadequate in early planning phases
- Late inclusion of EWN and WwN leads to downstream constraints, lack of preparedness
- EWN and WwN may result in assumption of liabilities not associated with core business

EWN AND WwN IN AFRICA – POSSIBLE SOLUTIONS

- National or Regional Frameworks & Best Practices
 - Develop National and Regional Policies and Best Practice Frameworks applicable across financing institutions or embedded in regional "ecosystem" initiatives
- Embed EWN and WwN principals in "marine ecosystem" management
 - Policy regional players such as the UNEP (Nairobi and Abidjan Convention),
 - Communities of Best Practise Port Management Association of Eastern and Southern Africa (PMAESA), Port Association on West and Central Africa (PMAWCA)
 - Guidelines PIANC and WIOMSA guidelines so should be easy to develop.

EWN AND WwN – SOUTH AFRICA

South Africa's exposed coastline has limited opportunities for EWN/WwN

- Sediment Bypass to limit shoreline erosion/beach loss
 - Port of Durban, Port of Richards Bay, Port of Nqcura, Port of East London
- Habitat Replacement
 - Port of Durban Central Sandbank
- Erosion control & Salt Marsh restoration / protection
 - Berg River PIANC WC 2024 Session F Parallel 5 (Tuesday 30th) : Maintenance Dredging Risk Minimisation: Beneficial Use Assessments And Implementation of Environmental Windows / Seasonal Restrictions
- Maintenance Sediment Transport Regimes (contribution of adjacent catchments)
 - Water Research Commission/River Influenced Bights and Bays KwaZulu-Natal Coastline
 - ORESECOM / Berg River / Pungwe Basin (Mozambique)

SEDIMENT BYPASS: PORT OF RICHARDS BAY

Aerial view of the existing dredge spoil disposal operations discharging spoil onto the Alkanstrand Beach. Source: van Ballegooyen, R.C. and G. Jacobs (2020) Nseleni Independent Floating Power Plant (NIFPP) and associated infrastructure, Port of Richards Bay, KwaZulu-Natal: Dredging and Dredge Spoil Disposal Modelling Study. WSP Report 431 001 376-R01, 112 pp.

VOLUMES DREDGED					DREDGE SPOIL DISPOSAL	
Year	Sandtrap (m ³)	Channels (m ³)	Basins (m ³)	Sum (m ³)	Northern Beach (m³)	Offshore Disposal (m ³)
1977	8 500	5 500	37 200	51 200		51 200
1978	413 600	298 300	37 200	749 100		749 100
1979	841 030	271 400	37 200	1 149 630	9 000	1 140 630
1980	604 300	591 550	37 200	1 233 050	264 000	969 050
1981	583 017	114 300	37 200	734 517	361 277	373 240
1982	1 117 944	692 387	37 200	1 847 531	679 374	1 168 157
1983	722 609	1 348 763	37 200	2 108 572	808 134	1 300 438
1984	630 257	1 417 197	37 200	2 084 654	649 621	1 435 033
1985	985 199	1 365 646	37 200	2 388 045	776 198	1 611 847
1986	320 089	1 233 945	37 200	1 591 234	810 569	780 665
1987	5 557	1 609 283	37 200	1 652 040	484 543	1 167 497
1988	346 009	1 128 816	37 200	1 512 025	560 767	951 258
1989	372 206	697 204	34 814	1 104 224	525 541	578 683
1990	531 956	887 361	34 447	1 453 764	574 435	879 329
1991	618 470	720 324	11 789	1 350 583	593 763	756 820
1992	696 688	490 591	11 222	1 198 501	708 209	490 292
1993	648 523	593 351	51 651	1 293 525	624 319	669 206
1994	698 201	499 764	44 596	1 242 561	760 777	481 784
1995	698 248	568 043	18 283	1 284 574	656 277	628 297
1996	167 800	2 210 803	25 750	2 404 353	124 477	2 279 876
1997	338 113	1 294 934	6 985	1 640 032	412 718	1 227 314
1998	371 308	717 277	26 130	1 114 715	826 034	288 681
1999	425 347	1 370 740	45 234	1 841 321	598 715	1 242 606
2000	524 958	638 285	100 443	1 263 686	724 109	539 577
2001	678 410	670 804	37 665	1 386 879	873 380	513 499
2002	796 099	683 644	44 480	1 524 223	824 014	700 209
2003	652 805	681 368	64 505	1 398 678	757 703	640 975
TOTAL	14 797 243	22 801 580	1 004 394	38 603 217	14 987 954	23 615 263
MEAN	546 046	844 503	35 200	1.410214	599 516	855 104

Aerial view of the existing dredge spoil disposal operations discharging spoil onto the Alkanstrand Beach. Source: Wells, C.P. (2015) Modelling of sand by-pass schemes on the KwaZulu-Natal coastline

SEDIMENT BYPASS: PORT OF DURBAN

Image of Durban Harbour, indicating the locations of the sand trap, harbour entrance and Durban Bight, with (inset) a map of southern Africa showing the location of Durban. Source: Rautenbach, C. and A.K. Theron (2018) Study of the Durban Bight shoreline evolution under schematised climate change and sand-bypassing scenarios

Figure 4 Longterm total sand-pumping rate in cubic metres (Theron & Rautenbach 2014)

Before

PORT OF DURBAN – CENTRAL SANDBANK HABITAT REPLACEMENT

Existing

Post-construction

Post-construction EWN/WwN

Habitat change associated with the proposed Berth 203 to 205 Berth Development. Source: Weerts, S., R. van Ballegooyen and B. Newman (2012) Deepening, lengthening and widening of Berths 203 to 205, Pier 2, Container Terminal, Port of Durban: Potential long-term impacts on sandbank habitats, water and sediment quality. CSIR Report No. CSIR/NRE/ECOS/ER/2012/0038/B.

BERG RIVER ESTUARY EROSION AND HABITAT PROTECTION

Beneficial use (shoreline and habitat protection) opportunities considered for the Port Owen Marina maintenance dredging Source: van Ballegooyen, R.C., B. Newman, E. Swart, S. Tonin and G. Smith (2021) Maintenance Dredging Assessment & Technical Support for a Dredging (Dumping at Sea) and Coastal Waters Discharge Permit Application, WSP Report 43101937-R03-F01, 170 pp + 70 pp Appendices.

MAINTENANCE OF MARINE SEDIMENT TRANSPORT REGIMES: SEDIMENTS INPUTS FROM ADJACENT CATCHMENTS

Orange Rivor Total Suspended Solide 0.72 20.07 30.56 42.49 55.71

Total Suspended solids based on The Natal Bight MERIS satellite data. Source: Bernard, *S and M. Smith (2011* An investigation of the potential use of ocean colour remote sensing to assess the influence of variations in freshwater inputs to coastal ecosystems: Phytoplankton and sediment dynamics of the Natal Bight, WRC Report No; 1852/1/10,Water Research Commission, Pretoria, 38pp

Sediment fluxes into the ocean at eth Orange River Mouth. Source: Van Niekerk, L, S. Lamberth, S., M. Luck-Vogel, A. Meyer, A. Pulfrich, S. Taljaard, A. Theron, L. van Niekerk and R. van Ballegooyen (2013) Orangs-Senqu Strategic Action Programme – Estuary and Marine EFR Assessment, Volume 3: Assessment of the role of freshwater inflows in the coastal marine ecosystem, ORASECOM Technical Report 34, 174pp.

SUMMARY

- **Project delivery** faster, cheaper
- **Project performance** complete solutions
- Adaptability scalable, flexible, adaptable
- **Sustainability** self-repair
- Social Value multi-functional benefits, including ecological benefits
- **Diversified investment** diversified value and improved partnerships
- **Social license** community and stakeholder support and participation
- Regulatory efficiency resolves conflict through win-win solutions

THANK YOU

Victor S Magar, PhD, PE VMagar@ramboll.com

