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Utilizing a novel 
high‑resolution malaria dataset 
for climate‑informed predictions 
with a deep learning transformer 
model
Micheal T. Pillay 1,2*, Noboru Minakawa 1, Yoonhee Kim 3, Nyakallo Kgalane 4, 
Jayanthi V. Ratnam 5, Swadhin K. Behera 5, Masahiro Hashizume 6 & Neville Sweijd 7

Climatic factors influence malaria transmission via the effect on the Anopheles vector and Plasmodium 
parasite. Modelling and understanding the complex effects that climate has on malaria incidence 
can enable important early warning capabilities. Deep learning applications across fields are proving 
valuable, however the field of epidemiological forecasting is still in its infancy with a lack of applied 
deep learning studies for malaria in southern Africa which leverage quality datasets. Using a novel high 
resolution malaria incidence dataset containing 23 years of daily data from 1998 to 2021, a statistical 
model and XGBOOST machine learning model were compared to a deep learning Transformer model 
by assessing the accuracy of their numerical predictions. A novel loss function, used to account for the 
variable nature of the data yielded performance around + 20% compared to the standard MSE loss. 
When numerical predictions were converted to alert thresholds to mimic use in a real-world setting, 
the Transformer’s performance of 80% according to AUROC was 20–40% higher than the statistical 
and XGBOOST models and it had the highest overall accuracy of 98%. The Transformer performed 
consistently with increased accuracy as more climate variables were used, indicating further potential 
for this prediction framework to predict malaria incidence at a daily level using climate data for 
southern Africa.

The incidence of infectious vector borne diseases such as malaria are related to high mortality rates, with a high 
persistence in tropical and sub-tropical regions and a higher disease burden observed in the African continent. 
With the progression of climate change, increased variability and continued environmental modifications brought 
about by human activities1–3, the potential for changes in malaria transmission dynamics exists4,5. The World 
Health Organization (WHO) has set the goal of global malaria elimination, however there are still regions which 
have observed upward trends in cases, with a slowing rate of reduction since 20146,7. The global technical strategy 
now includes malaria surveillance as a core intervention, especially since most malaria endemic countries have 
weak surveillance systems7. Consequently, malaria prediction frameworks can provide much needed tools and 
data to build and strengthen surveillance systems in these countries8.

Main sources of malaria predictions are provided by statistical9, and conventional machine learning 
models10,11,35–37. The accuracy can vary from 70 to 90% (Table 1), however, temporal resolutions for the predic-
tions tend to be monthly or yearly12, with only some models able to provide weekly predictions9, while other 
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studies only do classification analysis resulting in more qualitative outputs35,37. Despite statistical and machine 
learning models’ ability to provide relatively accurate predictions for malaria incidence, they have disadvan-
tages. Statistical models for instance have short prediction windows and low temporal resolutions14. Kim et al9. 
limit forecasts to 16 weeks ahead to maintain prediction accuracy, which tends to drop in the second half of the 
16-week window. When classical machine learning models have been used to forecast vector disease outbreaks 
such as weekly Dengue incidence13, it was found that deep learning model architectures tended to outperform 
the classical machine learning random forest models used (Table 1). However, the highest accuracy machine 
learning models already being used for malaria incidence prediction also tend to predict at a monthly or annual 
timescale10,12. This is due to data quality and resolution limitations12. Specifically, XGBOOST machine learning 
models15 have indicated the best prediction accuracy and efficacy compared to other machine learning methods 
used for malaria prediction. These predictions may be useful for longer term decision making, however may 
not be robust enough for managing and reacting to sudden outbreak events instigated by non-seasonal climate 
variability, therefore decreasing their ability to act as early warning systems throughout the year or for specific 
periods15.

Recently, Transformer deep learning models have indicated strong performance for timeseries forecasting43–46. 
While not applied in malaria prediction studies, Transformer models have been applied to monthly dengue data 
or influenza prevalence and indicate better performance compared to other well-known deep learning models38. 
These Transformer class models have been successfully applied to influenza data39 and a series of other use 
cases as summarized by Ahmed et al43. Meanwhile, deep learning Transformer models have also indicated good 
performance on varying temporal resolutions from monthly, daily and even hourly timeseries datasets40,42,43. 
With the advancements in the field of deep learning, the ability for detection of complex relationships and pat-
terns in the data has become easier21. Since deep learning models can learn and retain the relationships between 
predictor variables and the outcome (predicted variable), they can also be applied to other use cases and learn 
from large amounts of data dynamically by using all the data without requiring assumptions of error distribu-
tion or linearity22,44,45. This can allow deep learning models to predict larger timesteps compared to statistical or 
conventional ML. The ability for deep learning models to retain a memory of the relationships in the data and 
specifically in a timeseries, also allows for effective prediction for large complex multivariate timeseries data23.

Existing models use climate factors including but not limited to rainfall, temperature, relative humidity and 
NDVI as dependent variables in the model construction (Table 1). Some of the first studies1,16 which considered 
incorporating climate data for malaria prediction indicate the high levels of accuracy of these climate driven 
models when temperature and precipitation were used. Climatic variables and climate-based indices such as the 
Indian Ocean Dipole have also been shown to influence malaria case incidence and timing17,35. As a result, the 
use of these climate variables which also have robust dataset availability, can be applied conveniently to malaria 
prediction problems for most countries43. However, the relationships between climate variables and malaria 
incidence are not always linear, presenting a challenge to capture the complexity of interactions between rainfall, 
entomological factors and malaria incidence when building statistical models18,19. The complex mechanistic 
models which do incorporate complex biological and epidemiological factors are usually used at a global scale 
and are not specific enough to provide high spatial or temporal resolution predictions that can inform on-the 
ground interventions for specific areas18,20. The advantage of deep learning Transformer models can leverage high 
granularity data to understand the subtle relationships between climate and malaria incidence more accurately 
than if lower resolution data were used43,44,48.

Most existing use cases of deep learning models for vector-borne diseases feature studies on Dengue and 
do not explore the use of Transformers24,38. Ho et al25. utilized machine learning approaches to identify labora-
tory confirmed Dengue cases but used epidemiological factors instead of climate-based predictors, indicating 
the flexibility of deep learning models. Deep learning models have also been leveraged to predict malaria in 
China26,47, however, there has been no application of equivalent models in Africa. While established deep learning 
models such as Long-Short-term Models (LSTMs), Recurrent Neural Nets (RNNs) or Generative Adversarial 
Networks (GANs) exist for timeseries prediction, they usually struggle to predict long time sequences with 
complex temporal dependencies12. The existing sequence to sequence models (take inputs and create an output 
sequence) have difficulty retaining the first elements from the data sequence21,27,47. Very few studies examine 
malaria in southern Africa with deep learning methods (summarized in Nkiruka et al15. and Mbunge et al37.). 
Martineau et al35. uses Sea surface temperature variability and classical machine learning to predict outbreak 

Table 1.   Notable past studies using machine learning and deep learning frameworks with climate data to 
predict malaria incidence or classification based outcomes.

Model Accuracy Data Author/Date

Neural networks (MLP) 72.8 Monthly malaria data (1994–1999) Temperature, rainfall, relative humidity, 
NDVI Kiang et al. (2006)

Multiple classifiers + deep learning 70.3 Annual malaria incidence (2000–2017) Rainfall, Temperature Masinde (2020)

Artificial neural networks 82 Monthly malaria data (1995–2014) Temperature, Rainfall, Relative Humid-
ity, NDVI Santosh & Ramesh (2019)

WEKA ML Tool and MLP 71 Monthly malaria data Temperature, RH, Rainfall, Mohapatra et al. (2020)

ML classification algorithms 25–93 2005–2011 Temperature, RH Kalipe et al. (2019)

ML classification algorithms 80 1998–2020 Sea surface temperature variability 
(ENSO, IOD) Martineau et al. (2022)
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classifications at a monthly resolution. When daily malaria data was used in South Africa, it was not done with 
a deep learning framework but a SARIMA model (Adeola et al36.). Overall, there is a lack of studies that use a 
generative prediction deep learning model with high-resolution malaria and climate data. These shortfalls can 
be accommodated by creating a predictive framework to add knowledge regarding the efficacy of pairing high 
resolution malaria data with a state-of-the-art modified Transformer deep learning model in the current malaria 
prediction domain of Southern Africa.

This paper focused on the relatively new deep learning model architecture known as the Transformer with 
attention. The use of Transformers in malaria incidence predictions for a country in Africa (which accounts for 
over 95% of cases worldwide7) has not been explored and is an addition to the existing studies in Africa which 
have mainly used lower resolution malaria data with classical machine learning models15,35. Transformers take 
a different approach to timeseries prediction and are capable of capturing and retaining long term dependencies 
in the data and can be useful when using complex climate and health data27. The aim of this study was to com-
pare the prediction accuracy and robustness between an existing statistical model adapted from Kim et al9., the 
current gold-standard machine learning XGBOOST model15, and a deep learning model using Transformers to 
determine wether the Transformer is viable as a long-term solution for malaria prediction. The end goal of this 
study was to improve on conventional deep learning models and substitute or complement existing statistical and 
machine learning frameworks such as the aforementioned XGBOOST models15, to enable reliable, generaliseable 
and consistent predictions of disease influenced by climate factors at different temporal resolutions.

In contrast to existing literature37,38, which largely focuses on traditional endemic regions and uses lower 
temporal resolution data for malaria or other vector borne disease prediction, this study introduced multiple 
additions to the forecasting of malaria with deep learning. Firstly, the dataset originates from the province of 
Limpopo in South Africa, a region that is not typically endemic for malaria but experiences sporadic outbreaks, 
predominantly from imported cases related to neighboring regions such as Mozambique9. This geographic focus 
lends a unique context for malaria prediction using climate data. Secondly, the high-temporal-resolution dataset, 
collected daily, stands as a rarity in health-related malaria data due to the challenges in gathering and maintaining 
such datasets in affected countries of Africa due to economic and social challenges43,47. The high granularity of 
this data allows us to train more accurate and robust predictive models44, thereby offering a significant meth-
odological advance over prior work that often relies on monthly data which cannot capture daily climate signals 
that may be present in the malaria forecasting environment44. In addition to using traditional climate data, this 
model incorporated future climate projections from the JAMSTEC global climate models, enhancing the realism 
and applicability of our forecast test scenarios. Finally, a novel loss function was specifically tailored to the unique 
characteristics of our dataset, further optimizing the Transformer model’s predictive capabilities. Collectively, 
these factors not only reinforce the importance of the malaria data but also underscore the methodological 
innovations introduced in this study and places the study in a position to contribute to the understanding of 
deep learning Transformers and their applicability on high resolution malaria data in Southern Africa.

Methodology
Malaria surveillance data
Malaria case data was acquired for Limpopo province located in South Africa from 1998 to 2021 from the Lim-
popo Department of Health Malaria Program. The malaria cases recorded by the health departments system are 
based on positive blood smear results or malaria rapid diagnostic tests. Only the case count data and local or non-
local case status metrics were extracted from the database and used in this study following Kim et al9. Case data 
were extracted and compiled into daily counts over the extraction period. The data was completely anonymous.

Observational climate data
To compare the DL model to the statistical model, precipitation and temperature were used following Kim et al9. 
The data were extracted at a daily scale from National Oceanic and Atmospheric Administration (NOAA)/
National Center for Environmental Prediction (NCEP) from the NCEP-DOE Reanalysis II dataset35. The pre-
cipitation and temperature were extracted and averaged over the study area of Limpopo province (22·3° S to 
23·0° S and 29·2° E to 3 0·6° E). Additional climate variables were extracted and averaged for the same study area 
coordinates to test the deep learning model on multiple new variables, which included evaporation, near surface 
windspeed and indices such as the Indian Ocean Dipole, Southern Annular Mode and the Niño 4 index. The 
statistical and XGBOOST were not tested with additional climate variables as this was done in Nkiruka et al15. 
and the statistical model does not perform well with too many additional variables9.

Data and modelling workflow
The processed malaria case data and climate data were combined and separated temporally into train (1998–2020) 
and test (2021) sets. For the statistical model, the daily case, temperature, and rainfall data were aggregated to a 
weekly level. The XGBOOST and Transformer models were provided with daily data for training. Weekly Trans-
former models and XGBOOST models and a daily Statistical model (Appendix 5) were also tested but excluded 
due to low performance. The aim was to test and evaluate each model in their best performance range. The model 
parameters for the Transformer, including, Epochs, batch size, frequency, training length and forecast window 
(See Appendix 2) were tested and adjusted until the best possible training results and prediction accuracy were 
attained (Fig. 1). In the Transformer, the loss function was used to quantify the discrepancy between the model’s 
forecasts and the actual data, guiding the optimization of the model parameters to improve predictive accuracy 
over iterations (Appendix 2). The existing loss functions (MSE and smooth loss56) were tested along with the 
novel loss function developed for this study’s specific prediction framework. The statistical model was trained 
on the weekly malaria and climate data using the same methodology as outlined in Kim et al9. Following the 



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:23091  | https://doi.org/10.1038/s41598-023-50176-3

www.nature.com/scientificreports/

training phase, the three models were used to predict up to 2 years of malaria cases. The raw numerical predic-
tions were used in conjunction with the ground truth or actual case count data to assess and evaluate the model’s 
using classification and regression metrics of accuracy.

Accuracy evaluation: threat level thresholds
Once both model’s predictions were attained in the form of weekly (statistical) and daily (XGBOOST and Trans-
former) malaria count data, the prediction output data were converted into classes. Specifically, classified into low, 
medium and high malaria case groupings based on 30th, 60th and 90th percentiles respectively. The percentiles 
(See appendices) were chosen based on threat thresholds for historical malaria cases during the South African 
malaria season (September to May) over the 1998–2021 period following Kim et al9. and Teklehaimanot et al48. 
By creating threat thresholds, the assessment of the model in a real-world setting can be tested, as thresholds 
alerts levels can allow for detection of when the disease may increase to a higher risk level49. Following the clas-
sification of the case count data into the three classes, confusion matrices were applied to make a comparison 
between the statistical and deep learning model performance in predictions. Other measures of accuracy were 
also compared, including sensitivity, specificity, prevalence, balanced accuracy, negative and positive prediction 
values9. To assess classification accuracy, metrics including F1, f-beta and kappa scores, precision and recall were 
calculated28. The Area Under the Receiver Operating Characteristic (AUROC) was used to assess the classification 
accuracy of the models, while the Area Under the Precision-Recall Curve (AUPRC) was employed to evaluate 
the precision-recall tradeoff, especially in the context of imbalanced datasets42. The one-vs-all approach is used 
for the AUROC and AUPRC, where a class is compared against all other classes.

Accuracy evaluation: regression analysis
The numerical case predictions from the models were used to compute multiple regression-based metrics to 
assess the performance of the models’ actual malaria case predictions. Explained variance, max error, MAE 
and R2 metrics specifically were calculated for each model50. These regression metrics were used to evaluate the 
numerical prediction output of malaria cases from each model to assess the performance of the models’ predic-
tions in relation to the ground truth values of malaria cases50.

Transformer model architecture
The Transformer with attention model used to process and predict on the timeseries data was adapted from 
the original created for sequence-to-sequence predictions in Vaswani et al21. Transformers are a newer model 
architecture which relies on an attention mechanism which can maintain a memory of dependencies between 
predictors (inputs) and predictions (outputs), replacing the recurrent models usually used for sequence data such 
as timeseries and which are unable to maintain a memory for larger datasets21. A detailed mathematical definition 
of the Transformer is presented in Thickstun29. The actual model architecture was adapted from Vaswani et al21. 
Our study employs a decoder-only Transformer architecture, optimized for the task of time-series prediction. 
The choice of using only the decoder component is motivated by its efficiency and suitability for generative tasks, 
as validated by prior studies in the field43,51. Furthermore, we introduce a novel loss function tailored for our 
high-resolution malaria dataset, enhancing the model’s predictive capabilities.

The Transformer-decoder setup is used for predicting future values in a time series based on the provided 
past values. Firstly, an input sequence of data points from a time series is fed into the model, for example, a 
sequence of length 5 denoted as × 1, × 2, × 3, × 4, × 5 (Fig. 2). The model attempts to predict a target sequence 
which is the input sequence shifted one step to the right, denoted as × 2, × 3, × 4, × 5, × 6. The prediction process 
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Transform data into train 
and test sets, then into 
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Figure 1.   Workflow and progression indicating the processes applied to the data and the training and result 
evaluation.
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unfolds step-by-step. Firstly, with only × 1 available, the model attempts to predict × 2, denoted as × 2′. In the 
next step, having the true values × 1 and × 2, it predicts × 3, denoted as × 3′, and this pattern continues. In each 
step, the model receives all true values available up to that point to make the next prediction. The model’s out-
put is a sequence of these predicted values: × 2′, × 3′, × 4′, × 5′, × 6′. During training, this predicted sequence is 
compared to the true target sequence to calculate the loss, which is then used to update the model’s parameters. 
Each prediction in the sequence contributes equally to the total loss, aiding the model in learning and refining 
its predictions for better accuracy in subsequent iterations.

Self‑attention mechanism
The self-attention function involves the input which needs to be represented by 3 dimensions (query, keys, 
values) which are mapped to an output. These three factors are data abstractions used in the attention modules 
calculations and are derived by multiplying inputs by three weights (Eq. 1). This can be done multiple times for 
each input (multi-attention head mechanism) allowing for precise association control between malaria cases and 
climate variables. The attention mechanism facilitates a focus on the most important or relevant input vectors 
(self) while calculating the output vectors (prediction). This aids the model to focus less strongly on irrelevant 
features in the data. The attention mechanism works in three main ways during model training, which allows the 
mechanism to determine many different probable predictions based on the results calculated at different stages 
of the model’s architecture (Appendix 1), basically allowing it to draw information or dependencies from the dif-
ferent inputs and hidden states at any point in the timeseries (Fig. 2). While the model attempts to determine the 

Figure 2.   (a) Representation of self-attention. Connections are maintained throughout sequence as model 
trains. The purple circles indicate the predictions, and the dotted arrows are the attention mechanism keeping 
all information connected between predictions so that downline future predictions still retain and have access to 
the information in the earlier predictions. The model predicts × 2′ for the first input of data, uses the predicted 
data to predict the next value × 3′. After all predictions are made, the loss is calculated between actual input 
(× 1… × 5) and predicted outputs (× 2′… × 6′). (b) The input is the malaria timeseries and climate data, the target 
is the sequence shifted to the right by one time step so for each new input, the model will output a prediction.
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relationships between climate states and malaria incidence, the self-attention module helps the model associate 
the specific magnitudes of each climate variable with the most probable malaria case count outcome.

Optimized matrix operation used in attention-head mechanism during training.

Creating the Query(Q), Key(K) and Value(V) vectors for each input. During training the model learns these 
three weighted matrices after multiplying them by the input (X).

The self-attention score is the dot product between Q and the K vector to determine how relevant each K is to 
the current Q. The score is calculated to determine the importance of inputs in relation to all other inputs in the 
timeseries sequence. Higher scores indicate higher relevancy. The resulting score matrices (Zn) are then passed 
to the softmax function to ensure it is positive and adds to one.

Since there are multiple attention heads, there are multiple resulting Z matrices calculated for each input. 
These are then concatenated.

The concatenated Z matrices are multiplied by a Weighted matrix (Wo) to produce an output layer which is 
then sent through the model to be decoded and presented as an output.

Scheduled sampling
Scheduled sampling adopted from Bengio et al.30 was used to help the model correct its mistakes during train-
ing. This sampling method first feeds the model true values to correct its errors, then as the training progresses, 
the model is fed its previously generated predictions instead of the true value (See Appendix 1 for full details). 
The sigmoid decay function30 was used in this study to facilitate the sampling change over time. This sampling 
was used to prevent overfitting and promote generalization and robust modelling. In addition, the model was 
instantiated with a dropout of 0.2 (Appendix 1), allowing for optimal prediction without overfitting40.

Novel loss function
Loss functions in deep learning measure the discrepancy between the model’s predictions and the actual data56. 
They are the objective for optimization algorithms, guiding them to adjust the model’s parameters to minimize 
this discrepancy. By minimizing the loss function during training, the model learns to make more accurate pre-
dictions, leading to better performance in predictions. A new loss function (Eq. 5) was created specifically for 
variable case incidence datasets. The methodology we used entailed taking aspects of the MAE (Mean Absolute 
Error), MSE (Mean Squared Error) and Huber loss functions and creating a more adaptable loss function to suit 
real-world timeseries data. From here we will refer to our novel function as an M-Delta function. The M-Delta 
performs similarly to the Huber loss function which behaves similarly to the MSE for small errors and the MAE 
when larger errors between predictions and actual observations occur. The M-Delta specifically uses an adapt-
able delta threshold hyperparameter. This allows the model to choose which loss calculation (MAE or MSE) 
to transition to when assessing the predicted values against the true values depending on the delta. For small 
errors which are <  = delta, the MSE function is used and will penalize large discrepancies between the predicted 
and actual values. However, when the delta is exceeded due to very large discrepancies which usually indicate 
malaria outbreak periods, the loss function will become linear (similar to MAE). This was important to decrease 
sensitivity to outlier events at times such as outbreaks. The adaptability of this function allows it to change based 
on the delta which is influenced and determined by the distribution of the data, so instead of a single delta for 
the whole dataset, a unique delta is computed for each batch of data during training based on the batch’s stand-
ard deviation. This was implemented in python, but the mathematical notation is provided for understanding.

•	 ytrue,i​: true value for i-th instance per batch.
•	 ypred,i​: predicted value for i-th instance per batch.
•	 σ: standard deviation for ytrue​ per batch.
•	 N: number of instances in the batch.
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(
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XGBOOST model
An eXtreme gradient boosting model (XGBOOST) is a supervised machine learning method used to model 
regression or classification problems and has shown promising results in the malaria climate prediction field15. 
Comparing a statistical model to a deep learning model has fundamental challenges, therefore in order to high-
light the strengths of the Transformer model in this paper accurately, an XGBOOST model was also compared to 
the deep learning framework. The XGBOOST was used due to it outperforming other classical machine learning 
algorithms in the prediction of malaria incidence15.

Results
Using the statistical and deep learning models raw numerical predictions, classes of low, medium, and high 
malaria case incidence were derived (Table2). The prediction accuracy metrics were then computed based on how 
accurately the models matched the actual classes. The statistical model had an overall accuracy 78·8% (F1 = 0·64). 
When evaluating the performance of the model’s prediction with AUC (Fig. 3a–c), the scores of 0·43 for the 
statistical model with no malaria case predictor and 0·69 when it was used to evaluate 2021 malaria cases only 
(Table2) are clearly lower than the Transformer. The XGBOOST performance is low, with an AUC of 0·53. The 
Transformer model however indicates a higher accuracy of 98% and an AUC of 0·83 with the highest observed 
F1 score of 0·8 for daily predictions. The AUC, F1 and Kappa scores indicate that the probability of correctly 
predicting a malaria case class is very low for the XGBOOST machine learning models and the statistical models 
(Tables 2 and 3). Kappa values are highest for the Transformer indicating high agreement between predictions 
and actual cases. The statistical model has a moderate kappa value of 0·68, while the XGBOOST value is close 
to zero indicating the weakest agreement between actual and predicted case classes. The confusion matrices for 
the statistical model (Fig. 3d) indicate 94·4% accuracy in identifying the “low” malaria case class correctly, while 
the Transformer (Fig. 3f) has an accuracy of 99·4% at a daily level. The statistical model has lower accuracy in 
predicting medium case incidence classes, only attaining 64·7% accuracy at predicting these classes. This is also 
observed for the Transformer model which identified medium intensity malaria cases for 2021, 64% of the time. 
The “high” class prediction had an accuracy of 76·5% for the statistical model but 90% for the Transformer. The 
XGBOOST models failed to attain an accuracy level above 60% for any of the classes (Table 2).

The performance of these models was also evaluated using the AUPRC for each class separately (Fig. 4e), as 
well as a micro-averaged AUPRC across all classes (Fig. 4a), to ensure minority classes were accounted for. For 
the high class (Fig. 4d), the Transformer model yielded the highest AUPRC of 0·2917, followed by XGBOOST 
with 0·2485, and the statistical model with 0·2054. In the medium class (Fig. 4b), the Statistical model outper-
formed with an AUPRC of 0·6408, with the Transformer and XGBOOST models attaining AUPRC values of 
0·4892 and 0·3910 respectively. However, in the low class (Fig. 4b), the Transformer model achieved the highest 
AUPRC of 0·5417, surpassing the XGBOOST and statistical models which scored 0·4107 and 0·3157 respectively. 
In terms of micro-averaged AUPRC across all classes, the Transformer model again led with a score of 0·4296, 
while the statistical model exhibited a slightly better performance than XGBOOST with scores of 0·3490 and 
0·3425 respectively. These results suggest a varying performance of the models across different risk classes, with 
the Transformer model demonstrating a relatively more consistent performance across the classes. In addition, 
the overall correlation between actual and predicted values (Fig. 5, Appendix 5) r = 0·859; R2 = 0.70 (p = 0.003) 
indicates the Transformer’s numerical predictions are also more consistent with higher accuracy. All models 
appeared to fall into the class imbalance problem due to the larger number of low case classifications, however 
only the transformer was able to accurately predict these low classes, showing strong performance as evidenced 
by the high values in the AUROC, AUPRC, F1, and Kappa metrics. The Transformer was able to maintain a 
higher true positive rate and correctly predicts outputs that map to the alert level classes with high accuracy.

Evaluating the model predictions using a regression framework indicated the prediction accuracy for actual 
daily malaria case numbers for the Transformer and weekly for the statistical and XGBOOST machine learn-
ing models. The Transformer had the best scores across all regression metrics tested (Table 3). The explained 
variance indicated the model accounted for 87% of variability in the dataset. The negative explained variance 
for the statistical and XGBOOST models supports their failure to predict higher case numbers when outbreaks 

Table 2.   Summary of model accuracy for statistical, XGBOOST and deep learning transformer. Low, Medium, 
and High indicate accuracy % of predicting that class. Accuracy is a rounded metric of overall prediction 
accuracy calculated from true positives. The p-value provides a measure of statistical significance regarding the 
overall accuracy of the model. The F1 score reflects the model’s balance of precision and recall in predictions 
on the dataset, with 1 being a perfect score. The Statistical 0 biased label indicates that the model was allowed 
to use actual malaria data as a predictor during training and prediction.

Model Sample no Overall accuracy (%) Low (%) Medium (%) High (%) AUROC AUPRC p-value F1

XGBOOST classifica-
tion (D) n = 702d 46.8 57.7 32.5 38.9 0.5367 0.3425 0.007 0.4631

Statistical 0 biased 
(2021) n = 52w 78.9 94.4 64.7 76.5 0.70 0.3490  < 0.001 0.6428

Statistical (2020–2021 
no mal predictor) n = 104w 54.8 71.4 41.2 51.4 0.43 0.3760  < 0.001 0.3548

DL Transformer (D, 
2021) n = 360d 97.7 99.4 54 90 0.83 0.4296 < 0.001 0.8472
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Figure 3.   The area under receiver operating characteristic (AUROC) curves for the statistical model (a), the 
XGBOOST model (b) and the Deep learning transformer (c). The curves indicate the probability of the model 
predictions being correct at various thresholds. The ROC curves and AUC indicate probability of a model 
attaining a true prediction. The closer the curve is to the top left of the graph, the better. Confusion matrices for 
the statistical model (d), XGBOOST model (e), and the Deep learning transformer (f). The matrices indicate 
the normalized count/overall % prediction accuracy in the middle of each tile. The bottom and side values 
indicate the percentage of correct classifications of the target (High, Medium, and Low) in the column and row 
respectively.
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actually occurred. Max error was lowest for the Transformer, compared to the other two models. This indicates a 
lower tendency to predict larger outbreaks when they may not actually occur. The R2 scores were highest for the 
Transformer (R2 = 0·84). Meanwhile the other two models had negative R2 scores, indicating that their predic-
tions performed worse than a constant function (naïve model) that could always predict the mean of the data.

The actual case number predictions (Fig. 5) indicate that the statistical model and the Transformer were 
able to predict very closely to the actual case numbers, however the statistical model was doing this at a weekly 
scale when compared to the deep learning models daily prediction scale. Notably, the Transformer performed 
best when using the novel M-DELTA loss function during training by more than 20% compared to the baseline 
MSE loss function (Appendix 2). In addition, when classifying the Transformer predictions at a weekly level, the 
classification matching rate was basically perfect for the 2021 prediction year. On balanced accuracy (Fig. 6) the 
Transformer also outperformed the other models at predicting all malaria case alert level classes. Furthermore, 
during the training of the Transformer, the use of additional climate variables with rainfall and temperature 
indicated that higher accuracies could be achieved consistently (Fig. 7, Appendix 2).

Discussion
The statistical model and XGBOOST model have been used previously with climate data for malaria prediction 
and have been further evaluated in this study. The statistical model used here is a distributed lag nonlinear model 
adapted from Kim et al9. The model is currently able to provide good short-term predictions for the Limpopo 
area from 2 to 16 weeks ahead. However, the statistical model’s accuracy is misleadingly high as a result of the 
data presenting an imbalance problem, in this case a majority of predictions classified as low28. This satisfies 
the majority of cases in reality as a majority of the dataset either has zeroes or is classified as low case incidence 
and therefore does not necessarily indicate the modelsprediction ability. This is clearly seen once more robust 
statistics such as the AUROC and AUPRC were used, whereby the model fails to demonstrate predictive ability 
and has relatively low precision-recall performance (Figs. 3 and 4). The low performance of the statistical model 
to predict accurately except for medium alert levels found here can add to information of previous studies using 
similar models9. While the XGBOOST underperformed on weekly predictions with the Limpopo malaria data-
set in this study, it has indicated high accuracy and AUROC scores when predicting malaria cases at a monthly 
scale and tends to outperform many other machine learning models on this task especially when using multiple 
climate variables15. This study only used temperature and rainfall, and the same level of data processing was not 
replicated as done in Nkiruka et al15.

This study focused on developing a deep learning Transformer model to predict malaria cases using a high-
resolution novel malaria dataset with equally high resolution climate variables as predictors. When comparing 
the deep learning model to existing statistical and XGBOOST (machine learning) models15, it was apparent 
that the Transformer was able to predict malaria cases with higher fidelity and consistency according to both 
classification evaluation metrics (AUROC and AUPRC) and regression accuracy metrics (explained variance, 
MAE, R2). While the Transformer model output is numerical, it was convenient to convert the daily prediction 
results to a classification problem to compare it to the weekly data from the statistical model42. This allowed for 
a generalised comparison and accounts for the difference in nature of statistical and deep learning models and 
the temporal resolution14. The classification metrics used here to evaluate the model have also indicated better 
performance than existing machine learning classification techniques35. For instance, Mohapatra et al31. used 
a classification model based on monthly malaria and climate data, which underperformed compared to the 
Transformer, with a calculated kappa of 0.63, RMSE of 0.6 and accuracy of 0.71.

While the field of epidemiological forecasting is still in its infancy, there have been studies which leverage 
deep learning effectively, for instance Mussumeci and Coelho13 used a LSTM deep learning network to predict 
weekly Dengue cases and the pattern of predictions were similar to results observed here (Fig. 6), whereby the 

Table 3.   The classification and regression accuracy measures used for model evaluation. The F-beta score 
indicates the model’s balance between precision and recall in predictions on the dataset, with a beta value of 
0.5 placing more emphasis on precision. The kappa indicates the agreement of the model at predicting a class 
(low, medium, and high), with 1 being perfect agreement and below 0.4–0.6 as being moderate agreement. 
The regression accuracy metrics are calculated from the actual malaria cases predicted (not the classification 
results).

Statistical Statistical (No mal) XGBOOST Transformer

Classification accuracy metrics

 f1 0.6429 0.3548 0.3243 0.8472

 fbeta 0.5965 0.3572 0.3250 0.8458

 kappa 0.6824 0.3221 0.1453 0.8207

Regression accuracy metrics

 Explained variance  − 0.0605  − 1.7744  − 0.9173 0.8659

 Max error 194.4000 728.9162 176.6754 40.9351

 MAE 38.1327 136.7020 12.3079 8.1887

 R2  − 0.9574  − 3.3725  − 1.0448 0.8413

 p-value  < 0.001  < 0.001 0.057 < 0.001
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initial prediction period had very high accuracy, but once the model predicted on data not in the training or 
test sets (validation data) it tended to be less accurate compared to the earlier prediction periods. This is to be 
expected and even encouraged as it is better to have a model that can generalise, in order to avoid overfitting32. 

Figure 4.   AUPRC calculated for the statistical, XGBOOST and Transformer models. (a) combined 
performance of all classes per model. Precision is the measure of correctly identified positive cases from all the 
cases predicted as positive. Recall is the measure of correctly identified positive cases from all the actual positive 
cases. Precision-Recall curves which demonstrate the low false positive rate desired when precision is high and 
low false negative rate when recall is high are calculated for (b) Low class, (c) Medium class and (d) High class. 
(e) Per class AUPRC performance for the Transformer, XGBOOST and Statistical model.
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Generalizability promotes real-world deployment and potentially different regions and other climate-related 
health outcomes39,43. Despite this decrease in accuracy, it still maintains higher accuracy performance over a 
longer period, highlighting one of the advantages of using deep learning models such as the Transformer which 
can retain memory of the relationships between the predictors and the outcome across the dataset regardless of 
temporal resolution21,22. Multiple modelling studies41–43,45–47 leveraging a Transformer for timeseries prediction 
tasks have consistently found that these models can outperform established deep learning and machine learning 
models regardless of the complexities such as dataset size, temporal resolution44 or number of predictors38,40 or 

Figure 5.   Malaria incidence predictions against actual malaria cases by model. Statistical model (a) and Deep 
learning transformer (b–c). (a) and (b) indicate predictions at a weekly level, while (c) is predicting at a daily 
level with all models covering a prediction period of approximately 2 years. The Black lines indicate the actual 
historical observations of malaria cases. The coloured lines indicate the respective model predictions. The 
green line for the Transformer (Panel c) indicates the models performance on the test set where inference was 
performed with the model looking one day ahead to make a prediction for the following day, but the model had 
the actual malaria cases masked to prevent looking to far ahead or cheating. The red line then indicates a pure 
prediction using only climate data to determine the case outcomes with the trained model using its own past 
malaria predictions to determine the consecutive daily predictions. See Appendix 5 for correlations between 
predicted and actual malaria values.
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domain characteristics49. In the application of a high-resolution malaria dataset which presented many of the 
above complexities, the results indicate the Transformer predictive framework is effective for providing data that 
can be used for creating/deriving alert levels for real-world early warning systems9,54 and for numerical outputs 
capable of following the ground truth or actual malaria cases closely, thus allowing for inferred understanding 
of the variance which environmental forcing has on malaria cases.

The Transformer model indicates a higher predictive ability, with better accuracy especially when using mul-
tiple other climate variables as predictors (Fig. 7) in addition to rainfall and temperature, however it was still able 
to outperform the statistical and XGBOOST model even when only these two variables were used(Appendix 2 
& 6). Despite this, there is still value in leveraging both frameworks33. Statistical models can help determine 
causality and highlight which climate variables or predictors are of value to the deep learning model, while also 
providing short-term forecasts to verify the DL model predictions34. However, explainability is an aspect that is 
also possible with these new Transformer models and should be explored in future studies21. Having converted 

Figure 6.   Classification accuracy metrics for High, Low and Medium classes of malaria incidence as predicted 
by the three models. Sensitivity is a measure of true positive classifications, while specificity is the measure of 
true negatives. The positive and negative predictive values indicate the probability of predicting a true positive or 
true negative out of all positive and negative cases respectively. The balanced accuracy is derived from the mean 
of sensitivity and specificity.
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the numerical case data to alert thresholds of three classes (low, medium, high), we have tested and evaluated 
the prediction of the models and find the Transformer performs better than the other models in predicting the 
high and low classes based on AUPRC. The AUROC echoes similar results. This gives us a robust picture of the 
threshold levels that can be reliably ascertained with the Transformer model. Therefore, in a real case scenario, the 
medium thresholds can be given more scrutiny and confirmed with the statistical or another model or combine 
multiple models to create a more representative and robust prediction output43,55. When Xu et al42. used AUROC 
scores to compare LSTM and Transformer models, the Transformer outperformed the LSTM consistently in 
addition to demonstrating higher accuracy metrics.

The fidelity and usefulness of a model’s predictions are necessary if it is to be applied in the real world42. The 
novel M-DELTA loss function appears to provide around 20% better accuracy than the base MSE loss function 
employed during model training (Appendix 2). Zerveas et al40. applied a dropout of 10% to prevent overfitting 
and promote generalisable predictions and found similarly that the Transformer outperformed the majority 
of existing best models (including XGBOOST and Neural Net models) on multiple different datasets. This is 
promising as it indicates that the Transformer may be similarly applied to other disease prediction tasks and 
datasets in the domain of climate related health outcomes and that the loss function developed for this study 
performs better than the established functions tested (Appendix 2). The use of the novel high temporal resolu-
tion malaria dataset allowed for a unique testing of climate-related disease prediction for a country in Southern 
Africa, where the application of deep learning predictive frameworks and particularly of the Transformer are 
not well understood35,37. The promising results from the Transformer now offer a practical solution to further 
incorporate more complex climate data, possible entomological data and other domain knowledge to improve 
and apply Transformer models to the task of malaria prediction in Africa.

Conclusion
All models used only temperature and rainfall as predictors, however, the statistical model also used a log trans-
form of actual malaria cases as an extra predictor, which gave the statistical model an unbalanced advantage in 
case prediction as observed in the lower accuracy when this advantage is removed. The Transformer is still able 
to outperform the statistical model across AUROC, AUPRC and regression metrics of evaluation (MAE, R2 and 
max error) despite this advantage and it is a trend that is becoming apparent when trying to model long-term, 
high temporal resolution outcomes based on complex data33. While the Transformer model still had problems 
when predicting medium case incidence, this can be attributed to a small dataset size and the post-prediction 
artificial classification method, as the regressive predictions were still highly accurate when compared to the 
numerical malaria case incidence. The alert levels derived from the numerical data still indicate utility, however 
for medium alert thresholds, using the Transformer data may require caution but this can be supported with 
other models in a real-world prediction framework. With larger datasets and addition of a larger array of climate 
parameters to explain unaccounted variability, these deep learning Transformers can be improved as seen with 
early tests15,27, which will provide valuable information in the effort against malaria prediction and mitigation.

Data availability
The climate data can be made available upon request and the Malaria case data may be shared to an extent after 
discussions with the stakeholders such as the Limpopo Health Department of South Africa due to private infor-
mation disclosure and data ownership. Contact the corresponding author if data is required.

Figure 7.   The number of climate variables used in the Deep learning transformer during training and the 
accuracy attained during prediction. The red circle indicates only temperature and rainfall. The blue circle has 
multiple other climate variables including but not limited to relative humidity, evaporation rate, near surface 
windspeed etc. See Appendix 2 for detailed information.
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