
04009

A comparison of visual place recognition methods
using a mobile robot in an indoor environment

Beatrice van Eden1,*, Natasha Botha1 and Benjamin Rosman2
1Centre for Robotics and Future Production, Manufacturing Cluster, Council for Scientific and
Industrial Research, South Africa
2School of Computer Science and Applied Mathematics, University of the Witwatersrand, South

Africa

Abstract. Spatial awareness is an important competence for a mobile
robotic system. A robot needs to localise and perform context interpretation
to provide any meaningful service. With the deep learning tools and readily
available sensors, visual place recognition is a first step towards identifying
the environment to bring a robot closer to spatial awareness. In this paper,
we implement place recognition on a mobile robot considering a deep
learning approach. For simple place classification, where the task involves
classifying images into a limited number of categories, all three
architectures; VGG16, Inception-v3 and ResNet50, perform well. However,
considering the pros and cons, the choice may depend on available
computational resources and deployment constraints.

1 Introduction
Place classification for mobile robots refers to the task of automatically categorising and
recognising different types of places or environments that a robot encounters during its
navigation. The goal is to enable the robot to understand and interpret its surroundings,
allowing it to make informed decisions and perform appropriate actions based on the
identified place type.
 Place classification plays a crucial role in various robot applications, including
autonomous navigation, environment mapping, and human-robot interaction. By accurately
identifying places such as offices, kitchens, bedrooms, studies, or other areas, the robot can
adapt its behaviour, perform specific tasks, and navigate effectively in different
environments.
 There are many indoor applications for visual place recognition. In Afif et al. [1] they
evaluate efficientNet for Visual Place Recognition (VPR) to assist visually impaired
individuals by providing them with information about their surroundings and helping them
navigate indoor spaces. Another example is Augmented Reality (AR) and Virtual Reality
(VR) applications as seen in Kim et al. [2].
 Place recognition is a fundamental topic of research and development in the field of
computer vision. In the past, visual place recognition has been limited to only considering

* Corresponding author: bveden@csir.co.za

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

MATEC Web of Conferences 388, 04009 (2023) https://doi.org/10.1051/matecconf/202338804009
2023 RAPDASA-RobMech-PRASA-AMI Conference

processed images produced with manually identified features. These could be local features
such as Scale Invariant Feature Transformation (SHIFT), Speeded Up Robust Features
(SURF) or global features such as Histogram of Oriented Gradients (HOG). However, the
last two decades have seen the rise of deep learning approaches in place recognition
applications in Zhang et al. [3].
 In Zhang et al. [3] there is a nice representation of place recognition milestones of visual
place recognition methods, see Figure 1. We see that over the past few decades, methods
transitioned from traditional handcrafted feature-based methods to more recently learned
feature-based methods.

Fig. 1. Milestones of visual place recognition methods. (Adapted from Zhang et al. [3])

 In Schubert et al. [4] they discuss state-of-the-art deep learning methods that can be used
to address challenges in VPR. It provides an introduction to how VPR is implemented and
evaluates different approaches. We also see another approach to the VPR problem when Chen
et al. [5] implements You Only Look Once (YOLO).
 To explore the use of deep learning in place recognition, we consider a convolutional
neural network (CNN) approach for place recognition on a mobile robot. CNNs are trained
on labelled datasets of images that represent different places, allowing them to learn
discriminative features and patterns for each place category. To achieve accurate place
classification for mobile robots, it is important to curate a diverse and representative dataset
of labelled images encompassing different place categories. The dataset should capture
variations in lighting conditions, viewpoints, and environmental factors to ensure robustness
in real-world scenarios.
 Another survey on deep visual place recognition from Masone et al. [6], includes a
summary of datasets that are used in visual place recognition tasks. Deep learning approaches
rely on big and clean datasets. Various datasets are of outdoor scenes with a few nice indoor
datasets like Zhou et al. [7] and Quattoni et al. [8].
 Normally CNNs require a very large dataset, a thousand images or more for each room
in the environment, for training. To reduce the number of images needed, while retaining a
decent accuracy, we consider a transfer learning approach to CNN’s. Transfer learning speeds
up learning while transferring information from already trained weights on a different dataset
explained in Zhuang et al. [9]. In Tammina et al. [10] we see how transfer learning and the
VGG16 architecture were used to classify images.
 For this work, we train three different CNN architectures; VGG16, Inception v3 and
ResNet50. We use transfer learning for each CNN using weights trained on the ImageNet
dataset in Deng et al. [11].
 In Section 2 we expand on the different CNN architectures followed by a discussion of
the Imagnet dataset as well as the data we collected to train our custom place classification

algorithms. In Section 3 we see the results of our trained networks and we test our trained
weights on a robot. This work is concluded in Section 4.

2 Methods
Different CNN architectures have been developed to address various challenges and
requirements in the field of computer vision. Different architectures aim to strike a balance
between depth, complexity, and computational resources, catering to various use cases and
constraints. Their suitability for a specific use case depends on factors such as dataset size,
computational resources, and implementation constraints.
 Three common architectures have been chosen to compare the effectiveness of our place
recognition on a robot. VGG16, Inception-v3, and ResNet50 are all powerful CNN
architectures that have demonstrated excellent performance on various image classification
tasks, including both complex and simple classification problems as seen in Jiang et al. [12],
Joshi et al. [13], Shabbir et al. [14].
 The selection of hyperparameters was performed manually on a trial-and-error basis, as
there is no mathematical formulation for the calculation of appropriate parameters for a
specific dataset. The overall computational architecture of the proposed CNNs are shown in
the next sections.

2.1 CNN Layers Explained

2.1.1 Input layer

Input layer specifications are important to consider when preparing data for these CNN
models. They must be pre-processed to match the expected format before feeding them into
the networks for training.
 For example, the first layer takes an image of ℎ (height) × w (width) × c (number of
channels) pixels as input and passes it through convolutional and max pooling layers to
reduce its spatial size.
 After passing through the designed convolutional and max-pooling layers of the chosen
architecture, the final feature vector is obtained at the fully connected layer and is input into
the classifier for class prediction [15].
 A convolutional layer, often referred to as a "conv layer," is a fundamental building block
in a CNN. It is a key component of CNNs used for image and spatial data analysis. The
primary purpose of a convolutional layer is to perform feature extraction from the input data
through a process called convolution.

2.1.2 Convolutional Layer

A convolutional layer is a fundamental building block in a CNN. It is a key component of
CNNs used for image and spatial data analysis. The primary purpose of a convolutional layer
is to perform feature extraction from the input data (Equation 1 [15]).

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = ∑(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛×𝑛𝑛 + 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑛𝑛×𝑛𝑛) + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

(1)

 The convolutional layer applies a set of learnable filters (kernels) to the input data.
These filters are small, typically 3x3 or 5x5 grids of numbers represented by n x n. The

2

MATEC Web of Conferences 388, 04009 (2023)	 https://doi.org/10.1051/matecconf/202338804009
2023 RAPDASA-RobMech-PRASA-AMI Conference

processed images produced with manually identified features. These could be local features
such as Scale Invariant Feature Transformation (SHIFT), Speeded Up Robust Features
(SURF) or global features such as Histogram of Oriented Gradients (HOG). However, the
last two decades have seen the rise of deep learning approaches in place recognition
applications in Zhang et al. [3].
 In Zhang et al. [3] there is a nice representation of place recognition milestones of visual
place recognition methods, see Figure 1. We see that over the past few decades, methods
transitioned from traditional handcrafted feature-based methods to more recently learned
feature-based methods.

Fig. 1. Milestones of visual place recognition methods. (Adapted from Zhang et al. [3])

 In Schubert et al. [4] they discuss state-of-the-art deep learning methods that can be used
to address challenges in VPR. It provides an introduction to how VPR is implemented and
evaluates different approaches. We also see another approach to the VPR problem when Chen
et al. [5] implements You Only Look Once (YOLO).
 To explore the use of deep learning in place recognition, we consider a convolutional
neural network (CNN) approach for place recognition on a mobile robot. CNNs are trained
on labelled datasets of images that represent different places, allowing them to learn
discriminative features and patterns for each place category. To achieve accurate place
classification for mobile robots, it is important to curate a diverse and representative dataset
of labelled images encompassing different place categories. The dataset should capture
variations in lighting conditions, viewpoints, and environmental factors to ensure robustness
in real-world scenarios.
 Another survey on deep visual place recognition from Masone et al. [6], includes a
summary of datasets that are used in visual place recognition tasks. Deep learning approaches
rely on big and clean datasets. Various datasets are of outdoor scenes with a few nice indoor
datasets like Zhou et al. [7] and Quattoni et al. [8].
 Normally CNNs require a very large dataset, a thousand images or more for each room
in the environment, for training. To reduce the number of images needed, while retaining a
decent accuracy, we consider a transfer learning approach to CNN’s. Transfer learning speeds
up learning while transferring information from already trained weights on a different dataset
explained in Zhuang et al. [9]. In Tammina et al. [10] we see how transfer learning and the
VGG16 architecture were used to classify images.
 For this work, we train three different CNN architectures; VGG16, Inception v3 and
ResNet50. We use transfer learning for each CNN using weights trained on the ImageNet
dataset in Deng et al. [11].
 In Section 2 we expand on the different CNN architectures followed by a discussion of
the Imagnet dataset as well as the data we collected to train our custom place classification

algorithms. In Section 3 we see the results of our trained networks and we test our trained
weights on a robot. This work is concluded in Section 4.

2 Methods
Different CNN architectures have been developed to address various challenges and
requirements in the field of computer vision. Different architectures aim to strike a balance
between depth, complexity, and computational resources, catering to various use cases and
constraints. Their suitability for a specific use case depends on factors such as dataset size,
computational resources, and implementation constraints.
 Three common architectures have been chosen to compare the effectiveness of our place
recognition on a robot. VGG16, Inception-v3, and ResNet50 are all powerful CNN
architectures that have demonstrated excellent performance on various image classification
tasks, including both complex and simple classification problems as seen in Jiang et al. [12],
Joshi et al. [13], Shabbir et al. [14].
 The selection of hyperparameters was performed manually on a trial-and-error basis, as
there is no mathematical formulation for the calculation of appropriate parameters for a
specific dataset. The overall computational architecture of the proposed CNNs are shown in
the next sections.

2.1 CNN Layers Explained

2.1.1 Input layer

Input layer specifications are important to consider when preparing data for these CNN
models. They must be pre-processed to match the expected format before feeding them into
the networks for training.
 For example, the first layer takes an image of ℎ (height) × w (width) × c (number of
channels) pixels as input and passes it through convolutional and max pooling layers to
reduce its spatial size.
 After passing through the designed convolutional and max-pooling layers of the chosen
architecture, the final feature vector is obtained at the fully connected layer and is input into
the classifier for class prediction [15].
 A convolutional layer, often referred to as a "conv layer," is a fundamental building block
in a CNN. It is a key component of CNNs used for image and spatial data analysis. The
primary purpose of a convolutional layer is to perform feature extraction from the input data
through a process called convolution.

2.1.2 Convolutional Layer

A convolutional layer is a fundamental building block in a CNN. It is a key component of
CNNs used for image and spatial data analysis. The primary purpose of a convolutional layer
is to perform feature extraction from the input data (Equation 1 [15]).

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = ∑(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛×𝑛𝑛 + 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑛𝑛×𝑛𝑛) + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

(1)

 The convolutional layer applies a set of learnable filters (kernels) to the input data.
These filters are small, typically 3x3 or 5x5 grids of numbers represented by n x n. The

3

MATEC Web of Conferences 388, 04009 (2023)	 https://doi.org/10.1051/matecconf/202338804009
2023 RAPDASA-RobMech-PRASA-AMI Conference

layer slides these filters over the input data to compute a dot product between the filter and
a local region of the data. This process captures features present in the input.
 The result of the convolution operation is a feature map. Each filter produces one feature
map. Feature maps represent the presence of specific patterns or features in the input data.
These patterns can be simple, such as edges, or more complex, like textures or object parts.
The operation is shown in Figure 2.

2.1.3 Activation Layer

After convolution, a non-linear activation function, typically ReLU (Rectified Linear Unit),
is applied to the feature maps, see Nair et al. [15]. ReLU is computationally faster than other
activation functions. This introduces non-linearity into the model, allowing it to capture
complex relationships in the data. The operation is shown in Figure 2.

2.1.4 Max-Pooling Layer

Pooling layers follow convolutional layers. These layers reduce the spatial dimensions of the
feature maps while retaining the most important information. Max pooling is the most
popular pooling operation. A window (typically 2x2 or 3x3) is applied to each location in the
input feature map, and the maximum value within that window is retained in the output
feature map.
 It helps capture the most prominent features and reduce the sensitivity of the network to
small changes in the input data. The operation is shown in Figure 2.

Fig.2. Mathematical operations in convolutional, rectified linear unit (ReLu), and max-
pooling layers. (Adapted from et al. [15])

2.1.5 Fully connected Layer

 A fully connected layer is a type of layer in a neural network that connects every neuron
from the previous layer to every neuron in the current layer. Fully connected layers are
typically found in the later stages of neural. These layers play a crucial role in transforming
the learned features into final output predictions or decisions.

 This layer converts the three-dimensional matrix from the previous layers to a one-
dimensional vector. Equation 2 shows the operation, [15].

𝑍𝑍𝑉𝑉𝑉𝑉×1 = 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑉𝑉𝑉𝑉×𝑉𝑉𝑉𝑉 𝐼𝐼𝑉𝑉𝑉𝑉×1. 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉×1 (2)

Vo and Vi is the input and output vector size while Z is the output.

2.1.6 Softmax Layer

The softmax layer is the final layer in the neural network. It is important in most neural
network architectures, even more so when the network is used for multiclass classification
tasks. It is responsible for transforming the raw output scores from the preceding layers into
probability distributions over multiple classes.
 If the previous output vector is ‘z’, the softmax function for a class’i’ is calculated as in
equation 3.

𝑃𝑃(𝑖𝑖) = 𝑒𝑒𝑧𝑧𝑖𝑖

∑ 𝑒𝑒𝑧𝑧𝑗𝑗𝑗𝑗

(3)

The output will be a vector with values between 0 and1.

2.2 VGG16

The VGG16 (Visual Geometry Group 16) is a CNN architecture that was introduced by the
Visual Geometry Group at the University of Oxford. It was developed for image
classification tasks.
 VGG16 is known for its simplicity and effectiveness in capturing features from images,
Simonyan et al. [16]. However, VGG16 is a relatively deep architecture with many
parameters, which may make it computationally expensive and resource-intensive for
deployment on resource-constrained devices like robots.
 The VGG16 architecture consists of a total of 16 weight layers, including 13
convolutional layers and 3 fully connected layers. It follows a straightforward design
principle of using small-sized convolutional filters repeatedly along with max-pooling layers
to downsample the spatial dimensions. Figure 3 shows the architecture of the VGG16 model.

Fig. 3. Architecture of VGG16 model, (Adapted from Pardede et al. [17])

4

MATEC Web of Conferences 388, 04009 (2023)	 https://doi.org/10.1051/matecconf/202338804009
2023 RAPDASA-RobMech-PRASA-AMI Conference

layer slides these filters over the input data to compute a dot product between the filter and
a local region of the data. This process captures features present in the input.
 The result of the convolution operation is a feature map. Each filter produces one feature
map. Feature maps represent the presence of specific patterns or features in the input data.
These patterns can be simple, such as edges, or more complex, like textures or object parts.
The operation is shown in Figure 2.

2.1.3 Activation Layer

After convolution, a non-linear activation function, typically ReLU (Rectified Linear Unit),
is applied to the feature maps, see Nair et al. [15]. ReLU is computationally faster than other
activation functions. This introduces non-linearity into the model, allowing it to capture
complex relationships in the data. The operation is shown in Figure 2.

2.1.4 Max-Pooling Layer

Pooling layers follow convolutional layers. These layers reduce the spatial dimensions of the
feature maps while retaining the most important information. Max pooling is the most
popular pooling operation. A window (typically 2x2 or 3x3) is applied to each location in the
input feature map, and the maximum value within that window is retained in the output
feature map.
 It helps capture the most prominent features and reduce the sensitivity of the network to
small changes in the input data. The operation is shown in Figure 2.

Fig.2. Mathematical operations in convolutional, rectified linear unit (ReLu), and max-
pooling layers. (Adapted from et al. [15])

2.1.5 Fully connected Layer

 A fully connected layer is a type of layer in a neural network that connects every neuron
from the previous layer to every neuron in the current layer. Fully connected layers are
typically found in the later stages of neural. These layers play a crucial role in transforming
the learned features into final output predictions or decisions.

 This layer converts the three-dimensional matrix from the previous layers to a one-
dimensional vector. Equation 2 shows the operation, [15].

𝑍𝑍𝑉𝑉𝑉𝑉×1 = 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑉𝑉𝑉𝑉×𝑉𝑉𝑉𝑉 𝐼𝐼𝑉𝑉𝑉𝑉×1. 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉×1 (2)

Vo and Vi is the input and output vector size while Z is the output.

2.1.6 Softmax Layer

The softmax layer is the final layer in the neural network. It is important in most neural
network architectures, even more so when the network is used for multiclass classification
tasks. It is responsible for transforming the raw output scores from the preceding layers into
probability distributions over multiple classes.
 If the previous output vector is ‘z’, the softmax function for a class’i’ is calculated as in
equation 3.

𝑃𝑃(𝑖𝑖) = 𝑒𝑒𝑧𝑧𝑖𝑖

∑ 𝑒𝑒𝑧𝑧𝑗𝑗𝑗𝑗

(3)

The output will be a vector with values between 0 and1.

2.2 VGG16

The VGG16 (Visual Geometry Group 16) is a CNN architecture that was introduced by the
Visual Geometry Group at the University of Oxford. It was developed for image
classification tasks.
 VGG16 is known for its simplicity and effectiveness in capturing features from images,
Simonyan et al. [16]. However, VGG16 is a relatively deep architecture with many
parameters, which may make it computationally expensive and resource-intensive for
deployment on resource-constrained devices like robots.
 The VGG16 architecture consists of a total of 16 weight layers, including 13
convolutional layers and 3 fully connected layers. It follows a straightforward design
principle of using small-sized convolutional filters repeatedly along with max-pooling layers
to downsample the spatial dimensions. Figure 3 shows the architecture of the VGG16 model.

Fig. 3. Architecture of VGG16 model, (Adapted from Pardede et al. [17])

5

MATEC Web of Conferences 388, 04009 (2023)	 https://doi.org/10.1051/matecconf/202338804009
2023 RAPDASA-RobMech-PRASA-AMI Conference

2.3 Inception-v3

The Inception-v3 is a CNN architecture developed by researchers at Google. It is designed
for image classification. The architecture builds upon the original Inception model.
 Inception-v3 is designed to capture features at different scales in Szegedy et al. [18]. By
using different filter sizes and pooling operations in the Inception modules, Inception-v3 can
capture features at multiple spatial scales. This allows it to effectively learn both local and
global features.
 It balances model complexity and performance, making it a suitable choice for a wide
range of applications. Inception-v3 offers good accuracy while being computationally
efficient compared to deeper architectures like VGG16 or ResNet50, this can also be seen in
Table 1 in the result section. It can handle both complex and simple image classification tasks
effectively.
 The Inception-v3 architecture combines a variety of convolutional filters with different
sizes and strides to capture features at various scales. It also employs a technique called
factorisation to reduce the computational complexity of convolutions. The idea behind
factorization is to break down a large convolutional operation into a series of smaller
operations, which can be computationally more efficient. Figure 4 shows the architecture of
the Inception-v3 model.

Fig. 4. Architecture of Inception-v3 model, (Adapted from Ali et al. [19])

2.4 ResNet-50

The ResNet50 (Residual Network-50) is a CNN architecture that was introduced by
researchers at Microsoft Research Asia. It is specifically designed to address the challenge
of training very deep neural networks.
 ResNet50 addresses the challenge of training deep networks by introducing residual
connections in He et al. [20]. A residual connection is like a shortcut that allows the network
to skip some layers and directly pass information from one layer to another. The primary
motivation behind ResNet50 was to overcome the degradation problem associated with
training deep neural networks. The degradation problem refers to the observation that
increasing the network depth leads to reduced accuracy due to difficulties in training the deep
layers.

 ResNet50 can handle both simple and complex image classification effectively.
However, it is a deeper architecture than Inception-v3 and may require more computational
resources during training and inference. Figure 5 shows the architecture of the ResNet50
model.

Fig. 5. Architecture of ResNet50 model, (Adapted from Shyamalee et al. [21])

2.5 The Dataset

ImageNet is a large-scale visual database designed for visual object recognition and
classification tasks. It serves as a benchmark for training and evaluating computer vision
algorithms and models in Russakovsky et al. [22]. The database contains millions of labelled
images across a wide range of object categories. All three CNN architectures have pre-trained
Tensorflow weights based on the ImageNet database that we used in transfer learning when
training our models.

Fig. 6. Smart home environment for robot

 To collect our database with four different rooms the Pioneer mobile robot was manually
driven around the smart home, Figure 6. Data were collected in each room, namely the
kitchen, lounge, study and bedroom. A few .bag files were captured which contain all the
sensors and shared data. The .bag file contains all the images of each of the four different

6

MATEC Web of Conferences 388, 04009 (2023)	 https://doi.org/10.1051/matecconf/202338804009
2023 RAPDASA-RobMech-PRASA-AMI Conference

2.3 Inception-v3

The Inception-v3 is a CNN architecture developed by researchers at Google. It is designed
for image classification. The architecture builds upon the original Inception model.
 Inception-v3 is designed to capture features at different scales in Szegedy et al. [18]. By
using different filter sizes and pooling operations in the Inception modules, Inception-v3 can
capture features at multiple spatial scales. This allows it to effectively learn both local and
global features.
 It balances model complexity and performance, making it a suitable choice for a wide
range of applications. Inception-v3 offers good accuracy while being computationally
efficient compared to deeper architectures like VGG16 or ResNet50, this can also be seen in
Table 1 in the result section. It can handle both complex and simple image classification tasks
effectively.
 The Inception-v3 architecture combines a variety of convolutional filters with different
sizes and strides to capture features at various scales. It also employs a technique called
factorisation to reduce the computational complexity of convolutions. The idea behind
factorization is to break down a large convolutional operation into a series of smaller
operations, which can be computationally more efficient. Figure 4 shows the architecture of
the Inception-v3 model.

Fig. 4. Architecture of Inception-v3 model, (Adapted from Ali et al. [19])

2.4 ResNet-50

The ResNet50 (Residual Network-50) is a CNN architecture that was introduced by
researchers at Microsoft Research Asia. It is specifically designed to address the challenge
of training very deep neural networks.
 ResNet50 addresses the challenge of training deep networks by introducing residual
connections in He et al. [20]. A residual connection is like a shortcut that allows the network
to skip some layers and directly pass information from one layer to another. The primary
motivation behind ResNet50 was to overcome the degradation problem associated with
training deep neural networks. The degradation problem refers to the observation that
increasing the network depth leads to reduced accuracy due to difficulties in training the deep
layers.

 ResNet50 can handle both simple and complex image classification effectively.
However, it is a deeper architecture than Inception-v3 and may require more computational
resources during training and inference. Figure 5 shows the architecture of the ResNet50
model.

Fig. 5. Architecture of ResNet50 model, (Adapted from Shyamalee et al. [21])

2.5 The Dataset

ImageNet is a large-scale visual database designed for visual object recognition and
classification tasks. It serves as a benchmark for training and evaluating computer vision
algorithms and models in Russakovsky et al. [22]. The database contains millions of labelled
images across a wide range of object categories. All three CNN architectures have pre-trained
Tensorflow weights based on the ImageNet database that we used in transfer learning when
training our models.

Fig. 6. Smart home environment for robot

 To collect our database with four different rooms the Pioneer mobile robot was manually
driven around the smart home, Figure 6. Data were collected in each room, namely the
kitchen, lounge, study and bedroom. A few .bag files were captured which contain all the
sensors and shared data. The .bag file contains all the images of each of the four different

7

MATEC Web of Conferences 388, 04009 (2023)	 https://doi.org/10.1051/matecconf/202338804009
2023 RAPDASA-RobMech-PRASA-AMI Conference

rooms in the smart home. The RGB images were extracted from these .bag files for training
with sample images shown in Figure 7. This resulted in 181 train and 59 test RGB images
for the kitchen, 124 train and 41 test RGB images for the lounge, 204 train and 67 test RGB
images for the bedroom and 181 train and 62 test RGB images for the office. This is a small
dataset and we therefore used images from the ImageNet dataset to supplement the training
using a transfer learning approach.

(a) Kitchen (b) Lounge

(c) Study (d) Bedroom

Fig. 7. Mobile robot data sample for kitchen, lounge, study, and bedroom - robot’s point
of view

2.6 Experimental Setup - Implementation on Voyager mobile robot

The Voyager is a mobile robot, developed in-house, able to generate a map of its
environment, see Figure 8. Place recognition will be added to the functionality so that the
map provides more meaningful insights. This is a building block for detecting objects that
belong in a certain room and the actions (or activities) generally undertaken in that room.

Fig. 8. Voyager mobile robot

 The Voyager mobile robot software is built using robot operating software (ROS2) in
Macenski et al. [23]. To implement the classification, ROS2 needs to work with
Tensorflow which was used to train our CNN models. A custom ROS2 node was
developed to implement the place recognition functionality, using the weights obtained
during training for the three different CNN models, which would allow Tensorflow to
communicate with ROS2.
 In this custom ROS2 node, images are received through the subscriber from a specific
topic. The subscriber then converts the received image message using cv_bridge and
passes it to the TensorFlow model for classification. The result is then published by the
publisher to a designated topic for further processing or visualisation. Note that the specific
implementation details may vary depending on your chosen neural network architecture,
dataset, and ROS2 setup. Both publishers/subscribers and client/server can be used for
implementing image classification in ROS 2. The choice between them depends on the
specific requirements and design of your system. Here are some considerations for each
approach:

● Publishers/Subscribers follow an asynchronous communication model, where the
publisher node publishes messages to a topic, and any interested subscriber nodes
receive and process those messages. This can be useful when you have multiple
subscribers that need to independently process the image data without waiting for
each other. The pairs are loosely coupled. The publisher doesn't need to know the
specific subscribers, and subscribers don't need to know the publishers. This can
make development easier.

● Client/Server follows a synchronous communication model. The client node
sends a request to the server node, which then processes the request and returns
the result. This synchronous communication can be beneficial when you need a
direct response from the server for image classification, especially in real-time or
interactive scenarios. With a client/server approach, the server node acts as a
central entity responsible for processing the image classification requests.

 This implementation is tested using a test .bag file which was captured in the smart
home. It is an open-plan house with four different rooms: an office (or study), kitchen,
bedroom, and lounge. Voyager first generates a map of the indoor environment, using
Simultaneous Localisation and Mapping (SLAM). It then sends the images obtained
through its camera to the place recognition algorithm through the custom ROS2 node. The
custom ROS2 node passes these images to Tensorflow for classification, before sending
the result back to the custom ROS2 node. This uses a publisher and subscriber. Figure 9 is
a simplified rqt graph including the recognition node interacting with the Voyager stack.
This rqt graph provides a visual representation of the communication graph among ROS 2
nodes.

8

MATEC Web of Conferences 388, 04009 (2023)	 https://doi.org/10.1051/matecconf/202338804009
2023 RAPDASA-RobMech-PRASA-AMI Conference

rooms in the smart home. The RGB images were extracted from these .bag files for training
with sample images shown in Figure 7. This resulted in 181 train and 59 test RGB images
for the kitchen, 124 train and 41 test RGB images for the lounge, 204 train and 67 test RGB
images for the bedroom and 181 train and 62 test RGB images for the office. This is a small
dataset and we therefore used images from the ImageNet dataset to supplement the training
using a transfer learning approach.

(a) Kitchen (b) Lounge

(c) Study (d) Bedroom

Fig. 7. Mobile robot data sample for kitchen, lounge, study, and bedroom - robot’s point
of view

2.6 Experimental Setup - Implementation on Voyager mobile robot

The Voyager is a mobile robot, developed in-house, able to generate a map of its
environment, see Figure 8. Place recognition will be added to the functionality so that the
map provides more meaningful insights. This is a building block for detecting objects that
belong in a certain room and the actions (or activities) generally undertaken in that room.

Fig. 8. Voyager mobile robot

 The Voyager mobile robot software is built using robot operating software (ROS2) in
Macenski et al. [23]. To implement the classification, ROS2 needs to work with
Tensorflow which was used to train our CNN models. A custom ROS2 node was
developed to implement the place recognition functionality, using the weights obtained
during training for the three different CNN models, which would allow Tensorflow to
communicate with ROS2.
 In this custom ROS2 node, images are received through the subscriber from a specific
topic. The subscriber then converts the received image message using cv_bridge and
passes it to the TensorFlow model for classification. The result is then published by the
publisher to a designated topic for further processing or visualisation. Note that the specific
implementation details may vary depending on your chosen neural network architecture,
dataset, and ROS2 setup. Both publishers/subscribers and client/server can be used for
implementing image classification in ROS 2. The choice between them depends on the
specific requirements and design of your system. Here are some considerations for each
approach:

● Publishers/Subscribers follow an asynchronous communication model, where the
publisher node publishes messages to a topic, and any interested subscriber nodes
receive and process those messages. This can be useful when you have multiple
subscribers that need to independently process the image data without waiting for
each other. The pairs are loosely coupled. The publisher doesn't need to know the
specific subscribers, and subscribers don't need to know the publishers. This can
make development easier.

● Client/Server follows a synchronous communication model. The client node
sends a request to the server node, which then processes the request and returns
the result. This synchronous communication can be beneficial when you need a
direct response from the server for image classification, especially in real-time or
interactive scenarios. With a client/server approach, the server node acts as a
central entity responsible for processing the image classification requests.

 This implementation is tested using a test .bag file which was captured in the smart
home. It is an open-plan house with four different rooms: an office (or study), kitchen,
bedroom, and lounge. Voyager first generates a map of the indoor environment, using
Simultaneous Localisation and Mapping (SLAM). It then sends the images obtained
through its camera to the place recognition algorithm through the custom ROS2 node. The
custom ROS2 node passes these images to Tensorflow for classification, before sending
the result back to the custom ROS2 node. This uses a publisher and subscriber. Figure 9 is
a simplified rqt graph including the recognition node interacting with the Voyager stack.
This rqt graph provides a visual representation of the communication graph among ROS 2
nodes.

9

MATEC Web of Conferences 388, 04009 (2023)	 https://doi.org/10.1051/matecconf/202338804009
2023 RAPDASA-RobMech-PRASA-AMI Conference

Fig. 9. Simplified rqt graph including the recognition node

3 Results and Discussion
When implementing classification on a robot, it is important to consider the computational
resources available on the robot and the real-time constraints of the application. If your robot
has sufficient computational power and memory, implementing VGG16, Inception-v3, or
ResNet50 can yield accurate image classification results. However, if computational
resources are limited, you may need to explore more lightweight architectures such as
MobileNet or SqueezeNet, which are specifically designed for resource-constrained
environments. Ultimately, the choice of architecture should be based on a trade-off between
accuracy and computational efficiency, considering the specific requirements and constraints
of the robot application.
 We first train each CNN architecture using the smart home dataset discussed in Section
2.4 before implementing and testing it on the Voyager platform. When comparing VGG16,
Inception-v3, and ResNet50 CNN architectures, it is important to note that the "better" option
depends on specific factors such as the task requirements, available computational resources,
and dataset characteristics.

3.1 CNN Architecture Training

In this section we present and discuss the results from training and validating the three CNN
architectures using the dataset described in Section 2.4.

3.1.1 VGG 16

This CNN architecture is relatively straightforward, it is easy to implement and understand.
The computational requirements for this CNN are not as efficient as other architectures, due
to a large number of parameters. Care should therefore be taken to avoid overfitting when
the dataset is small.
 The results from training on our dataset and validating with a separate set of validation
images are shown in Figure 11. In Figure 10(a) we see the accuracy and loss when training
the VGG16 CNN, with an accuracy of 86.90%.
 The performance of the VGG16 CNN model is illustrated in Figure 10(b) with a
confusion matrix. A confusion matrix is a table used to evaluate the performance of a machine
learning model, particularly in classification tasks. It provides a summary of the predictions
made by the model compared to the actual labels of the data. The confusion matrix organises
the predictions into four categories: true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN).VGG16 demonstrates good performance on our data.

10

MATEC Web of Conferences 388, 04009 (2023)	 https://doi.org/10.1051/matecconf/202338804009
2023 RAPDASA-RobMech-PRASA-AMI Conference

● True Positives (TP): The number of instances correctly predicted as positive by the
model.

● True Negatives (TN): The number of instances correctly predicted as negative by
the model.

● False Positives (FP): The number of instances incorrectly predicted as positive by
the model when the actual label is negative.

● False Negatives (FN): The number of instances incorrectly predicted as negative by
the model when the actual label is positive.

 From the confusion matrix, various evaluation metrics can be derived, including
accuracy, precision, recall, and F1 score, which further quantify the model's performance.
 The VGG16 model performed well seen in the confusion matrix.

(a) Accuracy and loss

(b) Confusion matrix

Fig. 10. Results for training and validating the VGG16 CNN model

11

MATEC Web of Conferences 388, 04009 (2023)	 https://doi.org/10.1051/matecconf/202338804009
2023 RAPDASA-RobMech-PRASA-AMI Conference

3.1.2 Inception-v3

Th Inception-v3 CNN architecture makes efficient use of computational resources due to the
use of factorised convolutions, see Table 1. It captures features at multiple spatial scales,
enabling it to handle complex patterns in images. However, it is relatively complex to
understand and implement compared to simpler architectures. In Figure 3, you can see the
intricacies of the architecture of the Inception-v3 model compared to that of the VGG16
model in Figure 3.

Table 1. Comparison of models’ computational time and size

Model Patch size Single image
computation
time (Seconds)

Total image
processed per bag
(394.630s/bag)

Model
size

VGG16 224x224x3 0.230 1715 1.25GB

Inception-v3 224x224x3 0.980 402 124.1MB

ResNet5 224x224x3 0.725 544 96.5MB

 The results from training on our dataset and validating with a separate set of validation
images are shown in Figure 11, with an accuracy of 81.66%. The confusion matrix shows
only slightly less accuracy than the results for the VGG16 model.

(a) Accuracy and loss

(b) Confusion matrix

Fig. 11. Results for training and validation of the Inception-v3 CNN model

3.1.3 ResNet50

The ResNet50 CNN architecture addresses the issue of vanishing gradients in deep neural
networks, allowing for effective training of very deep models. It provides good accuracy with
relatively fewer parameters compared to VGG16, see Table 2. However, it is still
computationally demanding, particularly during training.

Table 2. Deep Learning Models, with the Number of Convolutional Layers and Parameters

Deep learning model Number of convolutional
layers

Number of parameters
(Millions)

VGG16 16 138

Inception-v 48 21.80

ResNet5 50 23.78

 The results from training on our dataset and validating with a separate set of validation
images are shown in Figure 12, with an accuracy of 91.27%. From the confusion matrix, we
do not see a significant change in performance compared to the VGG16 or Inception-v3
models.

12

MATEC Web of Conferences 388, 04009 (2023)	 https://doi.org/10.1051/matecconf/202338804009
2023 RAPDASA-RobMech-PRASA-AMI Conference

3.1.2 Inception-v3

Th Inception-v3 CNN architecture makes efficient use of computational resources due to the
use of factorised convolutions, see Table 1. It captures features at multiple spatial scales,
enabling it to handle complex patterns in images. However, it is relatively complex to
understand and implement compared to simpler architectures. In Figure 3, you can see the
intricacies of the architecture of the Inception-v3 model compared to that of the VGG16
model in Figure 3.

Table 1. Comparison of models’ computational time and size

Model Patch size Single image
computation
time (Seconds)

Total image
processed per bag
(394.630s/bag)

Model
size

VGG16 224x224x3 0.230 1715 1.25GB

Inception-v3 224x224x3 0.980 402 124.1MB

ResNet5 224x224x3 0.725 544 96.5MB

 The results from training on our dataset and validating with a separate set of validation
images are shown in Figure 11, with an accuracy of 81.66%. The confusion matrix shows
only slightly less accuracy than the results for the VGG16 model.

(a) Accuracy and loss

(b) Confusion matrix

Fig. 11. Results for training and validation of the Inception-v3 CNN model

3.1.3 ResNet50

The ResNet50 CNN architecture addresses the issue of vanishing gradients in deep neural
networks, allowing for effective training of very deep models. It provides good accuracy with
relatively fewer parameters compared to VGG16, see Table 2. However, it is still
computationally demanding, particularly during training.

Table 2. Deep Learning Models, with the Number of Convolutional Layers and Parameters

Deep learning model Number of convolutional
layers

Number of parameters
(Millions)

VGG16 16 138

Inception-v 48 21.80

ResNet5 50 23.78

 The results from training on our dataset and validating with a separate set of validation
images are shown in Figure 12, with an accuracy of 91.27%. From the confusion matrix, we
do not see a significant change in performance compared to the VGG16 or Inception-v3
models.

13

MATEC Web of Conferences 388, 04009 (2023)	 https://doi.org/10.1051/matecconf/202338804009
2023 RAPDASA-RobMech-PRASA-AMI Conference

 (b) Accuracy and loss

(b) Confusion matrix

Fig. 12. Results for training and validation of the ResNet50 CNN model

3.1.4 Conclusion

For simple place classification, where the task involves classifying images into a limited
number of categories, all three architectures can perform well. However, considering the pros
and cons, the choice may depend on available computational resources and deployment
constraints.
 If computational resources are limited, Inception-v3 might be a good option due to its
computational efficiency while still achieving reasonable accuracy. If computational

resources are more abundant, ResNet50 could be a suitable choice as it provides excellent
accuracy, particularly when dealing with more complex image patterns.
 VGG16 can be considered if simplicity and ease of implementation are important factors,
although it may require more computational resources to deploy compared to Inception-v3.
 In conclusion, there is no definitive "better" architecture among VGG16, Inception-v3,
and ResNet50. The choice should be made based on a trade-off between computational
efficiency, model complexity, and available resources, considering the specific requirements
and constraints of your simple place classification task.

3.2 Implementation on Voyager mobile robot

In Figure 13 we see the 3-dimensional map created by the Voyager mobile robot. The lines
were added to indicate the different rooms of the open area. The green line indicates the path
the voyager robot travelled.

Fig. 13. Map generated of smart home by Voyager mobile robot

Voyager then provides an indication of which room it is in. The place recognition results,
considering all three CNN models, are shown in Figure 14.

(a) Kitchen (red arrow) (b) Lounge (green arrow)

14

MATEC Web of Conferences 388, 04009 (2023)	 https://doi.org/10.1051/matecconf/202338804009
2023 RAPDASA-RobMech-PRASA-AMI Conference

 (b) Accuracy and loss

(b) Confusion matrix

Fig. 12. Results for training and validation of the ResNet50 CNN model

3.1.4 Conclusion

For simple place classification, where the task involves classifying images into a limited
number of categories, all three architectures can perform well. However, considering the pros
and cons, the choice may depend on available computational resources and deployment
constraints.
 If computational resources are limited, Inception-v3 might be a good option due to its
computational efficiency while still achieving reasonable accuracy. If computational

resources are more abundant, ResNet50 could be a suitable choice as it provides excellent
accuracy, particularly when dealing with more complex image patterns.
 VGG16 can be considered if simplicity and ease of implementation are important factors,
although it may require more computational resources to deploy compared to Inception-v3.
 In conclusion, there is no definitive "better" architecture among VGG16, Inception-v3,
and ResNet50. The choice should be made based on a trade-off between computational
efficiency, model complexity, and available resources, considering the specific requirements
and constraints of your simple place classification task.

3.2 Implementation on Voyager mobile robot

In Figure 13 we see the 3-dimensional map created by the Voyager mobile robot. The lines
were added to indicate the different rooms of the open area. The green line indicates the path
the voyager robot travelled.

Fig. 13. Map generated of smart home by Voyager mobile robot

Voyager then provides an indication of which room it is in. The place recognition results,
considering all three CNN models, are shown in Figure 14.

(a) Kitchen (red arrow) (b) Lounge (green arrow)

15

MATEC Web of Conferences 388, 04009 (2023)	 https://doi.org/10.1051/matecconf/202338804009
2023 RAPDASA-RobMech-PRASA-AMI Conference

(c) Study (blue arrow) (d) Bedroom (orange arrow)

Fig. 14. Map generated of the smart home for place recognition at a given position

 From the experimental implementation in section 2.4 we can see that the accuracies for
the three models that we trained are close to each other with the ResNet model ranking the
best out of three with an accuracy of 91.27% followed by VGG16 model with an accuracy
of 86.90% and the Inception-v3 model with 81.66% accuracy. The VGG16 model is big to
load. A single recognition can take up to 0.200s on average as seen in Table 1, this means
that only 4-5 out of 30 frames per second (fps) can be captured and classified before running
into processing issues.
 The inception model can classify 10 out of every 30fps and the ResNet50 model can
classify 2 out of 30fps. However, they are less accurate with the real-time implementation
with ResNet50 performing slightly better than Inception v3. The Inception-v3 model is the
least computationally intense model.
 When the frames are not selected at this processing speed the system cannot deal with
all the data tath it has to classify.

4 Conclusion
In this study we implemented Visual Place Recognition (VPR) as an additional functionality
on the Voyager mobile robot, a platform developed in-house. To this end, we used the smart
house within the CSIR robotics laboratory to capture the required dataset. The smart house
is an open-plan small house with four rooms: lounge, office, kitchen and bedroom. This
dataset was supplemented with additional images from ImageNet using a transfer learning
approach.
 For the VPR we investigated three convolutional neural networks (CNN): VGG16,
Inception-v3 and ResNet50. Each CNN was trained and validated using the dataset from the
smart house on Tensorflow. The results indicated that all three architectures are suitable for
simple place recognition with computational resources as the deciding factor. Taking
computation and accuracy into account ResNet50 performed the best followed by VGG16
and then Inception-v3. ResNet50 would be a better option if there are no restrictions on the
computational resources as it provides excellent accuracy, especially for more complex
images.
 The place recognition algorithm was implemented on the Voyager mobile robot through
a custom ROS2 node which allows communication with Tensorflow. Place recognition was
tested using one of the .bag files. Voyager was able to successfully recognise all four rooms
in the smart house for all three CNN models.

 The additional place recognition functionality will allow Voyager to improve upon its
localisation capabilities while also better interpreting its surroundings. This is a first step
towards implementing an autonomous capability for the platform which will improve its
adaptability and functionality within different environments.

References
1. Afif, M., Ayachi, R., Said, Y. and Atri, M., 2020. Deep learning based application

for indoor scene recognition. Neural Processing Letters, 51, pp.2827-2837.
2. Kim, J. and Jun, H., 2008. Vision-based location positioning using augmented

reality for indoor navigation. IEEE Transactions on Consumer Electronics, 54(3),
pp.954-962.

3. Zhang, X., Wang, L. and Su, Y., 2021. Visual place recognition: A survey from
deep learning perspective. Pattern Recognition, 113, p.107760.

4. Schubert, S., Neubert, P., Garg, S., Milford, M. and Fischer, T., 2023. Visual Place
Recognition: A Tutorial. arXiv preprint arXiv:2303.03281.

5. . Chen, Z., Maffra, F., Sa, I. and Chli, M., 2017, September. Only look once, mining
distinctive landmarks from convnet for visual place recognition. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (pp. 9-16).
IEEE.

6. Masone, C. and Caputo, B., 2021. A survey on deep visual place recognition. IEEE
Access, 9, pp.19516-19547.

7. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A. and Torralba, A., 2017. Places: A 10
million image database for scene recognition. IEEE transactions on pattern analysis
and machine intelligence, 40(6), pp.1452-1464.

8. IEEE. Quattoni, A. and Torralba, A., 2009, June. Recognizing indoor scenes. In
2009 IEEE conference on computer vision and pattern recognition (pp. 413-420).
IEEE.

9. Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H. and He, Q., 2020.
A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1),
pp.43-76.

10. Tammina, S., 2019. Transfer learning using vgg-16 with deep convolutional neural
network for classifying images. International Journal of Scientific and Research
Publications (IJSRP), 9(10), pp.143-150.

11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K. and Fei-Fei, L., 2009, June. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition (pp. 248-255). Ieee.

12. . Jiang, Z.P., Liu, Y.Y., Shao, Z.E. and Huang, K.W., 2021. An improved VGG16
model for pneumonia image classification. Applied Sciences, 11(23), p.11185.

13. Joshi, K., Tripathi, V., Bose, C. and Bhardwaj, C., 2020. Robust sports image
classification using InceptionV3 and neural networks. Procedia Computer Science,
167, pp.2374-2381.

14. Shabbir, A., Ali, N., Ahmed, J., Zafar, B., Rasheed, A., Sajid, M., Ahmed, A. and
Dar, S.H., 2021. Satellite and scene image classification based on transfer learning
and fine tuning of ResNet50. Mathematical Problems in Engineering, 2021, pp.1-
18.

15. Ali, L., Alnajjar, F., Jassmi, H.A., Gocho, M., Khan, W. and Serhani, M.A., 2021.
Performance evaluation of deep CNN-based crack detection and localization
techniques for concrete structures. Sensors, 21(5), p.1688.

16. Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556.

16

MATEC Web of Conferences 388, 04009 (2023)	 https://doi.org/10.1051/matecconf/202338804009
2023 RAPDASA-RobMech-PRASA-AMI Conference

(c) Study (blue arrow) (d) Bedroom (orange arrow)

Fig. 14. Map generated of the smart home for place recognition at a given position

 From the experimental implementation in section 2.4 we can see that the accuracies for
the three models that we trained are close to each other with the ResNet model ranking the
best out of three with an accuracy of 91.27% followed by VGG16 model with an accuracy
of 86.90% and the Inception-v3 model with 81.66% accuracy. The VGG16 model is big to
load. A single recognition can take up to 0.200s on average as seen in Table 1, this means
that only 4-5 out of 30 frames per second (fps) can be captured and classified before running
into processing issues.
 The inception model can classify 10 out of every 30fps and the ResNet50 model can
classify 2 out of 30fps. However, they are less accurate with the real-time implementation
with ResNet50 performing slightly better than Inception v3. The Inception-v3 model is the
least computationally intense model.
 When the frames are not selected at this processing speed the system cannot deal with
all the data tath it has to classify.

4 Conclusion
In this study we implemented Visual Place Recognition (VPR) as an additional functionality
on the Voyager mobile robot, a platform developed in-house. To this end, we used the smart
house within the CSIR robotics laboratory to capture the required dataset. The smart house
is an open-plan small house with four rooms: lounge, office, kitchen and bedroom. This
dataset was supplemented with additional images from ImageNet using a transfer learning
approach.
 For the VPR we investigated three convolutional neural networks (CNN): VGG16,
Inception-v3 and ResNet50. Each CNN was trained and validated using the dataset from the
smart house on Tensorflow. The results indicated that all three architectures are suitable for
simple place recognition with computational resources as the deciding factor. Taking
computation and accuracy into account ResNet50 performed the best followed by VGG16
and then Inception-v3. ResNet50 would be a better option if there are no restrictions on the
computational resources as it provides excellent accuracy, especially for more complex
images.
 The place recognition algorithm was implemented on the Voyager mobile robot through
a custom ROS2 node which allows communication with Tensorflow. Place recognition was
tested using one of the .bag files. Voyager was able to successfully recognise all four rooms
in the smart house for all three CNN models.

 The additional place recognition functionality will allow Voyager to improve upon its
localisation capabilities while also better interpreting its surroundings. This is a first step
towards implementing an autonomous capability for the platform which will improve its
adaptability and functionality within different environments.

References
1. Afif, M., Ayachi, R., Said, Y. and Atri, M., 2020. Deep learning based application

for indoor scene recognition. Neural Processing Letters, 51, pp.2827-2837.
2. Kim, J. and Jun, H., 2008. Vision-based location positioning using augmented

reality for indoor navigation. IEEE Transactions on Consumer Electronics, 54(3),
pp.954-962.

3. Zhang, X., Wang, L. and Su, Y., 2021. Visual place recognition: A survey from
deep learning perspective. Pattern Recognition, 113, p.107760.

4. Schubert, S., Neubert, P., Garg, S., Milford, M. and Fischer, T., 2023. Visual Place
Recognition: A Tutorial. arXiv preprint arXiv:2303.03281.

5. . Chen, Z., Maffra, F., Sa, I. and Chli, M., 2017, September. Only look once, mining
distinctive landmarks from convnet for visual place recognition. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (pp. 9-16).
IEEE.

6. Masone, C. and Caputo, B., 2021. A survey on deep visual place recognition. IEEE
Access, 9, pp.19516-19547.

7. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A. and Torralba, A., 2017. Places: A 10
million image database for scene recognition. IEEE transactions on pattern analysis
and machine intelligence, 40(6), pp.1452-1464.

8. IEEE. Quattoni, A. and Torralba, A., 2009, June. Recognizing indoor scenes. In
2009 IEEE conference on computer vision and pattern recognition (pp. 413-420).
IEEE.

9. Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H. and He, Q., 2020.
A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1),
pp.43-76.

10. Tammina, S., 2019. Transfer learning using vgg-16 with deep convolutional neural
network for classifying images. International Journal of Scientific and Research
Publications (IJSRP), 9(10), pp.143-150.

11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K. and Fei-Fei, L., 2009, June. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition (pp. 248-255). Ieee.

12. . Jiang, Z.P., Liu, Y.Y., Shao, Z.E. and Huang, K.W., 2021. An improved VGG16
model for pneumonia image classification. Applied Sciences, 11(23), p.11185.

13. Joshi, K., Tripathi, V., Bose, C. and Bhardwaj, C., 2020. Robust sports image
classification using InceptionV3 and neural networks. Procedia Computer Science,
167, pp.2374-2381.

14. Shabbir, A., Ali, N., Ahmed, J., Zafar, B., Rasheed, A., Sajid, M., Ahmed, A. and
Dar, S.H., 2021. Satellite and scene image classification based on transfer learning
and fine tuning of ResNet50. Mathematical Problems in Engineering, 2021, pp.1-
18.

15. Ali, L., Alnajjar, F., Jassmi, H.A., Gocho, M., Khan, W. and Serhani, M.A., 2021.
Performance evaluation of deep CNN-based crack detection and localization
techniques for concrete structures. Sensors, 21(5), p.1688.

16. Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556.

17

MATEC Web of Conferences 388, 04009 (2023)	 https://doi.org/10.1051/matecconf/202338804009
2023 RAPDASA-RobMech-PRASA-AMI Conference

17. Pardede, J., Sitohang, B., Akbar, S. and Khodra, M.L., 2021. Implementation of
transfer learning using VGG16 on fruit ripeness detection. Int. J. Intell. Syst. Appl,
13(2), pp.52-61.

18. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z., 2016. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 2818-2826).

19. Ali, L., Alnajjar, F., Jassmi, H.A., Gocho, M., Khan, W. and Serhani, M.A., 2021.
Performance evaluation of deep CNN-based crack detection and localization
techniques for concrete structures. Sensors, 21(5), p.1688.

20. He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 770-778).

21. Shyamalee, T. and Meedeniya, D., 2022. Glaucoma detection with retinal fundus
images using segmentation and classification. Machine Intelligence Research,
19(6), pp.563-580.

22. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M. and Berg, A.C., 2015. Imagenet large
scale visual recognition challenge. International journal of computer vision, 115,
pp.211-252.

23. Macenski, S., Martín, F., White, R. and Clavero, J.G., 2020, October. The marathon
2: A navigation system. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (pp. 2718-2725). IEEE.

18

MATEC Web of Conferences 388, 04009 (2023)	 https://doi.org/10.1051/matecconf/202338804009
2023 RAPDASA-RobMech-PRASA-AMI Conference

