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Abstract. Spatial awareness is an important competence for a mobile 
robotic system. A robot needs to localise and perform context interpretation 
to provide any meaningful service. With the deep learning tools and readily 
available sensors, visual place recognition is a first step towards identifying 
the environment to bring a robot closer to spatial awareness. In this paper, 
we implement place recognition on a mobile robot considering a deep 
learning approach. For simple place classification, where the task involves 
classifying images into a limited number of categories, all three 
architectures; VGG16, Inception-v3 and ResNet50, perform well. However, 
considering the pros and cons, the choice may depend on available 
computational resources and deployment constraints. 

1 Introduction 
Place classification for mobile robots refers to the task of automatically categorising and 
recognising different types of places or environments that a robot encounters during its 
navigation. The goal is to enable the robot to understand and interpret its surroundings, 
allowing it to make informed decisions and perform appropriate actions based on the 
identified place type. 
 Place classification plays a crucial role in various robot applications, including 
autonomous navigation, environment mapping, and human-robot interaction. By accurately 
identifying places such as offices, kitchens, bedrooms, studies, or other areas, the robot can 
adapt its behaviour, perform specific tasks, and navigate effectively in different 
environments. 
 There are many indoor applications for visual place recognition. In Afif et al. [1] they 
evaluate efficientNet for Visual Place Recognition (VPR) to assist visually impaired 
individuals by providing them with information about their surroundings and helping them 
navigate indoor spaces. Another example is Augmented Reality (AR) and Virtual Reality 
(VR) applications as seen in Kim et al. [2]. 
 Place recognition is a fundamental topic of research and development in the field of 
computer vision. In the past, visual place recognition has been limited to only considering 
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processed images produced with manually identified features. These could be local features 
such as Scale Invariant Feature Transformation (SHIFT), Speeded Up Robust Features 
(SURF) or global features such as Histogram of Oriented Gradients (HOG). However, the 
last two decades have seen the rise of deep learning approaches in place recognition 
applications in Zhang et al. [3]. 
 In Zhang et al. [3] there is a nice representation of place recognition milestones of visual 
place recognition methods, see Figure 1. We see that over the past few decades, methods 
transitioned from traditional handcrafted feature-based methods to more recently learned 
feature-based methods. 
 

 

Fig. 1.  Milestones of visual place recognition methods. (Adapted from Zhang et al. [3]) 
 
 In Schubert et al. [4] they discuss state-of-the-art deep learning methods that can be used 
to address challenges in VPR. It provides an introduction to how VPR is implemented and 
evaluates different approaches. We also see another approach to the VPR problem when Chen 
et al. [5] implements You Only Look Once (YOLO).  
 To explore the use of deep learning in place recognition, we consider a convolutional 
neural network (CNN) approach for place recognition on a mobile robot. CNNs are trained 
on labelled datasets of images that represent different places, allowing them to learn 
discriminative features and patterns for each place category. To achieve accurate place 
classification for mobile robots, it is important to curate a diverse and representative dataset 
of labelled images encompassing different place categories. The dataset should capture 
variations in lighting conditions, viewpoints, and environmental factors to ensure robustness 
in real-world scenarios. 
 Another survey on deep visual place recognition from Masone et al. [6], includes a 
summary of datasets that are used in visual place recognition tasks. Deep learning approaches 
rely on big and clean datasets. Various datasets are of outdoor scenes with a few nice indoor 
datasets like Zhou et al. [7] and Quattoni et al. [8]. 
 Normally CNNs require a very large dataset, a thousand images or more for each room 
in the environment, for training. To reduce the number of images needed, while retaining a 
decent accuracy, we consider a transfer learning approach to CNN’s. Transfer learning speeds 
up learning while transferring information from already trained weights on a different dataset 
explained in Zhuang et al. [9]. In Tammina et al. [10] we see how transfer learning and the 
VGG16 architecture were used to classify images.  
 For this work, we train three different CNN architectures; VGG16, Inception v3 and 
ResNet50. We use transfer learning for each CNN using weights trained on the ImageNet 
dataset in Deng et al. [11]. 
 In Section 2 we expand on the different CNN architectures followed by a discussion of 
the Imagnet dataset as well as the data we collected to train our custom place classification 

algorithms. In Section 3 we see the results of our trained networks and we test our trained 
weights on a robot. This work is concluded in Section 4.   

2 Methods 
Different CNN architectures have been developed to address various challenges and 
requirements in the field of computer vision. Different architectures aim to strike a balance 
between depth, complexity, and computational resources, catering to various use cases and 
constraints.  Their suitability for a specific use case depends on factors such as dataset size, 
computational resources, and implementation constraints. 
 Three common architectures have been chosen to compare the effectiveness of our place 
recognition on a robot. VGG16, Inception-v3, and ResNet50 are all powerful CNN 
architectures that have demonstrated excellent performance on various image classification 
tasks, including both complex and simple classification problems as seen in Jiang et al. [12], 
Joshi et al. [13], Shabbir et al. [14]. 
 The selection of hyperparameters was performed manually on a trial-and-error basis, as 
there is no mathematical formulation for the calculation of appropriate parameters for a 
specific dataset. The overall computational architecture of the proposed CNNs are shown in 
the next sections. 

2.1 CNN Layers Explained  

2.1.1 Input layer 

Input layer specifications are important to consider when preparing data for these CNN 
models. They must be pre-processed to match the expected format before feeding them into 
the networks for training. 
 For example, the first layer takes an image of ℎ (height) × w (width) × c (number of 
channels) pixels as input and passes it through convolutional and max pooling layers to 
reduce its spatial size.  
 After passing through the designed convolutional and max-pooling layers of the chosen 
architecture, the final feature vector is obtained at the fully connected layer and is input into 
the classifier for class prediction [15]. 
 A convolutional layer, often referred to as a "conv layer," is a fundamental building block 
in a CNN. It is a key component of CNNs used for image and spatial data analysis. The 
primary purpose of a convolutional layer is to perform feature extraction from the input data 
through a process called convolution. 

2.1.2 Convolutional Layer 

A convolutional layer is a fundamental building block in a CNN. It is a key component of 
CNNs used for image and spatial data analysis. The primary purpose of a convolutional layer 
is to perform feature extraction from the input data (Equation 1 [15]). 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = ∑(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛×𝑛𝑛 + 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑛𝑛×𝑛𝑛) + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 
 

(1) 

 
 The convolutional layer applies a set of learnable filters (kernels) to the input data. 
These filters are small, typically 3x3 or 5x5 grids of numbers represented by n x n. The 
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layer slides these filters over the input data to compute a dot product between the filter and 
a local region of the data. This process captures features present in the input. 
 The result of the convolution operation is a feature map. Each filter produces one feature 
map. Feature maps represent the presence of specific patterns or features in the input data. 
These patterns can be simple, such as edges, or more complex, like textures or object parts. 
The operation is shown in Figure 2.  

2.1.3 Activation Layer 

After convolution, a non-linear activation function, typically ReLU (Rectified Linear Unit), 
is applied to the feature maps, see Nair et al. [15]. ReLU is computationally faster than other 
activation functions. This introduces non-linearity into the model, allowing it to capture 
complex relationships in the data. The operation is shown in Figure 2. 

2.1.4 Max-Pooling Layer 

Pooling layers follow convolutional layers. These layers reduce the spatial dimensions of the 
feature maps while retaining the most important information. Max pooling is the most 
popular pooling operation. A window (typically 2x2 or 3x3) is applied to each location in the 
input feature map, and the maximum value within that window is retained in the output 
feature map. 
 It helps capture the most prominent features and reduce the sensitivity of the network to 
small changes in the input data. The operation is shown in Figure 2. 
 

 
Fig.2. Mathematical operations in convolutional, rectified linear unit (ReLu), and max-
pooling layers. (Adapted from et al. [15]) 

2.1.5 Fully connected Layer 

 A fully connected layer is a type of layer in a neural network that connects every neuron 
from the previous layer to every neuron in the current layer. Fully connected layers are 
typically found in the later stages of neural. These layers play a crucial role in transforming 
the learned features into final output predictions or decisions. 

 This layer converts the three-dimensional matrix from the previous layers to a one-
dimensional vector. Equation 2 shows the operation, [15]. 
 

𝑍𝑍𝑉𝑉𝑉𝑉×1 =  𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑉𝑉𝑉𝑉×𝑉𝑉𝑉𝑉  𝐼𝐼𝑉𝑉𝑉𝑉×1. 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉×1 (2) 
 
Vo and Vi is the input and output vector size while Z is the output.  

 

2.1.6 Softmax Layer 

The softmax layer is the final layer in the neural network. It is important in most neural 
network architectures, even more so when the network is used for multiclass classification 
tasks. It is responsible for transforming the raw output scores from the preceding layers into 
probability distributions over multiple classes. 
 If the previous output vector is ‘z’, the softmax function for a class’i’ is calculated as in 
equation 3. 
 

𝑃𝑃(𝑖𝑖) =  𝑒𝑒𝑧𝑧𝑖𝑖

∑ 𝑒𝑒𝑧𝑧𝑗𝑗𝑗𝑗
 

(3) 

 
The output will be a vector with values between 0 and1.  

 

  

2.2 VGG16  

The VGG16 (Visual Geometry Group 16) is a CNN architecture that was introduced by the 
Visual Geometry Group at the University of Oxford. It was developed for image 
classification tasks. 
 VGG16 is known for its simplicity and effectiveness in capturing features from images, 
Simonyan et al. [16]. However, VGG16 is a relatively deep architecture with many 
parameters, which may make it computationally expensive and resource-intensive for 
deployment on resource-constrained devices like robots.  
 The VGG16 architecture consists of a total of 16 weight layers, including 13 
convolutional layers and 3 fully connected layers. It follows a straightforward design 
principle of using small-sized convolutional filters repeatedly along with max-pooling layers 
to downsample the spatial dimensions. Figure 3 shows the architecture of the VGG16 model. 
 

 

Fig. 3.  Architecture of VGG16 model, (Adapted from Pardede et al. [17]) 
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2.3 Inception-v3 

The Inception-v3 is a CNN architecture developed by researchers at Google. It is designed 
for image classification. The architecture builds upon the original Inception model. 
 Inception-v3 is designed to capture features at different scales in Szegedy et al. [18]. By 
using different filter sizes and pooling operations in the Inception modules, Inception-v3 can 
capture features at multiple spatial scales. This allows it to effectively learn both local and 
global features.  
 It balances model complexity and performance, making it a suitable choice for a wide 
range of applications. Inception-v3 offers good accuracy while being computationally 
efficient compared to deeper architectures like VGG16 or ResNet50, this can also be seen in 
Table 1 in the result section. It can handle both complex and simple image classification tasks 
effectively. 
 The Inception-v3 architecture combines a variety of convolutional filters with different 
sizes and strides to capture features at various scales. It also employs a technique called 
factorisation to reduce the computational complexity of convolutions. The idea behind 
factorization is to break down a large convolutional operation into a series of smaller 
operations, which can be computationally more efficient. Figure 4 shows the architecture of 
the Inception-v3 model. 
 

 

Fig. 4.  Architecture of Inception-v3 model, (Adapted from Ali et al. [19]) 

2.4 ResNet-50 

The ResNet50 (Residual Network-50) is a CNN architecture that was introduced by 
researchers at Microsoft Research Asia. It is specifically designed to address the challenge 
of training very deep neural networks.  
 ResNet50 addresses the challenge of training deep networks by introducing residual 
connections in He et al. [20]. A residual connection is like a shortcut that allows the network 
to skip some layers and directly pass information from one layer to another. The primary 
motivation behind ResNet50 was to overcome the degradation problem associated with 
training deep neural networks. The degradation problem refers to the observation that 
increasing the network depth leads to reduced accuracy due to difficulties in training the deep 
layers.  

 ResNet50 can handle both simple and complex image classification effectively. 
However, it is a deeper architecture than Inception-v3 and may require more computational 
resources during training and inference. Figure 5 shows the architecture of the ResNet50 
model. 

 

Fig. 5.  Architecture of ResNet50 model, (Adapted from Shyamalee et al. [21]) 

2.5 The Dataset 

ImageNet is a large-scale visual database designed for visual object recognition and 
classification tasks. It serves as a benchmark for training and evaluating computer vision 
algorithms and models in Russakovsky et al. [22]. The database contains millions of labelled 
images across a wide range of object categories. All three CNN architectures have pre-trained 
Tensorflow weights based on the ImageNet database that we used in transfer learning when 
training our models.  
 

 

Fig. 6.  Smart home environment for robot 

 
 To collect our database with four different rooms the Pioneer mobile robot was manually 
driven around the smart home, Figure 6. Data were collected in each room, namely the 
kitchen, lounge, study and bedroom. A few .bag files were captured which contain all the 
sensors and shared data. The .bag file contains all the images of each of the four different 
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rooms in the smart home. The RGB images were extracted from these .bag files for training 
with sample images shown in Figure 7. This resulted in 181 train and 59 test RGB images 
for the kitchen, 124 train and 41 test RGB images for the lounge, 204 train and 67 test RGB 
images for the bedroom and 181 train and 62 test RGB images for the office. This is a small 
dataset and we therefore used images from the ImageNet dataset to supplement the training 
using a transfer learning approach. 

  

(a) Kitchen (b) Lounge 

  

(c) Study  (d) Bedroom 

Fig. 7. Mobile robot data sample for kitchen, lounge, study, and bedroom - robot’s point 
of view 

2.6 Experimental Setup - Implementation on Voyager mobile robot 

The Voyager is a mobile robot, developed in-house, able to generate a map of its 
environment, see Figure 8. Place recognition will be added to the functionality so that the 
map provides more meaningful insights. This is a building block for detecting objects that 
belong in a certain room and the actions (or activities) generally undertaken in that room.  

  

Fig. 8. Voyager mobile robot 

 The Voyager mobile robot software is built using robot operating software (ROS2) in 
Macenski et al. [23]. To implement the classification, ROS2 needs to work with 
Tensorflow which was used to train our CNN models. A custom ROS2 node was 
developed to implement the place recognition functionality, using the weights obtained 
during training for the three different CNN models, which would allow Tensorflow to 
communicate with ROS2.  
 In this custom ROS2 node, images are received through the subscriber from a specific 
topic. The subscriber then converts the received image message using cv_bridge and 
passes it to the TensorFlow model for classification. The result is then published by the 
publisher to a designated topic for further processing or visualisation. Note that the specific 
implementation details may vary depending on your chosen neural network architecture, 
dataset, and ROS2 setup. Both publishers/subscribers and client/server can be used for 
implementing image classification in ROS 2. The choice between them depends on the 
specific requirements and design of your system. Here are some considerations for each 
approach: 

● Publishers/Subscribers follow an asynchronous communication model, where the 
publisher node publishes messages to a topic, and any interested subscriber nodes 
receive and process those messages. This can be useful when you have multiple 
subscribers that need to independently process the image data without waiting for 
each other. The pairs are loosely coupled. The publisher doesn't need to know the 
specific subscribers, and subscribers don't need to know the publishers. This can 
make development easier.  
 

● Client/Server follows a synchronous communication model. The client node 
sends a request to the server node, which then processes the request and returns 
the result. This synchronous communication can be beneficial when you need a 
direct response from the server for image classification, especially in real-time or 
interactive scenarios. With a client/server approach, the server node acts as a 
central entity responsible for processing the image classification requests. 
 

 This implementation is tested using a test .bag file which was captured in the smart 
home.  It is an open-plan house with four different rooms: an office (or study), kitchen, 
bedroom, and lounge. Voyager first generates a map of the indoor environment, using 
Simultaneous Localisation and Mapping (SLAM). It then sends the images obtained 
through its camera to the place recognition algorithm through the custom ROS2 node. The 
custom ROS2 node passes these images to Tensorflow for classification, before sending 
the result back to the custom ROS2 node. This uses a publisher and subscriber. Figure 9 is 
a simplified rqt graph including the recognition node interacting with the Voyager stack. 
This rqt graph provides a visual representation of the communication graph among ROS 2 
nodes. 
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Fig. 9. Simplified rqt graph including the recognition node 
 

3 Results and Discussion 
When implementing classification on a robot, it is important to consider the computational 
resources available on the robot and the real-time constraints of the application. If your robot 
has sufficient computational power and memory, implementing VGG16, Inception-v3, or 
ResNet50 can yield accurate image classification results. However, if computational 
resources are limited, you may need to explore more lightweight architectures such as 
MobileNet or SqueezeNet, which are specifically designed for resource-constrained 
environments. Ultimately, the choice of architecture should be based on a trade-off between 
accuracy and computational efficiency, considering the specific requirements and constraints 
of the robot application. 
 We first train each CNN architecture using the smart home dataset discussed in Section 
2.4 before implementing and testing it on the Voyager platform. When comparing VGG16, 
Inception-v3, and ResNet50 CNN architectures, it is important to note that the "better" option 
depends on specific factors such as the task requirements, available computational resources, 
and dataset characteristics.  
 
3.1 CNN Architecture Training 

In this section we present and discuss the results from training and validating the three CNN 
architectures using the dataset described in Section 2.4.  
 
3.1.1 VGG 16 

This CNN architecture is relatively straightforward, it is easy to implement and understand. 
The computational requirements for this CNN are not as efficient as other architectures, due 
to a large number of parameters. Care should therefore be taken to avoid overfitting when 
the dataset is small.  
 The results from training on our dataset and validating with a separate set of validation 
images are shown in Figure 11. In Figure 10(a) we see the accuracy and loss when training 
the VGG16 CNN, with an accuracy of 86.90%. 
 The performance of the VGG16 CNN model is illustrated in Figure 10(b) with a 
confusion matrix. A confusion matrix is a table used to evaluate the performance of a machine 
learning model, particularly in classification tasks. It provides a summary of the predictions 
made by the model compared to the actual labels of the data. The confusion matrix organises 
the predictions into four categories: true positives (TP), true negatives (TN), false positives 
(FP), and false negatives (FN).VGG16 demonstrates good performance on our data. 
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● True Positives (TP): The number of instances correctly predicted as positive by the 
model. 

● True Negatives (TN): The number of instances correctly predicted as negative by 
the model. 

● False Positives (FP): The number of instances incorrectly predicted as positive by 
the model when the actual label is negative. 

● False Negatives (FN): The number of instances incorrectly predicted as negative by 
the model when the actual label is positive. 

 From the confusion matrix, various evaluation metrics can be derived, including 
accuracy, precision, recall, and F1 score, which further quantify the model's performance. 
 The VGG16 model performed well seen in the confusion matrix.  

 

(a) Accuracy and loss  

 

(b) Confusion matrix  

Fig. 10. Results for training and validating the VGG16 CNN model 
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3.1.2 Inception-v3 

Th Inception-v3 CNN architecture makes efficient use of computational resources due to the 
use of factorised convolutions, see Table 1. It captures features at multiple spatial scales, 
enabling it to handle complex patterns in images. However, it is relatively complex to 
understand and implement compared to simpler architectures. In Figure 3, you can see the 
intricacies of the architecture of the Inception-v3 model compared to that of the VGG16 
model in Figure 3.  
 
Table 1. Comparison of models’ computational time and size 
 

Model Patch size Single image 
computation 
time (Seconds) 

Total image 
processed per bag 
(394.630s/bag) 

Model 
size 

VGG16 224x224x3 0.230 1715 1.25GB 

Inception-v3 224x224x3 0.980 402 124.1MB 

ResNet5 224x224x3 0.725 544 96.5MB 

 
 The results from training on our dataset and validating with a separate set of validation 
images are shown in Figure 11, with an accuracy of 81.66%. The confusion matrix shows 
only slightly less accuracy than the results for the VGG16 model.  
 

 

(a) Accuracy and loss  

 

(b) Confusion matrix 

Fig. 11. Results for training and validation of the Inception-v3 CNN model 

3.1.3 ResNet50 

The ResNet50 CNN architecture addresses the issue of vanishing gradients in deep neural 
networks, allowing for effective training of very deep models. It provides good accuracy with 
relatively fewer parameters compared to VGG16, see Table 2. However, it is still 
computationally demanding, particularly during training. 
 
Table 2. Deep Learning Models, with the Number of Convolutional Layers and Parameters 
 

Deep learning model Number of convolutional 
layers 

Number of parameters 
(Millions)  

VGG16 16 138 

Inception-v 48 21.80 

ResNet5 50 23.78 

 
 The results from training on our dataset and validating with a separate set of validation 
images are shown in Figure 12, with an accuracy of 91.27%. From the confusion matrix, we 
do not see a significant change in performance compared to the VGG16 or Inception-v3 
models.   
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 (b) Accuracy and loss 

 

(b) Confusion matrix 

Fig. 12. Results for training and validation of the ResNet50 CNN model 

3.1.4 Conclusion 

For simple place classification, where the task involves classifying images into a limited 
number of categories, all three architectures can perform well. However, considering the pros 
and cons, the choice may depend on available computational resources and deployment 
constraints. 
 If computational resources are limited, Inception-v3 might be a good option due to its 
computational efficiency while still achieving reasonable accuracy. If computational 

resources are more abundant, ResNet50 could be a suitable choice as it provides excellent 
accuracy, particularly when dealing with more complex image patterns. 
 VGG16 can be considered if simplicity and ease of implementation are important factors, 
although it may require more computational resources to deploy compared to Inception-v3. 
 In conclusion, there is no definitive "better" architecture among VGG16, Inception-v3, 
and ResNet50. The choice should be made based on a trade-off between computational 
efficiency, model complexity, and available resources, considering the specific requirements 
and constraints of your simple place classification task. 
 
3.2 Implementation on Voyager mobile robot 

In Figure 13 we see the 3-dimensional map created by the Voyager mobile robot. The lines 
were added to indicate the different rooms of the open area. The green line indicates the path 
the voyager robot travelled. 
 

 

Fig. 13. Map generated of smart home by Voyager mobile robot 

 
Voyager then provides an indication of which room it is in. The place recognition results, 
considering all three CNN models, are shown in Figure 14.  
 
 

  

(a) Kitchen (red arrow)  (b) Lounge (green arrow) 
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(c) Study (blue arrow)  (d) Bedroom (orange arrow)  

Fig. 14.  Map generated of the smart home for place recognition at a given position 

  
 From the experimental implementation in section 2.4 we can see that the accuracies for 
the three models that we trained are close to each other with the ResNet model ranking the 
best out of three with an accuracy of 91.27% followed by VGG16 model with an accuracy 
of 86.90% and the Inception-v3 model with 81.66% accuracy. The VGG16 model is big to 
load. A single recognition can take up to 0.200s on average as seen in Table 1, this means 
that only 4-5 out of 30 frames per second (fps) can be captured and classified before running 
into processing issues.  
 The inception model can classify 10 out of every 30fps and the ResNet50 model can 
classify 2 out of 30fps. However, they are less accurate with the real-time implementation 
with ResNet50 performing slightly better than Inception v3. The Inception-v3 model is the 
least computationally intense model.  
 When the frames are not selected at this processing speed the system cannot deal with 
all the data tath it has to classify.  

4 Conclusion  
In this study we implemented Visual Place Recognition (VPR) as an additional functionality 
on the Voyager mobile robot, a platform developed in-house. To this end, we used the smart 
house within the CSIR robotics laboratory to capture the required dataset. The smart house 
is an open-plan small house with four rooms: lounge, office, kitchen and bedroom. This 
dataset was supplemented with additional images from ImageNet using a transfer learning 
approach.   
 For the VPR we investigated three convolutional neural networks (CNN): VGG16, 
Inception-v3 and ResNet50. Each CNN was trained and validated using the dataset from the 
smart house on Tensorflow. The results indicated that all three architectures are suitable for 
simple place recognition with computational resources as the deciding factor. Taking 
computation and accuracy into account ResNet50 performed the best followed by  VGG16 
and then Inception-v3. ResNet50 would be a better option if there are no restrictions on the 
computational resources as it provides excellent accuracy, especially for more complex 
images.  
 The place recognition algorithm was implemented on the Voyager mobile robot through 
a custom ROS2 node which allows communication with Tensorflow. Place recognition was 
tested using one of the .bag files. Voyager was able to successfully recognise all four rooms 
in the smart house for all three CNN models.  

 The additional place recognition functionality will allow Voyager to improve upon its 
localisation capabilities while also better interpreting its surroundings. This is a first step 
towards implementing an autonomous capability for the platform which will improve its 
adaptability and functionality within different environments.  
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