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Abstract— This paper presents a comprehensive analysis of 

nature-inspired metaheuristic algorithms for achieving energy 

efficiency in the Edge-Cloud environment. The study focuses on 

the Particle Swarm Algorithm (PSO), Ant Colony Optimization 

(ACO), and Firefly algorithm, evaluating their performance in 

workload distribution balance, processing speed, and energy 

consumption. The simulations are conducted using the ReCloud 

Simulator. The results reveal that the PSO algorithm 

outperforms the ACO and Firefly algorithms in workload 

distribution balance. The ACO algorithm excels in exploration, 

while the Firefly algorithm demonstrates superior processing 

speed. However, the Firefly algorithm exhibits slight performance 

variations due to its sensitivity to workload characteristics. Both 

the Firefly and PSO algorithms show energy efficiency 

comparable to or slightly lower than the ACO algorithm. These 

findings contribute to a better understanding of the strengths and 

weaknesses of each algorithm, offering valuable insights for 

researchers and practitioners in the field of energy-efficient 

computation offloading in the Edge-Cloud environment. 
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algorithm, optimization algorithm,  

I. INTRODUCTION 

The Internet of Things (IoT) generates a vast amount of data 

each year, overwhelming current architectures like Cloud 

Computing due to high latency and bandwidth costs associated 

with data transmissions. However, advancements in Edge 

computing infrastructure, such as improved processing units 

(including neuromorphic processors), increased storage 

capacity, and enhanced cyber-physical security architectures 

[1], [2], have made the network edge an attractive option for 

offloading computation tasks from mobile devices. This is 

particularly crucial for mobile devices as conventional IoT 

applications, with their power-hungry and latency-sensitive 

characteristics, lead to excessive energy consumption and heat 

generation. Consequently, battery lifespan is compromised, 

and system performance suffers. To address these issues and 

ensure energy efficiency, computation offloading to local edge 

servers has gained prominence. Nevertheless, the 

heterogeneous nature of the Edge-IoT environment introduces 

numerous conflicting objectives and trade-offs. Privacy versus 

convenience, customization versus security, and complexity 

versus tractability are all factors that need to be considered. 

While various algorithms have been developed to strike a 

balance, most of them are impractical due to constraints related 

to response time and Quality of Service (QoS). [3] In response 

to this challenge, researchers have proposed nature-inspired 

metaheuristic algorithms, which provide optimal solutions to 

multi-objective problems within limited timeframes without 

compromising QoS. Unlike heuristic algorithms, mathematical 

optimization, or machine learning methods, nature-inspired 

algorithms excel in scalability, tractability, efficiency, and 

simplicity of search space optimization. [3]  

Among these algorithms, Swarm Intelligence stands out as 

a promising approach. Inspired by the collaborative behaviour 

of social creatures like bees and ants, Swarm Intelligence 

enables adaptation to environmental changes while staying 

focused on objectives. [4] Leveraging the advantages of 

nature-inspired algorithms, Swarm Intelligence, and other 

similar metaheuristic algorithms have gained attention as 

effective solutions for energy efficiency in Edge environments. 

Despite the extensive coverage of nature-inspired algorithms 

for energy efficiency in Edge environments, there is a research 

gap in terms of comparative performance analysis specifically 

evaluating the Particle Swarm Algorithm, Ant Colony 

Optimization, and Firefly algorithm. These algorithms have 

been widely studied and applied in various domains like the 

Edge. [5] 

This paper aims to fill this research gap by comparing these 

algorithms comprehensively, with a specific focus on their 

performance in achieving energy efficiency and addressing 

load-balancing and latency constraints through computation 

offloading in the Edge-Cloud environment. Through this 

analysis, the paper aims to identify the strengths and 

weaknesses of each algorithm, providing valuable insights for 

researchers and practitioners in the field. The simulations are 

performed using the ReCloud Simulator to ensure accurate 

evaluation and comparison. 

The rest of the paper is organized as follows: Section II 

provides the background, followed by a discussion of nature-

inspired algorithms for energy efficiency at the Edge in Section 

III. Section IV presents the simulations conducted, and Section 

V explores the challenges in research. Finally, the paper 

concludes with Section VI. 

II. BACKGROUND 
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Energy utilization and task distribution in Edge-Cloud 

environments have been the focus of various studies, with 

computation offloading being a commonly employed approach. 

Rodrigues et al.[6] proposed the use of the Particle Swarm 

Optimization (PSO) algorithm to achieve low execution time 

by considering transmission and processing delays in 

distributed Edge-Cloud infrastructure. However, Huang et 

al.[7] extended Rodrigues et al.'s research by incorporating 

energy cost and security risks into the offloading process, and 

they opted for the Ant Colony Optimization (ACO) algorithm 

over PSO. They argued that ACO has a better ability to find 

global optima for multi-objective problems, while PSO 

exhibits a weaker exploration mechanism compared to 

exploitation. Huang et al. introduced two algorithms, EA-

RMIP and EA-OMIP, by combining ACO with Mixed Integer 

Programming (MIP), resulting in an energy-efficient 

offloading strategy that accounts for security considerations. 

Comparative analysis showed that EA-RMIP outperformed 

EA-OMIP in terms of convergence time. Whereas EA-OMIP 

was designed using conventional MIP techniques, EA-RMIP 

is an adaptation of a hybrid technique based on recent studies. 

Recognizing the potential for further enhancements, 

researchers have explored hybrid approaches by combining 

PSO and ACO to achieve improved results compared to 

individual algorithms. Pawar et al.[8] discovered that 

traditional load-balancing algorithms like First Come First 

Serve were inefficient for growing numbers of cloud service 

users. As a solution, they introduced the Ant Colony Honey 

Bee Dynamic Feedback (ACHBDF) algorithm, which 

combines ACO and the Honey Bee algorithm for resource 

balancing in Cloud Computing. Zahoor et al.[9] conducted 

similar research and compared various load balancing 

approaches, including PSO, Throttle, and Round Robin, in 

terms of latency performance. They found that PSO 

outperformed the other algorithms. Building on this hybrid 

metaheuristic approach, Zahoor et al. later combined Ant 

Colony Optimization (ACO) with Ant Bee Colony (ABC) 

algorithms, resulting in the Hybrid Artificial Bee Ant Colony 

Optimization (HABACO) algorithm for load balancing[10]. 

HABACO demonstrated superior performance in terms of 

average processing time and response time compared to ACO, 

PSO, and ABC algorithms. Other studies, such as Liu et al.[11] 

and Bi et al.[12], have also successfully utilized hybrid 

algorithms combining ACO with Fuzzy Clustering (FC), 

Genetic Algorithm (GA), Simulated Annealing (SA), and PSO, 

respectively, to address specific task scheduling and offloading 

challenges[13], [14]. 

In contrast, despite its potential for improving energy 

efficiency, the Firefly algorithm lacks extensive research 

highlighting its strengths. Adhikari et al.[15] introduced the 

Firefly algorithm, inspired by fireflies' mating rituals, for 

optimizing the placement of application tasks. The algorithm 

outperformed benchmarks in terms of computational time, 

energy consumption, CO2 emission, and temperature emission. 

III. NATURE-INSPIRED ALGORITHMS 

Nature-inspired metaheuristic algorithms have gained 

significant attention in solving optimization problems due to 

their ability to mimic natural phenomena and provide efficient 

solutions. This section discusses three prominent nature-

inspired metaheuristic algorithms: Particle Swarm 

Optimization (PSO), Ant Colony Optimization (ACO), and the 

Firefly Algorithm. We examine their concepts, strengths, 

weaknesses, and relevance to computation offloading and 

energy efficiency in the IoT environment. 

A. Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is a population-based 

optimization algorithm that simulates the collective behaviour 

of bird flocking or fish schooling[16]. It utilizes particles 

representing potential solutions, which iteratively adjust their 

positions based on their own experiences and the experiences 

of neighbouring particles. The strengths of PSO lie in its 

simplicity and ease of implementation, making it easily 

understandable and applicable. It demonstrates good 

exploration capabilities, enabling efficient search across a wide 

solution space. PSO has been successfully applied to various 

domains, particularly for continuous optimization problems. 

However, converging to the global optimum in complex, 

multimodal optimization problems may struggle. Premature 

convergence, where particles converge to suboptimal solutions 

too quickly, can limit its effectiveness. The performance of 

PSO heavily relies on parameter tuning, posing challenges in 

selecting appropriate values. In the context of computation 

offloading and energy efficiency in the IoT environment, PSO 

has been utilized for optimizing task allocation and resource 

utilization. Its exploration capabilities can aid in finding 

efficient offloading strategies. However, limitations such as 

premature convergence may restrict its effectiveness in 

dynamic IoT scenarios. 

B. Ant Colony Optimization (ACO) 

The Ant Colony Optimization (ACO) is a metaheuristic 

algorithm inspired by the foraging behaviour of ants[17]. It 

employs pheromone trails to guide the search for optimal 

solutions. Ants deposit pheromones on their paths, and other 

ants follow these trails, favouring paths with higher pheromone 

concentration. ACO excels in solving combinatorial 

optimization problems with discrete decision variables. It 

efficiently handles multi-objective optimization, making it 

suitable for complex, conflicting objectives. ACO exhibits 

adaptability and performs well in dynamic environments due 

to its distributed nature. However, ACO can suffer from slow 

convergence, particularly in large-scale problems. The 

algorithm's performance heavily relies on parameter tuning, 

which can be time-consuming and require domain expertise. 

ACO may struggle to find optimal solutions in high-

dimensional search spaces. In the context of computation 

offloading and energy efficiency in the IoT environment, ACO 

has been employed for optimizing task allocation, resource 

utilization, and load balancing. Its ability to handle multi-

objective optimization addresses the trade-off between energy 

efficiency, response time, and other performance metrics. 

However, consideration should be given to ACO's 

convergence speed and sensitivity to parameter settings in 

dynamic and resource-constrained IoT scenarios. 

C. Firefly Algorithm  

The Firefly Algorithm is inspired by the flashing behaviour 

of fireflies. It imitates the social behaviour of fireflies and their 

attraction towards brighter individuals[4]. The algorithm 

utilizes attractiveness between fireflies to guide the search for 
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optimal solutions. The Firefly Algorithm demonstrates fast 

convergence speed, making it suitable for optimization 

problems with limited computation resources. It performs well 

in continuous optimization problems and has been successfully 

applied to the cloud domain[18]. The algorithm shows 

potential for improving energy efficiency due to its quick 

convergence to near-optimal solutions. However, it may 

encounter challenges in solving large-scale and complex 

optimization problems. Its exploration capabilities may be 

limited, potentially leading to premature convergence. Further 

research is needed to explore its effectiveness in dynamic 

environments and multi-objective optimization. In the context 

of computation offloading and energy efficiency in the IoT 

environment, the Firefly Algorithm can be employed for 

optimizing resource allocation and energy efficiency. Its fast 

convergence speed enables real-time decision-making and 

efficient resource utilization. However, its limitations in 

handling complex optimization problems and exploration 

capabilities should be considered in dynamic IoT scenarios. 

IV. SIMULATIONS 

A. Key Parameters 

1) Degree of Imbalance: The degree of imbalance metric 

reflects the extent of workload distribution imbalance among 

the servers in the system. 

2) Processing Speed: The processing speed metric 

reflects the time required to execute the system's computation 

tasks. 

3) Energy consumption: Energy consumption is a 

crucial metric in evaluating the efficiency and sustainability of 

the algorithms. The energy consumption model depends on 

CPU utilization during system processes such as busy, idle, and 

task offloading. 

B. Simulation Workflow 

The simulation in this study aims to replicate a real-time 

environment by modelling devices, logical components, and 

management policies. To facilitate the simulation, the 

CloudSim simulator was utilized. Additionally, a 

supplementary model called ReCloud was employed to 

compare different algorithms within the Edge-Cloud 

simulation context. The simulation process involves several 

steps, including initializing ReCloud, setting up cloud servers, 

creating cloudlets, brokers, virtual machines (VMs), tasks, and 

specifying scheduling algorithms. The environment was then 

simulated, and the results were monitored. The ReCloud 

library enables the comparison of scheduling algorithms 

initiated within the broker. It is important to note that while 

ReCloud is an extension of CloudSim, it does not come 

preconfigured with components such as sensors and actuators. 

The performance of the three algorithms was evaluated three 

times in the context of these parameter settings. PSO was 

configured with the following parameter settings: p = 100, 

iterations = 100, minInertia = 0.4, maxInertia = 0.9, c1 = 1.5, 

c2 = 1.5, k = 5. These parameters govern the behaviour of the 

PSO algorithm, including the number of particles, the number 

of iterations, the inertia range, the cognitive and social 

coefficients, the constriction factor, and the methods used for 

updating inertia and particle position. ACO employs the 

following parameter values: ants = 100, iterations = 100, 

initial-Pheromone = 0.001, alpha = 1, beta = 4, q = 1, and rho 

= 0.1. These parameters control the behaviour of the ACO 

algorithm, such as the number of ants, the number of iterations, 

the importance of pheromones, and the influence of distance 

priority. Firefly Algorithm utilized the following parameter 

values: numFireflies = 100, maxIterations = 100, alpha = 0.1, 

beta = 0.9, and gamma = 0.5. These parameters influence the 

behaviour of the firefly algorithm, such as the number of 

fireflies, the maximum number of iterations, the attractiveness 

and randomness factors, and the light absorption factor. 

The parameter selection for the PSO algorithm was based 

on the trade-off between exploration and exploitation. The 

number of particles (p) determines the population size, with 

larger populations increasing computation overhead but 

smaller populations risking premature convergence. The 

number of iterations (iter) defines the stopping criterion, 

typically ranging between 100 and 1000 depending on the 

problem’s complexity. A value of 100 was chosen to strike a 

balance between exploration and convergence. The inertia 

weight (min Inertia, max Inertia) controls global and local 

exploration, with higher values encouraging exploration and 

lower values promoting exploitation. Cognitive and Social 

coefficients (c1, c2) influence velocity and position updates, 

impacting exploration and exploitation capabilities. The 

constriction factor (k) ensures convergence by reducing 

velocity near the best positions. In the ACO algorithm, the 

number of ants (ants) and iterations (iterations) determine 

population size and stopping criterion, respectively. The initial 

pheromone level (initial-Pheromone) influences early-stage 

path preference and is set to small positive values to prevent 

premature convergence. Pheromone importance (alpha) and 

distance priority (beta) balance exploitation and exploration. 

Total pheromone (q) controls the strength of pheromone 

updates, with higher values favouring exploitation. Pheromone 

vaporization (rho) regulates the rate of pheromone evaporation, 

with higher values promoting more exploration. In the Firefly 

algorithm, the number of fireflies sets the population size and 

maximum iterations for the stopping criterion. The attraction 

coefficients alpha, beta, and gamma govern fireflies' 

movement and attraction behaviour, with fine-tuning 

necessary to balance exploration and exploitation. 

These parameter choices were made to optimize the 

algorithms' performance based on their respective 

characteristics and the desired exploration-exploitation trade-

off[3]. 

C. Environment Setup 

In the experimental setup, the environment consists of two 

servers utilizing x86 architecture and employing Xen as the 

Virtual Machine (VM) monitor. Each server is equipped with 

three host devices, each offering a processing capacity of 

177730 MIPS and comprising six processing elements. The 

servers are configured with a RAM memory capacity of 16000 

MB, a bandwidth of 1500 MB/s, and a storage capacity of 4000 

GB. Additionally, the Edge-Cloud environment simulated 

includes two Brokers and three Virtual Machines (VMs). 

V. RESULTS 

The results of the experiment, as shown in Fig.1, Fig. 2 and 

Fig. 3 provide insights into the performance of the PSO, ACO, 
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and Firefly algorithms in terms of the degree of imbalance, 

processing speed and energy consumption. 

The experiment results for the PSO algorithm demonstrated 

a degree of imbalance of 2.3154, 2.5831 and 2.5705 in the first, 

second, and third scenarios, respectively. The processing 

speeds were 780 ms, 644 ms, and 1384 ms, while the energy 

consumption values were 24.524 KJ, 21.798 KJ and 21.266 KJ 

for the first, second and third scenarios, respectively. The ACO 

algorithm showed a degree of imbalance of 2.8941, 2.5835 and 

2.5587 in the first, second and third scenarios, respectively. For 

processing speed, the ACO algorithm achieved 738 ms, 534 ms, 

and 1204 ms in the first, second, and third scenarios, 

respectively. The corresponding energy consumption values 

were 24.421 KJ, 21.490 KJ. The Firefly algorithm yielded a 

degree of imbalance of 2.861, 2.5469 and 2.5341 in the first, 

second, and third scenarios, respectively. In terms of 

processing speed, the Firefly algorithm achieved 88 ms, 178 

ms, and 214 ms, with energy consumption values of 24.420 KJ, 

21.593 KJ, and 21.232 KJ for the first, second, and third 

scenarios, respectively. 

The PSO algorithm’s results indicate that the PSO algorithm 

achieved a lower degree of imbalance compared to both the 

ACO and Firefly algorithms. The strength of the PSO 

algorithm lies in its ability to strike a balance between 

exploration and exploitation, allowing it to converge towards a 

near-optimal solution. The weakness of the PSO algorithm 

may be its limited ability to escape local optima, which can 

result in suboptimal workload distribution. In contrast, the 

ACO algorithm exhibited a relatively higher degree of 

imbalance compared to the other algorithms in all three 

scenarios. The strength of the ACO algorithm lies in its ability 

to explore the solution space and find diverse solutions. 

However, this characteristic may lead to a less optimal 

workload distribution, resulting in a higher degree of 

imbalance. One possible weakness of the ACO algorithm is its 

sensitivity to parameter settings, such as the initial pheromone 

level and the pheromone importance, which may require 

careful tuning for optimal results The Firefly algorithm 

produced a degree of imbalance similar to the ACO algorithm, 

but slightly higher than the PSO algorithm. The Firefly 

algorithm's strength lies in exploiting solutions efficiently and 

converging towards optimal workload distribution. However, 

one potential weakness of the Firefly algorithm is its sensitivity 

to parameter settings, particularly the attraction coefficients, 

which may require careful tuning for optimal performance. 

In the experiments, the PSO algorithm demonstrated 

competitive processing speeds, particularly in the second 

scenario. This highlights the strength of the PSO algorithm in 

achieving efficient task allocation and execution. However, in 

the third scenario, the PSO algorithm exhibited slower 

processing speeds compared to the other algorithms, indicating 

a potential weakness in handling more complex scenarios with 

larger computation loads. The ACO algorithm demonstrated 

relatively fast processing speeds, particularly in the second 

scenario. This indicates the strength of the ACO algorithm in 

efficiently allocating computation tasks among the available 

resources. However, it is worth noting that the processing 

speeds achieved by the ACO algorithm were slightly higher 

compared to the other algorithms in all three scenarios. This 

suggests a potential weakness of the ACO algorithm in terms 

of computational efficiency. The Firefly algorithm 

demonstrated significantly faster processing speeds than the 

ACO and PSO algorithms in all three scenarios. This highlights 

the strength of the Firefly algorithm in achieving high 

computational efficiency and fast task execution. However, it 

is important to note that the Firefly algorithm exhibited slightly 

slower processing speeds compared to the other algorithms in 

the first and second scenarios, suggesting a potential weakness 

in certain scenarios with specific workload characteristics. 

In the experiments, the PSO algorithm demonstrated 

competitive energy consumption, particularly in the second 

and third scenarios. This highlights the strength of the PSO 

algorithm in achieving energy-efficient task allocation and 

execution. However, in the first scenario, the PSO algorithm 

consumed slightly higher energy than the other algorithms, 

suggesting a potential weakness in certain scenarios. The ACO 

algorithm demonstrated relatively consistent energy 

consumption across the scenarios, indicating its stability and 

effectiveness in managing energy resources. However, it is 

worth noting that the ACO algorithm consumed slightly higher 

energy compared to the Firefly and PSO algorithms in all three 

scenarios. This suggests a potential weakness of the ACO 

algorithm in terms of energy efficiency. The Firefly algorithm 

exhibited comparable energy consumption to the other 

algorithms, demonstrating its ability to achieve energy-

efficient task allocation and execution. However, in the first 

scenario, the Firefly algorithm consumed slightly higher 

energy compared to the other algorithms, indicating a potential 

weakness in specific scenarios.  

Overall, the PSO algorithm demonstrated superior workload 

distribution balance compared to the ACO and Firefly 

algorithms, with a 95% confidence interval ranging from 2.47 

to 2.74. While the ACO algorithm excelled in exploration and 

the Firefly algorithm showed strength in exploitation, both may 

benefit from parameter fine-tuning to improve workload 

distribution. The Firefly algorithm exhibited faster processing 

speed, outperforming the ACO and PSO algorithms in most 

scenarios, with a 95% confidence interval between 295.43 and 

985.46. However, it also displayed slight performance 

variations, indicating sensitivity to workload characteristics. In 

terms of energy consumption, the Firefly and PSO algorithms 

showed comparable or slightly lower energy usage compared 

to the ACO algorithm, with a 95% confidence interval for the 

true population mean falling within the range of 21.25 and 23.6, 

highlighting their energy efficiency. All three algorithms 

effectively managed energy resources.  

VI. CHALLENGES 

A. Lack of Scalability 

Nature-inspired algorithms, such as PSO, ACO, and the 

Firefly Algorithm, may encounter scalability issues when 

dealing with large-scale problems. The increasing complexity 

and dimensionality of optimization problems in the IoT 

environment pose challenges for these algorithms to maintain 

their effectiveness and efficiency. 
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Figure 1: A bar graph of the degree of imbalance recorded from the 

algorithms. 

 

B. Premature Convergence 

Premature convergence is a common limitation in nature-

inspired algorithms, where the search prematurely converges 

to suboptimal solutions without exploring the entire solution 

space. This can lead to the algorithms getting trapped in local 

optima and failing to find globally optimal solutions. 

Figure 2: A bar graph of the processing speed recorded in milliseconds 

from the algorithms. 

C. Parameter Tuning Sensitivity 

Nature-inspired algorithms often rely on a set of parameters 

that require careful tuning to achieve optimal performance. 

Selecting appropriate parameter values can be time-consuming 

and challenging, as different problem domains and scenarios 

may require specific parameter configurations for achieving 

desirable results. 

D. Limited Handling of Dynamic Environments 

Dynamic environments in the IoT context involve changing 

conditions, such as fluctuating workloads, resource availability, 

and network connectivity. Nature-inspired algorithms may 

struggle to adapt to dynamic environments due to their inherent 

design and the challenges of maintaining a balance between 

exploration and exploitation in real-time scenarios. 

 

Figure 3: A bar graph of the algorithms' energy consumption recorded 

in milliseconds. 

E. Lack of Guarantee for Optimality 

While nature-inspired algorithms aim to find near-optimal 

solutions, they do not provide guarantees for achieving global 

optimality. The stochastic nature of these algorithms and their 

reliance on exploration make it challenging to ensure finding 

the absolute best solution for complex optimization problems. 

VII. CONCLUSION 

In this study, we conducted a comparative analysis of 

nature-inspired metaheuristic algorithms, namely the PSO, 

ACO, and Firefly algorithms, in the context of energy 

efficiency and load-balancing for computation offloading in 

the Edge-Cloud environment. The results demonstrate the 

strengths and weaknesses of each algorithm, providing 

valuable insights for decision-making. 

The PSO algorithm excelled in workload distribution 

balance, outperforming ACO and Firefly. ACO showcased 

exploration capabilities, while Firefly demonstrated superior 

processing speed. Both Firefly and PSO algorithms exhibited 

comparable or slightly lower energy consumption than ACO, 

indicating their effectiveness in energy efficiency. 

Overall, this research provides a comprehensive 

understanding of the performance and characteristics of nature-

inspired metaheuristic algorithms in the context of energy 

efficiency and load-balancing for computation offloading in 

the Edge-Cloud environment. These findings can guide 

researchers and practitioners in selecting the most suitable 

algorithm based on specific requirements and objectives. 

Future research would focus on further enhancing the 

algorithms' performance by varying the specific parameter 

values since the current research is limited to specific 

parameter values. Optimization techniques would be utilized 

in addressing the identified weaknesses to maximize their 

potential in energy-efficient computation offloading. 
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