

Comparative Analysis of Nature-Inspired Algorithms for

Energy Efficiency and Load-Balancing in the Edge-Cloud

Environment
Kevin Afachao1 , Adnan M. Abu-Mahfouz1,2, Gerhard P. Hancke1,3

1Department of Electrical, Electronic and Computer Engineering

University of Pretoria

Pretoria, 0028, South Africa

u22851217@tuks.co.za
2Council for Scientific and Industrial Research (CSIR)

Pretoria, 0083, South Africa

a.abumahfouz@ieee.org
3Department of Computer Science, City University of Hong Kong, Hong Kong SAR

 Pokfulam, Hong Kong

ghancke@ieee.org

Abstract— This paper presents a comprehensive analysis of

nature-inspired metaheuristic algorithms for achieving energy

efficiency in the Edge-Cloud environment. The study focuses on

the Particle Swarm Algorithm (PSO), Ant Colony Optimization

(ACO), and Firefly algorithm, evaluating their performance in

workload distribution balance, processing speed, and energy

consumption. The simulations are conducted using the ReCloud

Simulator. The results reveal that the PSO algorithm

outperforms the ACO and Firefly algorithms in workload

distribution balance. The ACO algorithm excels in exploration,

while the Firefly algorithm demonstrates superior processing

speed. However, the Firefly algorithm exhibits slight performance

variations due to its sensitivity to workload characteristics. Both

the Firefly and PSO algorithms show energy efficiency

comparable to or slightly lower than the ACO algorithm. These

findings contribute to a better understanding of the strengths and

weaknesses of each algorithm, offering valuable insights for

researchers and practitioners in the field of energy-efficient

computation offloading in the Edge-Cloud environment.

Keywords— edge computing, energy-efficiency, metaheuristic

algorithm, optimization algorithm,

I. INTRODUCTION

The Internet of Things (IoT) generates a vast amount of data

each year, overwhelming current architectures like Cloud

Computing due to high latency and bandwidth costs associated

with data transmissions. However, advancements in Edge

computing infrastructure, such as improved processing units

(including neuromorphic processors), increased storage

capacity, and enhanced cyber-physical security architectures

[1], [2], have made the network edge an attractive option for

offloading computation tasks from mobile devices. This is

particularly crucial for mobile devices as conventional IoT

applications, with their power-hungry and latency-sensitive

characteristics, lead to excessive energy consumption and heat

generation. Consequently, battery lifespan is compromised,

and system performance suffers. To address these issues and

ensure energy efficiency, computation offloading to local edge

servers has gained prominence. Nevertheless, the

heterogeneous nature of the Edge-IoT environment introduces

numerous conflicting objectives and trade-offs. Privacy versus

convenience, customization versus security, and complexity

versus tractability are all factors that need to be considered.

While various algorithms have been developed to strike a

balance, most of them are impractical due to constraints related

to response time and Quality of Service (QoS). [3] In response

to this challenge, researchers have proposed nature-inspired

metaheuristic algorithms, which provide optimal solutions to

multi-objective problems within limited timeframes without

compromising QoS. Unlike heuristic algorithms, mathematical

optimization, or machine learning methods, nature-inspired

algorithms excel in scalability, tractability, efficiency, and

simplicity of search space optimization. [3]

Among these algorithms, Swarm Intelligence stands out as

a promising approach. Inspired by the collaborative behaviour

of social creatures like bees and ants, Swarm Intelligence

enables adaptation to environmental changes while staying

focused on objectives. [4] Leveraging the advantages of

nature-inspired algorithms, Swarm Intelligence, and other

similar metaheuristic algorithms have gained attention as

effective solutions for energy efficiency in Edge environments.

Despite the extensive coverage of nature-inspired algorithms

for energy efficiency in Edge environments, there is a research

gap in terms of comparative performance analysis specifically

evaluating the Particle Swarm Algorithm, Ant Colony

Optimization, and Firefly algorithm. These algorithms have

been widely studied and applied in various domains like the

Edge. [5]

This paper aims to fill this research gap by comparing these

algorithms comprehensively, with a specific focus on their

performance in achieving energy efficiency and addressing

load-balancing and latency constraints through computation

offloading in the Edge-Cloud environment. Through this

analysis, the paper aims to identify the strengths and

weaknesses of each algorithm, providing valuable insights for

researchers and practitioners in the field. The simulations are

performed using the ReCloud Simulator to ensure accurate

evaluation and comparison.

The rest of the paper is organized as follows: Section II

provides the background, followed by a discussion of nature-

inspired algorithms for energy efficiency at the Edge in Section

III. Section IV presents the simulations conducted, and Section

V explores the challenges in research. Finally, the paper

concludes with Section VI.

II. BACKGROUND

Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2023 Page 107

Energy utilization and task distribution in Edge-Cloud

environments have been the focus of various studies, with

computation offloading being a commonly employed approach.

Rodrigues et al.[6] proposed the use of the Particle Swarm

Optimization (PSO) algorithm to achieve low execution time

by considering transmission and processing delays in

distributed Edge-Cloud infrastructure. However, Huang et

al.[7] extended Rodrigues et al.'s research by incorporating

energy cost and security risks into the offloading process, and

they opted for the Ant Colony Optimization (ACO) algorithm

over PSO. They argued that ACO has a better ability to find

global optima for multi-objective problems, while PSO

exhibits a weaker exploration mechanism compared to

exploitation. Huang et al. introduced two algorithms, EA-

RMIP and EA-OMIP, by combining ACO with Mixed Integer

Programming (MIP), resulting in an energy-efficient

offloading strategy that accounts for security considerations.

Comparative analysis showed that EA-RMIP outperformed

EA-OMIP in terms of convergence time. Whereas EA-OMIP

was designed using conventional MIP techniques, EA-RMIP

is an adaptation of a hybrid technique based on recent studies.

Recognizing the potential for further enhancements,

researchers have explored hybrid approaches by combining

PSO and ACO to achieve improved results compared to

individual algorithms. Pawar et al.[8] discovered that

traditional load-balancing algorithms like First Come First

Serve were inefficient for growing numbers of cloud service

users. As a solution, they introduced the Ant Colony Honey

Bee Dynamic Feedback (ACHBDF) algorithm, which

combines ACO and the Honey Bee algorithm for resource

balancing in Cloud Computing. Zahoor et al.[9] conducted

similar research and compared various load balancing

approaches, including PSO, Throttle, and Round Robin, in

terms of latency performance. They found that PSO

outperformed the other algorithms. Building on this hybrid

metaheuristic approach, Zahoor et al. later combined Ant

Colony Optimization (ACO) with Ant Bee Colony (ABC)

algorithms, resulting in the Hybrid Artificial Bee Ant Colony

Optimization (HABACO) algorithm for load balancing[10].

HABACO demonstrated superior performance in terms of

average processing time and response time compared to ACO,

PSO, and ABC algorithms. Other studies, such as Liu et al.[11]

and Bi et al.[12], have also successfully utilized hybrid

algorithms combining ACO with Fuzzy Clustering (FC),

Genetic Algorithm (GA), Simulated Annealing (SA), and PSO,

respectively, to address specific task scheduling and offloading

challenges[13], [14].

In contrast, despite its potential for improving energy

efficiency, the Firefly algorithm lacks extensive research

highlighting its strengths. Adhikari et al.[15] introduced the

Firefly algorithm, inspired by fireflies' mating rituals, for

optimizing the placement of application tasks. The algorithm

outperformed benchmarks in terms of computational time,

energy consumption, CO2 emission, and temperature emission.

III. NATURE-INSPIRED ALGORITHMS

Nature-inspired metaheuristic algorithms have gained

significant attention in solving optimization problems due to

their ability to mimic natural phenomena and provide efficient

solutions. This section discusses three prominent nature-

inspired metaheuristic algorithms: Particle Swarm

Optimization (PSO), Ant Colony Optimization (ACO), and the

Firefly Algorithm. We examine their concepts, strengths,

weaknesses, and relevance to computation offloading and

energy efficiency in the IoT environment.

A. Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a population-based

optimization algorithm that simulates the collective behaviour

of bird flocking or fish schooling[16]. It utilizes particles

representing potential solutions, which iteratively adjust their

positions based on their own experiences and the experiences

of neighbouring particles. The strengths of PSO lie in its

simplicity and ease of implementation, making it easily

understandable and applicable. It demonstrates good

exploration capabilities, enabling efficient search across a wide

solution space. PSO has been successfully applied to various

domains, particularly for continuous optimization problems.

However, converging to the global optimum in complex,

multimodal optimization problems may struggle. Premature

convergence, where particles converge to suboptimal solutions

too quickly, can limit its effectiveness. The performance of

PSO heavily relies on parameter tuning, posing challenges in

selecting appropriate values. In the context of computation

offloading and energy efficiency in the IoT environment, PSO

has been utilized for optimizing task allocation and resource

utilization. Its exploration capabilities can aid in finding

efficient offloading strategies. However, limitations such as

premature convergence may restrict its effectiveness in

dynamic IoT scenarios.

B. Ant Colony Optimization (ACO)

The Ant Colony Optimization (ACO) is a metaheuristic

algorithm inspired by the foraging behaviour of ants[17]. It

employs pheromone trails to guide the search for optimal

solutions. Ants deposit pheromones on their paths, and other

ants follow these trails, favouring paths with higher pheromone

concentration. ACO excels in solving combinatorial

optimization problems with discrete decision variables. It

efficiently handles multi-objective optimization, making it

suitable for complex, conflicting objectives. ACO exhibits

adaptability and performs well in dynamic environments due

to its distributed nature. However, ACO can suffer from slow

convergence, particularly in large-scale problems. The

algorithm's performance heavily relies on parameter tuning,

which can be time-consuming and require domain expertise.

ACO may struggle to find optimal solutions in high-

dimensional search spaces. In the context of computation

offloading and energy efficiency in the IoT environment, ACO

has been employed for optimizing task allocation, resource

utilization, and load balancing. Its ability to handle multi-

objective optimization addresses the trade-off between energy

efficiency, response time, and other performance metrics.

However, consideration should be given to ACO's

convergence speed and sensitivity to parameter settings in

dynamic and resource-constrained IoT scenarios.

C. Firefly Algorithm

The Firefly Algorithm is inspired by the flashing behaviour

of fireflies. It imitates the social behaviour of fireflies and their

attraction towards brighter individuals[4]. The algorithm

utilizes attractiveness between fireflies to guide the search for

Page 108 Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2023

optimal solutions. The Firefly Algorithm demonstrates fast

convergence speed, making it suitable for optimization

problems with limited computation resources. It performs well

in continuous optimization problems and has been successfully

applied to the cloud domain[18]. The algorithm shows

potential for improving energy efficiency due to its quick

convergence to near-optimal solutions. However, it may

encounter challenges in solving large-scale and complex

optimization problems. Its exploration capabilities may be

limited, potentially leading to premature convergence. Further

research is needed to explore its effectiveness in dynamic

environments and multi-objective optimization. In the context

of computation offloading and energy efficiency in the IoT

environment, the Firefly Algorithm can be employed for

optimizing resource allocation and energy efficiency. Its fast

convergence speed enables real-time decision-making and

efficient resource utilization. However, its limitations in

handling complex optimization problems and exploration

capabilities should be considered in dynamic IoT scenarios.

IV. SIMULATIONS

A. Key Parameters

1) Degree of Imbalance: The degree of imbalance metric

reflects the extent of workload distribution imbalance among

the servers in the system.

2) Processing Speed: The processing speed metric

reflects the time required to execute the system's computation

tasks.

3) Energy consumption: Energy consumption is a

crucial metric in evaluating the efficiency and sustainability of

the algorithms. The energy consumption model depends on

CPU utilization during system processes such as busy, idle, and

task offloading.

B. Simulation Workflow

The simulation in this study aims to replicate a real-time

environment by modelling devices, logical components, and

management policies. To facilitate the simulation, the

CloudSim simulator was utilized. Additionally, a

supplementary model called ReCloud was employed to

compare different algorithms within the Edge-Cloud

simulation context. The simulation process involves several

steps, including initializing ReCloud, setting up cloud servers,

creating cloudlets, brokers, virtual machines (VMs), tasks, and

specifying scheduling algorithms. The environment was then

simulated, and the results were monitored. The ReCloud

library enables the comparison of scheduling algorithms

initiated within the broker. It is important to note that while

ReCloud is an extension of CloudSim, it does not come

preconfigured with components such as sensors and actuators.

The performance of the three algorithms was evaluated three

times in the context of these parameter settings. PSO was

configured with the following parameter settings: p = 100,

iterations = 100, minInertia = 0.4, maxInertia = 0.9, c1 = 1.5,

c2 = 1.5, k = 5. These parameters govern the behaviour of the

PSO algorithm, including the number of particles, the number

of iterations, the inertia range, the cognitive and social

coefficients, the constriction factor, and the methods used for

updating inertia and particle position. ACO employs the

following parameter values: ants = 100, iterations = 100,

initial-Pheromone = 0.001, alpha = 1, beta = 4, q = 1, and rho

= 0.1. These parameters control the behaviour of the ACO

algorithm, such as the number of ants, the number of iterations,

the importance of pheromones, and the influence of distance

priority. Firefly Algorithm utilized the following parameter

values: numFireflies = 100, maxIterations = 100, alpha = 0.1,

beta = 0.9, and gamma = 0.5. These parameters influence the

behaviour of the firefly algorithm, such as the number of

fireflies, the maximum number of iterations, the attractiveness

and randomness factors, and the light absorption factor.

The parameter selection for the PSO algorithm was based

on the trade-off between exploration and exploitation. The

number of particles (p) determines the population size, with

larger populations increasing computation overhead but

smaller populations risking premature convergence. The

number of iterations (iter) defines the stopping criterion,

typically ranging between 100 and 1000 depending on the

problem’s complexity. A value of 100 was chosen to strike a

balance between exploration and convergence. The inertia

weight (min Inertia, max Inertia) controls global and local

exploration, with higher values encouraging exploration and

lower values promoting exploitation. Cognitive and Social

coefficients (c1, c2) influence velocity and position updates,

impacting exploration and exploitation capabilities. The

constriction factor (k) ensures convergence by reducing

velocity near the best positions. In the ACO algorithm, the

number of ants (ants) and iterations (iterations) determine

population size and stopping criterion, respectively. The initial

pheromone level (initial-Pheromone) influences early-stage

path preference and is set to small positive values to prevent

premature convergence. Pheromone importance (alpha) and

distance priority (beta) balance exploitation and exploration.

Total pheromone (q) controls the strength of pheromone

updates, with higher values favouring exploitation. Pheromone

vaporization (rho) regulates the rate of pheromone evaporation,

with higher values promoting more exploration. In the Firefly

algorithm, the number of fireflies sets the population size and

maximum iterations for the stopping criterion. The attraction

coefficients alpha, beta, and gamma govern fireflies'

movement and attraction behaviour, with fine-tuning

necessary to balance exploration and exploitation.

These parameter choices were made to optimize the

algorithms' performance based on their respective

characteristics and the desired exploration-exploitation trade-

off[3].

C. Environment Setup

In the experimental setup, the environment consists of two

servers utilizing x86 architecture and employing Xen as the

Virtual Machine (VM) monitor. Each server is equipped with

three host devices, each offering a processing capacity of

177730 MIPS and comprising six processing elements. The

servers are configured with a RAM memory capacity of 16000

MB, a bandwidth of 1500 MB/s, and a storage capacity of 4000

GB. Additionally, the Edge-Cloud environment simulated

includes two Brokers and three Virtual Machines (VMs).

V. RESULTS

The results of the experiment, as shown in Fig.1, Fig. 2 and

Fig. 3 provide insights into the performance of the PSO, ACO,

Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2023 Page 109

and Firefly algorithms in terms of the degree of imbalance,

processing speed and energy consumption.

The experiment results for the PSO algorithm demonstrated

a degree of imbalance of 2.3154, 2.5831 and 2.5705 in the first,

second, and third scenarios, respectively. The processing

speeds were 780 ms, 644 ms, and 1384 ms, while the energy

consumption values were 24.524 KJ, 21.798 KJ and 21.266 KJ

for the first, second and third scenarios, respectively. The ACO

algorithm showed a degree of imbalance of 2.8941, 2.5835 and

2.5587 in the first, second and third scenarios, respectively. For

processing speed, the ACO algorithm achieved 738 ms, 534 ms,

and 1204 ms in the first, second, and third scenarios,

respectively. The corresponding energy consumption values

were 24.421 KJ, 21.490 KJ. The Firefly algorithm yielded a

degree of imbalance of 2.861, 2.5469 and 2.5341 in the first,

second, and third scenarios, respectively. In terms of

processing speed, the Firefly algorithm achieved 88 ms, 178

ms, and 214 ms, with energy consumption values of 24.420 KJ,

21.593 KJ, and 21.232 KJ for the first, second, and third

scenarios, respectively.

The PSO algorithm’s results indicate that the PSO algorithm

achieved a lower degree of imbalance compared to both the

ACO and Firefly algorithms. The strength of the PSO

algorithm lies in its ability to strike a balance between

exploration and exploitation, allowing it to converge towards a

near-optimal solution. The weakness of the PSO algorithm

may be its limited ability to escape local optima, which can

result in suboptimal workload distribution. In contrast, the

ACO algorithm exhibited a relatively higher degree of

imbalance compared to the other algorithms in all three

scenarios. The strength of the ACO algorithm lies in its ability

to explore the solution space and find diverse solutions.

However, this characteristic may lead to a less optimal

workload distribution, resulting in a higher degree of

imbalance. One possible weakness of the ACO algorithm is its

sensitivity to parameter settings, such as the initial pheromone

level and the pheromone importance, which may require

careful tuning for optimal results The Firefly algorithm

produced a degree of imbalance similar to the ACO algorithm,

but slightly higher than the PSO algorithm. The Firefly

algorithm's strength lies in exploiting solutions efficiently and

converging towards optimal workload distribution. However,

one potential weakness of the Firefly algorithm is its sensitivity

to parameter settings, particularly the attraction coefficients,

which may require careful tuning for optimal performance.

In the experiments, the PSO algorithm demonstrated

competitive processing speeds, particularly in the second

scenario. This highlights the strength of the PSO algorithm in

achieving efficient task allocation and execution. However, in

the third scenario, the PSO algorithm exhibited slower

processing speeds compared to the other algorithms, indicating

a potential weakness in handling more complex scenarios with

larger computation loads. The ACO algorithm demonstrated

relatively fast processing speeds, particularly in the second

scenario. This indicates the strength of the ACO algorithm in

efficiently allocating computation tasks among the available

resources. However, it is worth noting that the processing

speeds achieved by the ACO algorithm were slightly higher

compared to the other algorithms in all three scenarios. This

suggests a potential weakness of the ACO algorithm in terms

of computational efficiency. The Firefly algorithm

demonstrated significantly faster processing speeds than the

ACO and PSO algorithms in all three scenarios. This highlights

the strength of the Firefly algorithm in achieving high

computational efficiency and fast task execution. However, it

is important to note that the Firefly algorithm exhibited slightly

slower processing speeds compared to the other algorithms in

the first and second scenarios, suggesting a potential weakness

in certain scenarios with specific workload characteristics.

In the experiments, the PSO algorithm demonstrated

competitive energy consumption, particularly in the second

and third scenarios. This highlights the strength of the PSO

algorithm in achieving energy-efficient task allocation and

execution. However, in the first scenario, the PSO algorithm

consumed slightly higher energy than the other algorithms,

suggesting a potential weakness in certain scenarios. The ACO

algorithm demonstrated relatively consistent energy

consumption across the scenarios, indicating its stability and

effectiveness in managing energy resources. However, it is

worth noting that the ACO algorithm consumed slightly higher

energy compared to the Firefly and PSO algorithms in all three

scenarios. This suggests a potential weakness of the ACO

algorithm in terms of energy efficiency. The Firefly algorithm

exhibited comparable energy consumption to the other

algorithms, demonstrating its ability to achieve energy-

efficient task allocation and execution. However, in the first

scenario, the Firefly algorithm consumed slightly higher

energy compared to the other algorithms, indicating a potential

weakness in specific scenarios.

Overall, the PSO algorithm demonstrated superior workload

distribution balance compared to the ACO and Firefly

algorithms, with a 95% confidence interval ranging from 2.47

to 2.74. While the ACO algorithm excelled in exploration and

the Firefly algorithm showed strength in exploitation, both may

benefit from parameter fine-tuning to improve workload

distribution. The Firefly algorithm exhibited faster processing

speed, outperforming the ACO and PSO algorithms in most

scenarios, with a 95% confidence interval between 295.43 and

985.46. However, it also displayed slight performance

variations, indicating sensitivity to workload characteristics. In

terms of energy consumption, the Firefly and PSO algorithms

showed comparable or slightly lower energy usage compared

to the ACO algorithm, with a 95% confidence interval for the

true population mean falling within the range of 21.25 and 23.6,

highlighting their energy efficiency. All three algorithms

effectively managed energy resources.

VI. CHALLENGES

A. Lack of Scalability

Nature-inspired algorithms, such as PSO, ACO, and the

Firefly Algorithm, may encounter scalability issues when

dealing with large-scale problems. The increasing complexity

and dimensionality of optimization problems in the IoT

environment pose challenges for these algorithms to maintain

their effectiveness and efficiency.

Page 110 Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2023

Figure 1: A bar graph of the degree of imbalance recorded from the

algorithms.

B. Premature Convergence

Premature convergence is a common limitation in nature-

inspired algorithms, where the search prematurely converges

to suboptimal solutions without exploring the entire solution

space. This can lead to the algorithms getting trapped in local

optima and failing to find globally optimal solutions.

Figure 2: A bar graph of the processing speed recorded in milliseconds

from the algorithms.

C. Parameter Tuning Sensitivity

Nature-inspired algorithms often rely on a set of parameters

that require careful tuning to achieve optimal performance.

Selecting appropriate parameter values can be time-consuming

and challenging, as different problem domains and scenarios

may require specific parameter configurations for achieving

desirable results.

D. Limited Handling of Dynamic Environments

Dynamic environments in the IoT context involve changing

conditions, such as fluctuating workloads, resource availability,

and network connectivity. Nature-inspired algorithms may

struggle to adapt to dynamic environments due to their inherent

design and the challenges of maintaining a balance between

exploration and exploitation in real-time scenarios.

Figure 3: A bar graph of the algorithms' energy consumption recorded

in milliseconds.

E. Lack of Guarantee for Optimality

While nature-inspired algorithms aim to find near-optimal

solutions, they do not provide guarantees for achieving global

optimality. The stochastic nature of these algorithms and their

reliance on exploration make it challenging to ensure finding

the absolute best solution for complex optimization problems.

VII. CONCLUSION

In this study, we conducted a comparative analysis of

nature-inspired metaheuristic algorithms, namely the PSO,

ACO, and Firefly algorithms, in the context of energy

efficiency and load-balancing for computation offloading in

the Edge-Cloud environment. The results demonstrate the

strengths and weaknesses of each algorithm, providing

valuable insights for decision-making.

The PSO algorithm excelled in workload distribution

balance, outperforming ACO and Firefly. ACO showcased

exploration capabilities, while Firefly demonstrated superior

processing speed. Both Firefly and PSO algorithms exhibited

comparable or slightly lower energy consumption than ACO,

indicating their effectiveness in energy efficiency.

Overall, this research provides a comprehensive

understanding of the performance and characteristics of nature-

inspired metaheuristic algorithms in the context of energy

efficiency and load-balancing for computation offloading in

the Edge-Cloud environment. These findings can guide

researchers and practitioners in selecting the most suitable

algorithm based on specific requirements and objectives.

Future research would focus on further enhancing the

algorithms' performance by varying the specific parameter

values since the current research is limited to specific

parameter values. Optimization techniques would be utilized

in addressing the identified weaknesses to maximize their

potential in energy-efficient computation offloading.

ACKNOWLEDGEMENT

Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2023 Page 111

This work is based on the research supported in part by our

industry partner Telkom.

REFERENCES

[1] F. Saeik et al., “Task offloading in Edge and Cloud Computing: A
survey on mathematical, artificial intelligence and control theory

solutions,” Computer Networks, vol. 195. Elsevier B.V., Aug. 04,

2021. doi: 10.1016/j.comnet.2021.108177.
[2] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X.

Chen, “Convergence of Edge Computing and Deep Learning: A

Comprehensive Survey,” IEEE Communications Surveys and
Tutorials, vol. 22, no. 2. Institute of Electrical and Electronics

Engineers Inc., pp. 869–904, Oct. 2020. doi:
10.1109/COMST.2020.2970550.

[3] M. Adhikari, S. N. Srirama, and T. Amgoth, “A comprehensive

survey on nature-inspired algorithms and their applications in edge
computing: Challenges and future directions,” Softw Pract Exp,

vol. 52, no. 4, pp. 1004–1034, Apr. 2022, doi: 10.1002/spe.3025.

[4] X.-S. Yang, S. Deb, S. Fong, X. He, and Y.-X. Zhao, “From
Swarm Intelligence to Metaheuristics Nature Inspired Optimization

Algorithms,” Computer, pp. 52–59, 2016. doi:

10.1109/MC.2016.292.

[5] D. Kumar, G. Baranwal, Y. Shankar, and D. P. Vidyarthi, “A

survey on nature-inspired techniques for computation offloading

and service placement in emerging edge technologies,” World Wide
Web, vol. 25, no. 5, pp. 2049–2107, Sep. 2022, doi:

10.1007/s11280-022-01053-y.

[6] T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato, “A PSO
Model with VM Migration and Transmission Power Control for

Low Service Delay in the Multiple Cloudlets ECC Scenario,” in

International Conference on Communications, Paris: IEEE, May
2017. doi: 10.1109/ICC.2017.7996358.

[7] X. Huang, Y. Yang, and X. Wu, “A Meta-Heuristic Computation

Offloading Strategy for IoT Applications in an Edge-Cloud
Framework,” in ACM International Conference Proceeding Series,

Association for Computing Machinery, Sep. 2019. doi:

10.1145/3386164.3390513.
[8] N. Pawar, U. Kumar Lilhore, N. Agrawal, M. Tech Research

Scholar, and A. Professor, “A Hybrid ACHBDF Load Balancing

Method for Optimum Resource Utilization In Cloud Computing,”
International Journal of Scientific Research in Computer Science,

Engineering and Information Technology, 2017 IJSRCSEIT, vol. 6,

no. 10, pp. 367–373, 2017, [Online]. Available:
https://www.researchgate.net/publication/340255668

[9] S. Zahoor, N. Javaid, A. Khan, B. Ruqia, F. J. Muhammad, and M.

Zahid, “A Cloud-Fog-Based Smart Grid Model for Efficient
Resource Utilization,” in International Wireless Communications

& Mobile Computing Conference (IWCMC), 2018. doi:

10.1109/IWCMC.2018.8450506.
[10] S. Zahoor, S. Javaid, N. Javaid, M. Ashraf, F. Ishmanov, and M. K.

Afzal, “Cloud-fog-based smart grid model for efficient resource

management,” Sustainability (Switzerland), vol. 10, no. 6, Jun.
2018, doi: 10.3390/su10062079.

[11] J. Liu, X. Wei, T. Wang, and J. Wang, “An Ant Colony

Optimization Fuzzy Clustering Task Scheduling Algorithm in
Mobile Edge Computing,” in Lecture Notes of the Institute for

Computer Sciences, Social-Informatics and Telecommunications

Engineering, LNICST, Springer Verlag, 2019, pp. 615–624. doi:
10.1007/978-3-030-21373-2_51.

[12] J. Bi, H. Yuan, K. Zhang, and M. C. Zhou, “Energy-Minimized

Partial Computation Offloading for Delay-Sensitive Applications
in Heterogeneous Edge Networks,” IEEE Trans Emerg Top

Comput, vol. 10, no. 4, pp. 1941–1954, Oct. 2022, doi:

10.1109/TETC.2021.3137980.
[13] Y. Zhang, Y. Liu, J. Zhou, J. Sun, and K. Li, “Slow-movement

particle swarm optimization algorithms for scheduling security-
critical tasks in resource-limited mobile edge computing,” Future

Generation Computer Systems, vol. 112, pp. 148–161, Nov. 2020,

doi: 10.1016/j.future.2020.05.025.
[14] L. N. T. Huynh, Q. V. Pham, X. Q. Pham, T. D. T. Nguyen, M. D.

Hossain, and E. N. Huh, “Efficient computation offloading in

multi-tier multi-access edge computing systems: A particle swarm
optimization approach,” Applied Sciences (Switzerland), vol. 10,

no. 1, Jan. 2020, doi: 10.3390/app10010203.

[15] M. Adhikari and H. Gianey, “Energy efficient offloading strategy

in fog-cloud environment for IoT applications,” Internet of Things,
vol. 6, 2019, doi: 10.1016/j.iot.2019.10.

[16] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in

International Conference on Neural Networks, Perth: IEEE, 1995,
pp. 1942–1948. doi: 10.1109/ICNN.1995.488968.

[17] M. Dorigo and C. Blum, “Ant colony optimization theory: A

survey,” Theor Comput Sci, vol. 344, no. 2–3, pp. 243–278, Nov.
2005, doi: 10.1016/j.tcs.2005.05.020.

[18] N. Kaur and A. Chhabra, “Analytical review of three latest nature-

inspired algorithms for scheduling in clouds,” in International
Conference on Electrical, Electronics, and Optimization

Techniques, Chennai: IEEE, Mar. 2016. doi:

10.1109/ICEEOT.2016.7755315.

Kevin Afachao (Non-Member, IEEE) He holds a BSc in

Telecommunications Engineering from the Kwame Nkrumah

University of Science and Technology (2019) and a B. Honours

degree in Computer Engineering from the University of Pretoria

(2022). He is currently pursuing an M. Eng in Computer Engineering

at the University of Pretoria, with research interests in the Internet of

Things, Edge Computing, and Artificial Intelligence.

Adnan M. Abu-Mahfouz (Senior Member, IEEE) received the

M.Eng. and PhD degrees in computer engineering from the University

of Pretoria, Pretoria, South Africa, in 2005 and 2011, respectively. He

is currently a Chief Researcher and the Centre Manager of the

Emerging Digital Technologies for 4IR (EDT4IR) Research Centre,

Council for Scientific and Industrial Research, Pretoria; an

Extraordinary Professor with the University of Pretoria; a Professor

Extraordinaire with the Tshwane University of Technology, Pretoria.

His research interests are wireless sensor and actuator networks, low

power wide area networks, software-defined wireless sensor

networks, cognitive radio, network security, network management,

and sensor/actuator node development. Prof Abu-Mahfouz is a

Section Editor-in-Chief with the Journal of Sensor and Actuator

Networks, an Associate Editor at IEEE INTERNET OF THINGS,

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, IEEE

TRANSACTIONS ON CYBERNETICS and IEEE ACCESS, and a

member of many IEEE technical communities.

Gerhard Hancke (Fellow, IEEE) is a Professor in the Department of

Computer Science at the City University of Hong Kong. He received

B. Eng and M. Eng degrees in Computer Engineering from the

University of Pretoria, South Africa, in 2002 and 2003, and a PhD in

Computer Science from the University of Cambridge, United

Kingdom, in 2009. Previously he worked as a researcher with the

Smart Card and IoT Security Centre and as a teaching fellow with the

Department of Information Security, both located at Royal Holloway,

University of London. His research interests are system security,

reliable communication and distributed sensing for the industrial

Internet-of-Things.

Page 112 Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2023

