
r 
J 

.. r 

VERSLAG NR. __ _ 

VAN ................. ·-···-· .. ············· .. · ..................... . 

69 
F.R.I. 47 

1977 
REPORT NO .......................................................... .. 

OF ................................................................................ . 

-1 Ltt/E/Q8 

« J B RAN DS T OF NA VORSI N GS IN S TIT UUT 

VAN SUID•AFRIKA 

FUEL RESEARCH INSTITUTE 
OF SOUTH AFRICA 

STREAM TRANSPORT OF PARTICLES IN FULL SUSPENSION. THE 

ONDERWERP: 
SUBJECT· ...................................................................................................................................................................................................................................... . 

ENERGY DISSIPATION FUNCTION AS AN INVARIANT OF THE CONCENTRATION 

.o••• .. •••••••••••••••••• .. ••••••HNIHOOIH•••• .. •• .. ••• .. ,-.... • .. • •••••• .. •• .. ••••••-,,• .. ••••••••••••••••••••••••••••••••••••• •••••••••••• •••• ••••• •••••••• .•••••••••••••••••• .. on OOU••••-•••••noo•Ho •-•••o•• .. ••u••••• •••••••••• oo,, ,.,, • •• •OJ•••• 

•••••••• ••••••• •••••••••· .. •• .............. H• .. ·•···••• .. --•-•ooOOO O .......... ,,O♦oooooonooOOooooo oooo,,o ooooo• ooo,0000000000• ·••••••••••••••••••••••••••••o•UH.♦0H•-•···-···· .. _ • f 

Ef\!G!MEERP$ 

AFDELING: 
DIVIS ION· ......................................................................... .......................................................... v ............... - ............................................................................. .. 

A C BmJAPACE 

NAAM VAN AMPTENAAR: 
NAME OF OFFICER· ................................................ ........................... .............................. - ... ·--· ..... ···-·-·---··-·-··--·· .. ·········· ........... ~ .... . 

Coetzee 7751-L48 



AUTHOR 

TITLE 

ENQUIRIES TO 

SECTION 

DIVISION 

AC BONAPACE 

STREAM TRANSPORT OF PARTICLES IN FULL 

SUSPENSION, THE ENERGY DISSIPATION 

FLNCTION AS AN INVARIANT OF THE CONCEN 

TF<ATION. 

AC BONAPACE 

HYDROMECHANICS 

ENGINEERING 



I N D E X 

SCOPE OF THE INVESTIGATION 

1. INTRODUCTION 

2. THE EQUAT:i□N OF CONTINU ITY FOR THE FL'J~J OF A SOLID SUSPENSION 

3, THE DISSIPATIVE FUNCTION ESTABLISHED AS AN ENERGY EQUATION 

4. THE PARTICLE COEFFICIENT OF DRAG 

5. THE DISSIPATED ENERGY AS A FUNCTION INVARIANT OF THE CONCENTRATION 

6, CONCLUSIONS 

7. NOMENCLATURE 

8. LITERATURE REFERENCE 

9. TABLES ANO FIGURES 



FUEL RESEARCH INSTITUTE OF SOUTH AFRICA 

REPORT NO. 69 OF 1977 

STRE/\i"\ TRANSPORT OF PARTICLES IN FULL SUSPENSION, THE ENERGY 

DISSIPAlIDf-1 FUf~CTION AS ,'IJ! INVf~_FH~NT OF THE CONCENTRATION 

SUMMARY 

The friction factor (or the Chezy coefficient) of a stream carrying a 

fully s~spended load of particles is analysed, 

Friction factors (or Chazy coefficients) of the suspension coincide with 

those of the pure liquid, if referred to the actual fluid velocity, but 

are less than those relative to the cumulative velocity, i.e. less than 

the friction factors pertinent to a volumetrically equivalent stream 

of pure liquid, 

In the case of small particles the stated difference between the two 

values of the friction factor becomes negligible. 
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2. 

SCOPE OF THE INVESTIGATION 

Streams carrying suspended particles are common phenomena of our physi­

cal vJorld. 

In the very small range of particle sizes and settling velocities, the 

stream can suspend particles almost ideally, i.e. the different phases 

in flow behave as an almost homogeneous fluid. 

To this group of suspensions belong emulsions, fogs, smoke, turbid water, 

etc. 

For greater particle sizes the settling velocity increases, although 

still remaining inside the laminar regime. 

Particles of this kind are easily transported by streams, but settle if 

not continuously supported by the fluid turbulence. 

To this group of suspensions belong slurries, sand storms, natural 

streams when carrying sand, etc. 

A further increase in particle diameter produces settling velocities 

lying inside the region of the turbulent regine. 

This kind of particles become fully suspended only at high transport 

velocities. 

High velocity streams with suspended particles often find industrial 

application in solid transport either by air or by water. 

It is the purpose of this report to investigate the aspect of energy­

dissipation of these solid liquid systems, having particles fully sus­

pended. 

Anticipating a rather surprising result. such systems dissipate the 

same energy as the fluid above would do, if streaming ~dthout particles. 
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3. 

In other words the conveyance of particles is done at no extra energy 

cost. 

However. this f r ee transp01't condi tion is only apparently favourable. 

because suspending velocities may be so high as to maKe the energy 

dissipated excessive. i.e. unbearable from an economical point of 

It is the purpose of this report to discuss certain aspects of the 

mechanics of these streans and to produce results which agree with the 

experimental evidence, as provided by the technical literature on the 

subject. 
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4. 

1. INTRODUCTION 

In this paper some hydraulic phenomena are d_iscussed which are 

relevant to the hydraulic transport of particles in a fully su~­

pended state . 

If a liquid, e.g. water. f lows i n a horizontal pipe with a suffi­

ciently high ve locity . t he solid particles are conveyed as fully 

suspended. 

A case of particular interest is that of particles of a density 

close to that of the liquid. 

In such systems the effects of the force due to gravity are practi­

cally removed and the hydraulic phenomena of interest become more 

accessible to investigation. 

Experiments using such almost neutral particles have been described 

by C Elata and T Ippen (ref. 1) for open channel flow by J W Daily 

and T K Chou (ref. 2), by C P Roberts and J F Kennedy (ref. 3) and 

by GK Batchelor. AM Binnie and O M Phillips {ref. 4) for pipes 

respectively. 

In the present work. some of their results are repo"rted and used to 

explain the hydraulic phenomena of interest·. 

Using capital letters to express average quantities relative to the 

stream, let us denote with: 

Q, the total flow rate (solid plus liquid) 

v. the maan velocity of the mixture 

Qw, the flow rate of the liquid phase (water) 

V , 
w 

the mean velocity of the liquid phase (water) 

Qp, the flow rate of the solid phase {particles) 

V • p the mean velocity of the solid phase {particles) 
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s. 

Moreover introducing a friction factor 

f' is relative to the mean velocity of the mixture V (solid plus 

liquid), 

f is relative to the mean velocity of the liquid phase V (water), w w 

expressing with g the acceleration due to gravity, with d and D the 

particle and pipe diameters. one can write the Darcy Weissbach equa­

tion· and express t!1e hydraulic gradient i in two equivalent forms: 

1 f' 
v2 

to the flow of the mixture (1) = 2gO relative 

V 2 

i f w relative to the flow of the liquid phase.· (2) ;; 

2gD w 

Consequently for the same hydraulic gradient i measured, two diffe­

rent friction factors can be defined in function of the selected 

stream velocities V and V respectively as per equs (1) and (2). 
w 

In Figures 1, 2, 3 and 4 are represented the experimental results 

obtained by the above-mentioned authors in a plot f. RE. where w w 

RE w 
= 

V D 
w 

" 
(3) 

is the Reynolds number of the pipe, referred to the mean velocity 

of the liquid phase (water) and vis the kinematic viscosity of 

the pure liquid (water), at the temperature of the experiment. 

In Figures 1 and 2 the reduction of the experimental results to 

RE has been carried out by the author, while Figures 3 and 4 are 
w 

reproductions of the original graphs of Robert and Kennedy. 

In Figure 1 the friction factor of the channel is given as a Chazy 
t 

coefficient CC /g 2 ), Le. referred to the velocity of the liquid. 
w 

The main parameters of interest of the various experiments reported 

have been grouped in Table 1. 
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6. 

From Figures 1. 2, 3 and 4 it appears that the experimental points 

fall according to the representation adopted along the clear liquid 
I 

line (water), i.e. the friction factor f (or C /g~) relative to a . w w 
clear liquid velocity V, is the same as the experimental friction w 
factor represented by the points. 

This statement is valid for the results of figure 1 only in a first 

degree approximation. 

Let us a.lsc emphasize that the stated coincidence is not affected 

(in the regions of the graph where it exists) either by changes in 

volumetric concentration x or by variation in the particle/pipe 

diameter ratio 6• i.e. experimental points fall along the clear 

liquid locus irrespective of variations of these two quantities. 
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7. 

2. THE EQUATION OF CONTINUITY FOR THE FLOW OF A SOLID SUSPENSION 

~.Jith the notation already establi::>hed one can express the flow rate 

as the sum of the two partial flow rates i.e. 

( 1 ) 

Introducing the discharge concentration x, defined as the volume 

of particles present in a certain volume of mixture collected, let 

us write: 

Q = (1-x) Q 
w 

(2) 

(3) 

Further, if we express the total pipe area as A and the areas occu­

pied by the liquid and by the particles with Aw and AP respectively, 

we get: 

A = 2. 
V 

(4) 

A 
Qw 

=-
w V w 

(5) 

A p 
=~ 

VP 
(6} 

with 

A = A + A w p 
(7) 

hence one gets: 

( 8) 

The elimination of Q and Q from (2). (3) in (Bl yields: p w 
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8. 

V 
V = V (2!'.. x + 1 - x) = V (1 - 00<) 
w V (9) 

. p 

where one has put: 

V 
y = .....E. 

V (10) 
t;..j 

and 

1 - 1 • y - 1 = Cl 
y y ( 11) 

y is related to the "linear concentration" Xr, inside the pipe. by 

the following 

X 

y = X 
.fl 

(12) 

For a prefixed value of x1 . the distribution of the solid phase may 

vary, for instance particles may proceed uniformly distributed or in 

a more or less centered pattern and still satisfy the condition of 

con ti.nui ty. 

Considering now a mixture. which for a prefixed volumetric concen­

tration x collected at the discharge and a total flow rate Q, is 

such that 

V =~=constant 
A 

one gets from equ (9) 

V 
~-1-ax"'K 
V r 

being K a parameter. r 

( 13) 

(14) 
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9. 

Equs (12) and (13) state that for certain prefixed flow rates Q, 

Ow , Qp. (i.e. for a prefixed solid concentration x1 collected at 
the discherge) many velocity profiles are possible. all satisfying 

the equation of continuity and corresponding to the values: 

... 

The same argument _can be repeated for ot her values of solid concen­

tration x2 , x3, ••• x
11

• so that the following ordered sets of ve­

locity ratios y can be formed: 

• • • • • • I • • • ....... . ..... 
for .... 

. ..... 
y (x ) 

n n 

(15) 

Considering now the hydraulic gradient of the stream in its ex­

pressions (1.1) and (1.2) one can write. on account of (13): 

( 16) 

where now the quantities f' and a are unknown. 

Moreover with reference to the set of values (15) one can choose 

from the first row set. i.e. for x = x1 a velocity configuration 

ym1cx1J such that the energy dissipated by the stream is a minimum 

relative to all the other y values. 

Analogously from the second row one may select a velocity configu­

ration ym
2

(x
2

) producing minimum energy dissipation for the concen­

tration x2 and so on down to then row. 

10/ .... . . 



10. 

By making the generic interval x1+ 1 - x1 of the concentration small 

enougll. one can define in principle from the sequency of values 

Y1m, Yzm ••• y a continuous function y = ym(x) which renders the 
f'nm 

function (1 _ ux)2 an extremum (minimum). 

The condition of extrer;ium relative to equ (16) is equivalent to the 

following: 

( 17) 

Anticipating a later result an explicit relationship can be obtained 
d between a and x and between a and O satisfying equ (17). 

11/ ..... . 
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11. 

3, THE DISSIPATIVE FUNCTION ESTABLISHED AS AN ENERGY EQUATION 

In the development that follows, streaming particles are tre.ated as 

if they were centres of energy dissipation. 

The worl~ done in conveying the suspension is the sum of the work 

required to convey the pure liquid and the work required to convey 

the particles. 

The sum of the various powers {rate of work) can be expressed thus 

W' .. W + W p w ( 1) 

where W is the power dissipated by the liquid in the immediate p 
surrounding of the particle, because of the particles' presence 

and W is the power dissipated by the liquid due to its flow as w 
if the particles were absent. 

W' is the power sum of the two powers just defined, i.e. the power 

actually required to convey the mixture, 

The power required to convey the liquid phase only is 

(2) 

where 1 is the hydraulic gradient, p the density of the liquid 
w 

and L the length of the pipe. 

Using the Darcy-1/.Jeissbach equation ( 1. 2) one can redefine a friction 

factor fw· relative to the liquid phase and write 1 as iw• i.e. 

V 2 
w 1w = fw 2gD (3) 

W can be expressed as the product of an average drag force multi­
P 

plied by an average particle velocity V times the number of par­
P 

ticles present inside a section of pipe of length L. 
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12. 

If n is the number of particles per unit length of pipe one can 

1-,ri te 

WP= Fd VP nL (4) 

For a drag force on a particle one can write: 

2 
F• = ! c• Tid_ p v2 

d d 4 rel (5) 

where C'd is a still undefined particle drag coefficient, d the 

particle diameter and v 1 a certain relative velocity between the re 
particle and the surrounding portion of liquid. 

Let us assume that the average drag force Fd be also described by 

the following expression {with non-accented symbols): 

Fd = i C !..: £ 2 V 2 p 
d 4 w 

(6) 

In equ "(6) EV represents a small relative velocity between a par­
w 

ticle having the behaviour of the average and the surrounding fluid 

(i.e. with£ acting as slip coefficient). 

Since the solid flow rate is 

1Tds 
Q =- nVP p 6 

(7) 

one gets: 

(8) 

By elimination of nV from (4) and (8), the following is arrived 
p 

at: 

{9) 
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13 . 

The work done in conveying the mixture can be expressed in terms 

of the actually measurable hydraulic gradient i, as follows: 

W = i p g Q L 

where i i s given by equ (1.1) 

Substi tution of (2), (3), (9) and (10) into (1) yields: 

f' = (f (1-x) + b £ 2 x) (1 - x + ~) w y 

where 

3 0 
b .. 2 cf Cd 

With the position: 

Y - 1 ""---=a y 

the following is obtained: 

f' - f (1-x) + b e 2 x as { 1 - ax} 2 - w 

object of discussion in the next chapter. 

(10 ) 

( 11) 

(12) 

(13) 

( 14) 
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14. 

4. THE PARTICLE COEFFICIENT OF ORAG 

The following physical situations are discussed: 

a) Single particle transported in a stream, 

bl particle in an assembly of particles naturally settling with a 

settling velocity Vt • 
se 

Let the hydraulic gradient of the stream be i, the density of the 

liquid p. that of the solid p. 
s 

Equilibrium of the forces in the vertical direction in cases a) 

and b) leads to the following expressions: 

p) g,rd3 
v2 

nd2 
(p - i = Cd p 

rel 
s 6 ""T 4 

v' 2 

Cps - pl 
g1Td a 

C' p se ird2 

6 • dse T 4 

Division of (1) by {2) yields 

Cd 
1 =-­c• dse 

Consider now the ratio 

C' 
~-Jr. C .. 'It 

dse 

(1a) 00 

(2b) 

(3) 

(4} 

between drag coefficients relative to a particle settling in e 

crowded condition (accented) and as a solitary particle (non-accented). 

For a solitary particle one can rewrite the condition of equilibrium 

in the vertical direction: 

15/ ..... . 
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The first ment:>er of equ {1a) expresses the gravitational component 

along the slope of value 1. 



3 V 2 2 
(p _ p)g &, = C p ~ TTd 

s 6 dse 2 4 

From (5) the (non-accented) drag coefficient can be defined as 
follows: 

where the Reynolds and Grashof numbers of the particle are: 

V d 
Re=~ 

" 
p - p 

s 
Gr"' ---p ~ 

V 

cs) 

(6) 

(7) 

(8) 

With reference to Figure 5 the locus~= 1 plots Gr against Re for 

a solitary particle in naturally settling conditions (cf. Ref. 5). 

The actual construction of the locust= 1 is obtained by calcula­

tion, from the experimentally determined well known function Cd= 

f(Re), which for Re< 1 becomes Stokes law: 

24 
Cd"' -Re 

The locus~= 1, written as ratio between two different Reynolds 

numbers, e.g. at points P1 and P2 acquires the form 

Re1 _,. 
Re2 

(~) 
Gr2 

n 

where n is an exponent such that 

n =!in the fully turbulent region 

n = 1 in the fully laminar region 

! < n < 1 in the transitional region 

Re> 104 

Re< 1 

1 <Re< 104 

(al 

1 ~ = The inverse 0 provides the slope of the locus~ 1 at the particu-

lar Re number considered. 
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16. 

In the specific situation where particle size, density of the medium 

of the particle and viscosity are constant, the Greshof number is 

also constant. 

Horizontal lines in Figure 5 (i.e. lines of constant Gr number} are 

thus lines of constant body force and because of dynamic equili­

brium, also lines of constant superficial force. while vertical 

lines (i.e. lines of a constant Re number) are also lines of con­

stant velocity. 

In the case of an assembly of particles, experimental evidence has 

sho,.,n that equilibrilnl in the assembly occurs at lower velocities 

(or Reynolds nunbersl than those applying to an identical solitery 

particle. 

In a fluidisatic,n colunn one could reword this concept by saying 

that the face velocity able to support the assembly is less than 

the settling velocity of the solitary particle. 

In other words equilibrium conditions in the case of an assembly 

will be found in a zone to the left of the curve~• 1. 

As indicated earlier, in the case of equilibriun, horizontal lines 

are lines of constant dreg force on the individual particles under 

various conditions of crowding, i.e. for various values of the void 

fraction. 

These considerations lead to the concept that the diagram may be ex­

tended to iilustrate the more general case of equilibrium in en 

assembly. 

Referring to a fluidisation colunn, in which the mass of particles 

is kept in suspension, although the actual fluid velocity v• is un­

known, the apparent velocity (face velocity) v and the apparent 
vd Reynolds nurrt'ler Re av are known. 

17/ ..... . 



17. 

Let an isolate particle be in equilibrium at point P
1 

with co­

ordinates Re1. Gr1. 

If other identical particles are now introduced into the system, 

the point of equilibrium shifts to lower velocities or Reynolds 

numbers along ti1e line Gr = Gr1 ( as the body force or Gr remains 

constant) say to the point P with co-ordinates Re2, Gr1. 

According to equ (6) 

C' dse 
4 . -
3 

or as 

R'e = Re2 

C' d . se 
4 

: -
3 

Gr1 
R1e2 (particle in an assembly) 

C' 
with equ (4) the factor~ has been defined as the ratio c dse at 

dse identical face velocities. 

Thus in this case. comparison must be made with the drag coefficients 

at point P2 • i.e. the coefficient of· drag at P2 is: 

4 
C .. -
dse2 

and so 

Gr1 
~ C 

Gr2 

3 
Gr2 
-t-
Re2 

(9) 

One may now plot in Figure 5 the¢= constant loci (e.g. for~• 4, 

16 , 6 4, etc. ) 

As the diagram is drawn on a logarithmic scale. all these curves 

may be obtained by shifting the basic curve~= 1 vertically over 

a distance corresponding to lg~-

18/ .•.... 
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16. 

Then one obtains for a k.nown value of~ 

C' = C' = ~ C dse dse1 dse2 (10) 

From equ (6 ) wr i tten for points P
1 

and P
2 

respectively, from equs 

Ca) and (9 ) one gets 

Moreover writing equ (6) as under 

C dse1 
4 Gr1 4 ·-- ·-3 R2e1 3 

~ 
vse1 

Cdse1 substituted into (11) yields 

4 d1g 
C = -3-dse2 ' 

vse1 

2n-1 <} 

Returning now to equ (3) with the position 

V = E V rel w 

one obtains with (3) and (10): 

( 11) 

{12) 

v2 C • £2V1C • iv'2 c• = i v'2 C' = iv'2 ~ Cdse2 (13) rel d w d se dse se1 dse se1 

Expressing Cd 2 by means of equ (12) and writing for the particle · se 
in condition as at P (cf. Figure 5). 

v' d1 • se1 
\) 

= Re1 = Re2 

V se1 d 
= Re1 

\) 
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19. 

With the position d = d1 in Re1 and further because of Ca) and (9), 

one gets: 

Finally from 

v'2 
se1 

v2 
se1 

..1 
(Re2) n 
Re1 

the express ions 

,2 
Re1 v2 "' 
R2e1 se1 

written above: 

- - 2n (1) • 

By substituting (14) into (13) the following is obtained: 

C • i _i 
d 3 

(14) 

(15) 

Then introducing for i the expression (1.21 one gets from (151 and 

(3.13) 

(16) 

Substitution of (16) into (3 . 14) yields 

( 17) 

The tenn fwx expresses in equ (171 energy dissipation due to par­

ticles presence. 

This term is equal and opposite to the amount by which the friction 

factor has been reduced because of reduced turbulence inside the 

stream (on account of the solid phase presence). 

Then let us write equ (17) in the following equivalent fonn 

f' 
(1 - axl2 - f "' 0 w 

(16) 
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20. 

Equ (18) is in agreement with the experimental results of Figures 

1, 2. 3 and 4 so far the experimentally produced points fall along 

the clear liquid line. 

d One should also notice in this respect that the ratio O has not 

been brought into discussion yet, i.e. the results of these figures 

are valid irraspective of the values acquired by!• at least within 

the limits of the experiments (in Figure 3 the points plotted for 

x = 0,30 are outside these limits, i.e. they do not fall along the 

clear water line). 
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21. 

5. THE DISSIPATED EI\ERGY AS A FUNCTION INVARIANT OF THE CONCENTRATION 

A discussion of equ (4.18) follows: 

1) When only decrete particles are introduced into the system. i.e. 

for x + 0 one is in a situetion described by Figure 6 (cf. ref. 4). 

The experimental points and the theoretical curves of this fi­

gure prove that a particle proceeds faster than the liquid. thus 

the greater the ~atio !· 
d In the case of a very small particl~ introduced, i.e. for 0 + O, 

the average particle velocity approaches that of the liquid i.e. 

V 
y=...E.+1 

V 
w 

or a+ O 

2) For particles of small diameter introduced in finite concentre­
d tion c0 + o. x ~ 0) experiments prove a uniform distribution of 

the particles across the pipe section, i.e. 

y + 1 or a+ 0 

Then the condition of invariance can be derived fran equ (4.18) 

as follows: 

(1) 

(i+ 0 X J 0) 
(2) 

Equs (1) states that the friction factor relative to the mixture, 

i.e. referred to the mixture velocity Vis equal to that of the 

pure liquid proceeding with velocity Vw· 

Equ (2) expresses the condition of invariance for (4.16): this 

implies V = Vw. 

22/ ..... . 
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22. 

3) For particles of finite size cg j 0), introduced in finite con­

centration (x J 0) aqu (4.18) can be written as follows: 

Then one gets: 

(.!:!_ ! 0, X -+ 0) 
0 

(3) 

(4) 

(5) 

The friction factor is now reduced by the ratio (1 - h)2 in re­

spect off. 
w 

In Figure 7, a has been plotted versus x for values!= 0,067 

and 0,029 respectively, using the experimental results of Roberts 

and Kennedy (ref. 3). 

The two loci intersect the a axis at two points which are close 

to those determined from Figure 5. 

Information of. this kind was not available in the experimental 

material of the remaining authors (ref. 1 and 2) and so Figure 
d 7 contains only two O s k loci. 

Two hyperbolae of the family corresponding to equ CS) have also 

been shown. 

Figure 7 in a rrore complete representation, 1,e. with many loci 

ax~ hand~ s k drawn, would produce a reticulate consisting 

of the intersection of the two families of curves, with each 

point of the plane characterized by four values a. x, h, k. 

Of these only two ere the independent ones. i.e. necessary for 

the physical definition of the problem. 
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23. 

The "minimizing• function ym(x) introduced in Chapter 2, which 

fulfils either equ (2 .17) or ( 4.18), can now be defined: 

It is merely the experimental locus 5!. • k of figure 6, 
D 

d The O ck. loci can be s1Jbstituted for small value of the con-

centration x by their geometrical tangent at the origin. 

d Taking as an example the locus O = 0,067 the tangent equation 

is 

a X -------•1 0,0475 0,22 
(6) 

Elimination of a and h frcrn (4) and (5) by meens of (6) produces 

the friction factor f' in function of the variable x only i.e. 

2 
(1 - (0,0475 X ♦ 0,216 x2)j 

which is the ·wanted expression. 

cg "' o,osn 

(0 < X < 0,10) 

{7) 
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24. 

6. CONCLUSIONS 

Experimental results of Figures 1. 2, 3 and 4 prove that friction 

factors relative to clear liquid and suspension (solid & liquid) 

are equal if referred to the same volume of stre5ning liquid. 

Equality is unaffected by variations of particle concentration and 

of particle pipe diameter ratio. this at least within the limits of 

the mentioned experiments. 

Considerations based on the equation of continuity support the hypo­

thesis that in e conveyance of particles the dissipation of energy 
is en extremum function of the concentration. i.e. invarient against 

e concentration change. 

Assuning that particles in transport b·e centres of energy dissipa­

tion. an equation has been set up (3.14). in which the total energy 

dissipated has been considered to be the sum of the energy relative 

to the particles and that relative to the clear liquid. respectively. 

Considerations about the drag coefficient relative to a particle. 

when settling inside an assembly of particles and when transported 

in suspension inside a stream has led to the following conclusions: 

That the energy dissipated at the particle is equal to the amount 

which would be dissipated inside the volumetrically equivalent 

portion of liquid-. available, if the particle were net present 

(4.17). 

Further the following cases have been discussed: 
d 1) Particles conveyed in discrete nunber (x + o. 0 , O). 

2) Very small particles transported in finite concentration 
d 

(x ~ o. 0 + O). 

3) Particles transported in finite concentration Cx ~ O, *IO). 
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In cesa 1; one has sil1¥)ly reported results of previous research 

work (ref& 4); proving that isolated particles travel faster than 

the average liquid mass. 

In cese 2 one has re-obtained the well-known geanetrical configura­

tion of even distribution of particles in the stream cross section. 

The friction f c::to:.~ referred to the flow of the mixture has been 

found in this case to coincide with that of the pure liquid flaw. 

In case 3 one has obtained a particle velocity which is alweys 
greater than the liquid velocity and a friction coefficient reletive 
to the flow of the mixture. which is always lower than that of the 

stream when conveying an equivalent v0l1.1ne of pure liquid C(S.41 

and CS.SJ). 

Finally the minimizing function y • ym(x) introduced in Chapter 2 
has been identified with the loci~• k represented in Figure 7. 

• Concluding, the condition of invariance of equ (4.18), i.e. of the 

expression 

hes been resoAVed into the elementary condition 

f' • f (1 - ax)2 
w 

This has found physical and analytical justification in Figures 1. 

2. 3 end 4 and in the development of Chapter 4 respectively. 

AC BONAPACE 
PRINCIPAL RESEARCH OFFICER 

PRETORIA 
3/11/77 
ACB/md 
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7. NOMENCLATURE 

(SI system of units) 

A, A , A w p total pipe area, area occupied by the liquid 

(water) and by the solid (parti cles) respec­

tively 

C 
w 

d 

0 

f' 

f 
w 

Fd. F'd 

g 

Gr 

h 

k 

K 
r 

i 

n 

drag coefficient relative to a solitary particle 

and to a particle in an assembly respectively 

Chazy coefficient 

particle diameter 

pipe diameter 

friction factor of pipe for the flow of a mix­

ture (solid I liquid) 

friction factor of pipe for a pure liquid flow 

(water) 

average drag force, drag force on an individual 

particle of an assembly. respectively 

acceleration due to gravity 

particle Grashof number: equ (8) 

a parameter: equ (5.6) 

d a parameter Ck= 0 ) 

a parameter relative to certain pipe velocity 

profile 

hydraulic gradient 

nunber of particles existing in a unitary length 

of pipe 

27/ ..... . 



Re 

V, V' 

V rel 

V. V, V w p 

w, w. w w p 

y 

a 

\) 

Subscripts: 

d means drag 

1 means linear 

p means particle 

s means solid 

w means water 

27. 

flow rate relative to the mixture (solid & liquid} 

to the liquid (water) and to the solid (particles), 

respectively 

particle Reynolds number: equ (7) 

face velocity and true velocity in a fluidisation 

column. respectively 

relative velocity between particle and surroun­

ding liquid 

average velocity of the mixture (solid & liquid}, 

of the liquid (water) and of the solid (particles). 

respectively 

hydraulic power di~~ipated by the mixture (solid 

& liquid), by the liquid (water), by the solid 

(particles), respectively 

volumetric concentration at the discharge and 

linear concentration inside the pipe, respectively 

ratio of expression {2.10) 

ratio of expression (2,111 

kinematic viscosity of liquid (water) 

density of liquid and solid phase respectively 

velocity slip coefficient 

28/ ...•.. 
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TABLE 1 

SUMMARY OF EXPERil"ENTAL CONDITIONS RELATIVE TO TESTS REPORTED 

Literature Authors Conduit & Particle size Part. rel. den- iParticle pipe 
reference sizes sity or settling diameter ratio 

velocity in d/0 
water 

-
1 C Elata Flume 85% particles 1,05 -

T !pen 765 rrrn wide from 0,10 to 
280 nm high 0,155 mm dia. 

2 J W Daily Pipe Particle Between 15 1.34 _ n 
T K Chu O = 51 mm sieved between and 25 51 - • ,026 

1,14 and 1,63 c.'!!!!.> nm s 

3 C P Robert Pipe Cubes, diam. 1,015 ¾} = 0,067 J F Kennedy D • 51 nm of equiv. 
sphered= 
3,4 mm 

--
4 Ditto Ditto Cylinders, dia. 1,052 15~8 

= 0,029 of equiv. 
sphered= 

' 
[ 1

1,48nm r 
i 

) 

Solid volumetric 
cone. investiga-
ted 

I 
o to 10% 

10 to 20% 
20 to 30% 

5; 10; 15: 
20% 

O; 1 O; 20, 
30% 

I 
O; 15; 20; 
30% 

I 

N 
co 
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FIGURE 1: CHEZY COEFFlCIENT VERSUS FLUME REYNOLDS NUMBER REFERRED TO WATER 
VELOCITY (TRANSFORMED FROM REF. 1 : FIGURE 17a) 
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FIGURE 2 : FRICTION FACTOR VERSUS PIPE REYNOLDS NUMBER REFERRED TO 
WATER VELOCITY ( TRANSFORMED FROM REF. 2 : FIGURE 14) 
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