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FUEL RESEARCH INSTITUTE OF SOUTH AFRICA
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STREAM TRANSPORT OF PARTICLES In FULL SUSPENSION. THE ENERGY
DISSIPATION FUNCTION AS AN INVARIANT OF THE CONCENTRATION

SUMMARY
The friction fector (or the Chezy cosfficient) of a stream carrying a

fully suspended load of particles is analysed.

Frietion factors {or Chezy coefficients]) of the suspension coincide with
those of the pure liguid., if referred to the actual fluid velocity, but

are less than those relative to the cumulative velocity, 1.s. less than

the friction factors pertinent to a volumetrically eguivalent strasam

of pure liquid.

In the case of small particles the stated difference between the two

valugs of the friction factor becomes negligible.

2/!.0.‘--



2-

SCOPE OF THE INVESTIGATION

Streams carrying suspended particles are commcn phenomena of our physi-

cal world.

In the very small range of particle sizes and settling velocities, the
stream cen suspend particles almost ideally, i.e. the different phasés

in tlow behave as an elmost homogeneous fluid.

To this group of suspensicns belong emulsions, fogs., smoke, turbid water,

gtc.

For greater particle sizes the settling velocity increases., although

still remaining inside the laminar regime.

Particles of this kind are easily transported by streams, but settles 1if

not continuously supported by ths fluild turbulence.

To this group of suspensions belong slurrles, sand storms, natural

streams when carrylng sand, etc.

A further increase in particle diameter produces settling velocities

lying inside the region of the turbulent regine.

This kind of particles bascome fully suspended only at high transport

veloclties.

High velocity streams with suspended particles often find industrial

application in solid transport either by air or by water.

It is the purpose of this report to investigate the aspect of energy-
dissipation of these solid liguid systems, having particles fully sus-
pended.

Anticipating a rather surprising result, such systems dissipate the

same energy as the fluid above would do, if streaming without particles.
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In other words the conveyance of particles 1s done at no sxtra energy

cost.

However, this free transport conditien is only apparsntly favourabls,
because suspending velocities may be so high as to make the energy
dissipated excessive, i.e. unbearable from an sconomical point of

view.

It 15 the purpose of this report to discuss certain aspects of the
mechanics of these streams and to produce results which agres with the
experimental evidence, as provided by the technical literature on the

subject.
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INTRODUCTIGN

In this paper some hydraulis phenomena are discussed which are
relevant to the hydraulic transport of particles in a fully sus-

pended state.

I¥ a liguid, e.g. water, Tlows in a horizontal pipe with a suffi-
ciently high velocity, the sclid particles are convayed as fully

suspended.

A case of particular interest is that of particles of a density
close to that of the liguid.

In such systems the effects of the force due to gravity are practi-
cally removed and the hydraulic phenomena of interest become more

eccessiblea to investigation.

Experiments using such almost neutral particles have been described
by € Elata and T Ippen (ref. 1) for open channel flow by J W Daily
and T K Chou (ref. 2), by C P Roberts and J F Kennedy (ref. 3} and
by G K Batchelor, A M Binnie and O M Phillips (ref. 4) for pipes

respectively.

In the present work some of thelr results are reported and used to

explain the hydraulic phenomena of interest.

Using capital letters to expraess average guantities relative to the

stream, let us denote with:

R, the total flow rate (solid plus liguid)

V, the mean velocity of the mixture

Q ., the flow rate of the liquid phase (water)
vV
§ , the flow rate of the solid phase (particles]

£ £

, the mean veloclity of the liquid phase (water)

Ra)

¥ , the mean velocity of ths solid phase (particles)

o
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Morsover introducing a friction factor

f' is relative to the mean velocity of the mixture V (solid plus
liguidi,

?w is relative to the mean velocity of the liguid phase Vw (water),

v

expressing with g the acceleration due to gravity, with d and D the
particle and pipe diameters, one can write the Darcy Weisshach equa-

tion and express the hydraulic gradient i in two equivalent forms:

2
i=F' gga-relative to the flow of the mixture (1}
Vz
i-= fw EE— relative to the flow of the liquid phase, (2)

Consequently for the same hydraulic gradient 1 measured, two diffe-
rent friction factors can be defined in function of the selected

stream velocities V and Vw respectively as per equs (1) and {(2).

In Figures 1, 2, 3 and 4 are represented the experimental results

obtained by the above-mentioned authors in a plot fw. REw, whers
RE = =—— (3)
is the Reynolds number of the pipe, referred to the mean velocity
of the liguid phase (water) and v 1s the kinematic viscosity of
the pure liquid (water), at the temperaturs of the experiment.

In Figures 1 and 2 the reductlon of the experimental results to
REw has been carried cut by the author, while Figures 3 and 4 are

reproductions of the original graphs of Robert and Kennedy.

In Figure 1 the friction factor of the channel 1s given as a Chezy

1
coefficient {Cw/gi]. i.e. referrad to the velocity of the 1liquid.

The main parameters of interest of the various expariments reported

have beaen grouped in Table 1.
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From Figures 1, 2, 3 and 4 it appears that the experimental points
fall according to the representation adopted along the clsar liquid
line {water}, i.e. the friction factor fw {or Cw/g%] relative to a
clear liguid velozity Vw, is the same as the experimental friction

factor represented by the points.

This statement is valid for the results of Figure 1 only in a first

degree approximation.

Let us alsc emphasize that the stated coincidence is not affected
{in the regions of the graph where it exists) either by changes in
volumatric concentration x or by variation in the particle/pipe
diameter ratio Ea i.e. experimental points fall along the clear

D
ligquid locus irrespective of variations of these two guantities.

7/--'-.-.



7

THE EQUATION OF CONTINUITY FOR THE FLOW OF A SOLID SUSPENSION

With the notation alresady sstablished one can expraess the flow rate

as the sum of the two partial flow rates i.e.

=40 + (1)

Introducing the discharge concerntration x, defined as the volume

of particles present in a certain volume of mixturs collected, let

us write:
Gp = xf (2)
Qw = {1-xIQ (3)

Further, if we sxpress the total pipe area as A and the arsas occu-

piled by the liquid and by the particles with Aw and Ap respectively,

we get:
8
= X 4}
A v (
9
= .
Aw = 5 {5)
w
Q
° p
with
= {(7)
A Aw + Ap
hence one gets:
Q Q
g:—Ei-—E— (B]
v oV v
p w

The elimination of Qp and Q from (2), (3) in (8) yields:
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a.
Vw
vw =\ {V; x + 1 = x) =V (1 - ox) (83

where oneg has put:

VD
% =*g: {10)
and

1 y - 1
1 = == = 0

v v {11)

y is reslated to the "linear concentration” Xy inside the pipe, by
the following

(12}
where for y = 1, i.e. for Vv =V : Xp = X
W p

For a prefixed value of Xg s the distribution of the solid phase may
vary, for instance particles may proceed uniformly distributed or in
a more or less centered pattesrn and still satisfy the condition of

continuity.

Considering now a mixture, which for a prefixed volumatric concen-
tration x collectsd at the discharge and a total flow rate @, is
such that

Vo= % = constant (133

one gets from equ (8)

Y

Wo_ - =
T c 1 ax =K (14)

being Kr a parameter.

g/!.ll‘ll



gl

Equs (12) and (13) state that for certein prefixed flow rates 3,
QW, Qp. (i{.e. for a prefixed solid concentretion X4 collected at
the discharge) many velocity profiles are possible, all satisfying
the equation of centinuity and correspending to the values:

1 2

Ky o KyS e ﬂ1", this for x = x

1‘

The same argument can be repeated for other valuss of solid concen-
tration X5 x3, v Xn' s¢ that the followlng ordered sets of ve-
locity ratios vy can be formed:

for x

it
x

1 y1[x1]a y2[x1] Seaw yn(X1]

for x Xy y1(x23. yzfle seus yn[x2] (45)

LI B 2 B B R ] L3I S * e Ed LI BN O )

for x = % y1[xn3. yz(xn] sen yn[xn]

Considering now the hydraulic gradient of the stream in its ex-
pressions (1.1) and (1.2) one can write, on account of (13):
.Fl

fw = — (16)

where now the quantities ' and o are unknown.

Moreover with reference to the set of values (15} one can choose
from the first row set, l1.e. for x = x, @ velocity configuration
ym1[x1l such that the energy dissipated by the stream 1s a minimum

relative to all the other y values.

Analogously from the second row one may selact a velocity configu-
ration ymz[le producing minimum energy dissipation for the concen-

tration x2 and so on down to the n row.
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By meking the generic interval Xieq T %y of the concentration small

enough, one can dafine in principle from the seguency of values

3 3 + o= .
Yam* y2m voa ¥nm a8 continuous Turction vy ym(x} which renders ths
function T a2 20 extremum (minimum).

The condition of axtremum relative to agu (18) is squivalent to the

following:
£ (17)
T-aa? " W™t !

Anticipating a later result an expliclt relationship can be obtained

between o and x and between o and %-satisfying equ (17).

19/ vaencs
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THE DISSIPATIVE FUNCTION £ESTABLISHED AS AN ENERGY ERQUATIDN

In the development that follows, streeming particles ars treated as

if they were centres of energy dissipation.

The work done in conveying the suspension is the sum of the work
required to convey the pure liguid =nd the work required to convey
the particles.

The sum of the various powers {rate of work) can be expressed thus
W' =W + W (1)
whers wp is the power dissipated by the liquid in the immediate
surrounding of ths particls, because of the particles' presencs
and ww is the powsr dissipated by the liquid due to its flow as

if the particles ware absent.

W! 1s the powar sum of the two powers just defined, i.e. the power

actually required to convey the mixture.
The power required to convey the ilquid phase only is

- - - (2)
ww iw ngwL iwpg(1 xJBL

where iw is the hydrseulic gradient, p the density of the liquid
and L the length of the pipse.

Using the Darcy-wWelssbach equatien {1.2) one can redefine a friction

factor fw'relative to the liquid phase and write i as 1w' i.a.
1 = f == (3)
wp can be expressed as the product of an average drag force multi-

plied by an average particle velocity Vp times the number of par-
ticles present inside a section of pipe of length L.

12/!!..!.
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If n 1s the number of perticles per unit length of pipe one can

write

W =F, V nL
A (4)

for a drag force on a particle ope cen write:
F* , = 3C' —— pv- . {5)

where C'd is a still undefined particle drag coefficient, d the
particle diamster and Vigy @ certain rslative velocity between the
particle and the surrounding perticn of liquid.

Let us assume that the average drag force F, be also described by

d
the followlng expreesion {(with non-accented symbals]:

2
F,=4§¢C, —~—¢t sz P (6)

In equ (6] E:Vw represents a small relative velocity between a par-
ticle having the behaviour of the average and the surrcunding fluild

(i.e. with € acting as slip coefficient).

Since the solid flow rate is

3
op=ﬂg—- nv (7)
one gets:
Vp no= %%% ' (8}

By elimination of an from (4) and (8}, the following is arrived
at:

wpaacd!_pxeszzo (8)

13/--'---



The work done in conveying the mixture can be expressed in terms

of the actually measurable bydraulic gradient 1, as follpws:

W=1pghtL (19)

where i is given by equ {1.1)

Substitution of (2}, (3), (8] and (10} into (1) yields:

F1o= (F, (4-x) + b €? x) (1 - x + i‘-) {(11)
where

.30
b = 53 Cd [12)

With the position:

Lﬁ'l - a €13)

the following is obtained:

£ . - 2 4
m 'Fw(’lX]*bEx as (14)

object of discussion in the next chapter.
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4., THE PARTICLE COEFFICIENT OF DRAG

The following physical situations are discussed:
al Single particle transported in a stream;
bl particle in an assembly of particles naturally settling with a
ttli v,
settling velocity v s

Let the hydraulic gradient of tha stream be 1, the density of the
liquid p, that of the solid ps.

Equilibrium of the forces in the vertical direction in cases a)
and b) leads to the following expressionst

2

3 v 2
tog -0V I 1 - o L1 T (1a) (X)
gﬂda V;ea Td*
- = L) e S——
lbg = 01 55 Cise P = 3 (2b)

Bivision of (1} by (2) vields

C \Y 2
el vfel ) (3)
dse S8
Conslder now the ratio
]
dss . (4)
C
dse

betwesn drag coefflicients relative to a particle settling in a
crowded condition (accented) and as a solitary particle (non-accented].

For a solitary particle one can rewrite the conditlion of equilibrium
in the vertical direction:

15/cannve
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The first member of equ (1a) expresses the gravitational component
along the slope of value 1i.
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3

dse P 73 T (5]
From (5) the (non-accented) drag couefficient can be defined as
follows:

Gr

a2 (6)

Cdse N

L b

where the Reynolds and Grashof numbers of the particlas are:

88

Re = 7]

Pg = P
s gd (8)

v

Gr =

With reference to Figure 5 the locus ¢ = 1 plots Gr against Re for
8 solitary particle in naturally settling conditions {(cf. Ref. 5).

The actual construction of ths locus ¢ = 1 is cbtained by calcula-
tion, from the experimentally determined well known function Cd =
f(Re), which for Re < 1 becomes Stokes law:

c,6 =22

d Re

The locus ¢ = 1, written as ratic between two different Reynolds

numbers, e.g. at poilnts P1 and P2 acquires the form

n
Re1 Gr1
77 © (&7 {a)

where n is an exponent such that

n = 4 in the fully turbulent region Re > 10%
n =11in the fully laminar region Re < 1
1 <n <1 1in the transitional region 1 < Re < 10%

The inverse %—provides the slope of the locus & = 1 at the particu-

lar Re number considered.

16/.-...-
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In the specific situation where particle sizs, density of the medium
of the particle and viscosity are constant, the Grashof number is

also constant.

Horizontal lines in Figure 5 (i.e. lines of constant Gr number) are
thus lines of constant body Torce  and because of dynamic equili-
brium, 2l1so lines of constant superficial force, while vertical
lines (i.e. lines of a constant Re number) are also lines of con-

stant velocity.

In the case of an assembly of particles, experimental evidence has
shown that equilibrium in the assembly occurs at lower velocities
{or Reynolds numbers) than those applying to an identical soclitery
particle.

In a fluidisation column ons could reword this concept by saying
that the facs veloclty able to support the assembly is less than
the settling velocity of the solitary particle.

In other words equilibrium conditions in the case of an assembly
will be found in a zone to the left of the curve ¢ = 1.

As indicated earlier, in the case of equilibrium, horizontal lines

are lines of constant drag force on the individual particles under

various conditions of crowding, i.e. for various values of the vold
fraction.

These considerations lead to the concept that the diagram may be ex-
tendsd to illustrate the more general case of equilibrium in an

assembly.

Referring to a fluldisation column, in which the mass of particles
is kept in suspension, although the actual fluid velocity v' is un-
known. the apparent velocity (face velocity) v and the apparent

Reynolds number Re = %E- are known.

17/-.1.--
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Let an lsolate particle be in eguilibrium at point P, with co-

1
ordinates Ret, Grt.

If other identical particles are now introduced into the system,
the point of eguilibrium shifts to lower velocities or Reynolds
numbers along the lins Gr = Gr1 (as the body force or Gr remains

constant) say to the point P with co-ordinates ReZ, Gr1i.

According to equ (6}

4 Gr1
’ "
C dse = 3 Fig? (particle in an assembly)
cr as
R'e = ReZ
c? =i.§1;1.
dse 3 Re2?
|
with equ {4) the factor ¢ has been defined as the ratio E—QEE at
dse

identical face velocities.

Thus in this case, comparison must be made with the drag coefficients

at point P2, i.e. the coefficient of drag at F'2 iss

€, ., ==+ 52

dse? 3 RE2

and so

¢=% (9)

One may now plot in Figure 5 the ¢ = constant loci (e.g. for ¢ = 4,
16, B4, etc.)

As the diagram 1s drawn on a logarithmic scale, all these curves

may be obtained by shifting the basic curve ¢ = 1 vertically over

a distance corresponding to 1g &.

13/-..---
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Then one obtains for a known value of @

c’ =C

4 -
dse dset ?

CdseZ {10)
Froem equ (8] written for points F’1 and P2 respectively, from equs

{a) and (S) one gets

_ Gr2z Rel1.? zn-1
Cisez = Cdser B Raz) " ¢ Caser )

Moreover writing equ (6) as under

Caser g -3 S
R%e1 vsel
C substituted into (11) yields
dse1
d.g
.4 2n-1
Casez =37 ¢ (12)
vsel
Returning now to equ (3) with the position
Vrel =€ Vw
one obtains with (3) and (10):
2 s g2y = 12 = 4 y'? ’ = 2
vrel Cd € Vwcd 1v se Eése iV se cdse ivse1 ¢ Cdsez (13)

Expressing C by means of equ (12) and writing for the particle

dsel
in condition as at P (cf. Figurs 5J).

vt d
se1 1 Req = Re2
Y
s _
5 Re1

1g/l,l.loul
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With the position d = d1 in Re1 and further because of (a) and (9},
one gets:

i
n

R'&1 _ Gr2 _ Re2,

(
R%e1

T G6r1 - ‘Rel

Finally from the expressions written above:

2

et T Ve el oz, o™ (14)

v
se1 R%a1 se1

By substituting (14} into (13) the following is abtained:

cd=1-g—°15—— (15)
esz’

Then introducing for 1 the expression (1.2) one gats from (15) and
(3.13)

-F
M

F]

b = (16)

M

Substitution of (18) into (3.14) yields

fl
- - 7
= o2 'Fw (1 x) + 'wa (17}
The term fwx expresses in equ (17) energy dissipation due to par-

ticles presence.,

This term 1s equal and opposite to the amoumt by which the friction
factor has been reduced because of reducec turbulence inslde the

stream (on account of the solid phase presencel.

Then let us write equ (17) in the following equivalent form

.Fl
- = 18]
(1 - ax)? fw g ¢

20/..."'
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Equ {18) is in egreemaent with the experimental results of Figures
1, 2, 3 and 4 so far the experimentally produced points fall along
the clear liquid line.

Une should also notice in this respect that the ratio g»has not
been brought inte discussion yet, i.s. the results of these figures
are valid irrespective of the values acquired by %u at least within
the limits of the experiments {in Figure 3 the points plotted for

X = 0,30 are outside these limits, i.e. they do not fall aleng the

clear water linel.

21/..--.-
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5. THE DISSIPATED ENERGY AS A FUNCTION INVARIANT OF THE CONCENTRATION
A discussion of egu {(4.18] follows:

1) When only decrete particles are introduced inte the system, i.e.

for x -+ 0 one is in a situstion described by Figure 6 {cf. ref. 4).

The experimental points end the theoretical curves of this fi-
gure preove that & particle proceeds faster than the liguid, thus

the greater the npatio g}

In the cese of a very small particlg introduced, 1.e. for %-+ o,

the average particle velocity approaches that of the ligquid i.s.
v .

y = VE-+ 1 or ¢+ 0
W

2) For particles of small diemeter introduced in finite concentra-
tion (g-+ 0, x # 0) experiments prove a uniform distribution of

the particles across the pipe section, i.e.
y *> 1 or g+ 0

Then the condition of invariance can be derived from equ (4.18)

as follows:

ff = f (1
(%-* 0 x #£0)
ax = 0 (2}

Equs (1) states that the friction factor relative to the mixture,
i.e. referred to the mixture velocity V is equal to that of the

pure liquid proceeding with velocity Vw'

Equ (2) expresses the condition of invariance for (4.18): this
implies V = Vw'

22/!.("‘
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3) For particles of finite size (%'# 0}, introduced in finite con-

centration (x # 0) a2qu (4.18) can be written as follows:
' 2
fr = (1 - ax)” f (3}
W
Then one gets:

£ = £, (1-h)2 (4)
tg-;é 0, x + 0)
h=ax (5]

The friction factor is now reduced by the ratio {1 - h]2 in re-
spect of f .
W

In Figure 7, a has been plotted versus x for values gr= 0,067
and 0,028 respectively, using the experimental results of Roberts

and Kennedy (ref. 3).

The two loci intersect the o axls at two points which are closs
to those determined from Figure 5.

Information of this kind was not available in the experimental
material of the remaining authors (ref. 1 and 2) and so Figure
7 contains only two %-= K loci.

Two hyperbolae of the family corresponding to equ [5) have also

been shown.

Figure 7 in a2 more complete representation, i.e. with many loci
ax = h and %-= k drawn, would produce a reticulate consisting
of the intersection of the two families of curves, with each

point of the plane characterized by four wvalues &, X, h, k.

Of these only two are the independent ones, 1.e. necessary for
the physical definition of the problem.

23/.....'
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The "minimizing” function ym(x] introduced in Chapter 2, which
fulfils either egu (2.17) or (4.18), can now be defined:

It is merely the experimental locus %-= k of Figure 6,

The %-= k loci can be substituted for small value of the con-

cantration x by their geomestrical tangent at the crigin.

Taking as an example the locus %-= 0,067 the tangent equation
is

[+] - »x - E
0,0475 ~ 0,22 ~ | (£ = 0,067) (6)

Elimination of a and h from (4) and (5) by means of (6) produces
the friction factor ¥' in function of the variable x only 1.s.

] 2 .d_ =
= (1 -(0,0875 x + 0,216 x%)) (5 = 0,067)
fw 7]

(0D < x < 0:10]

which 18 the wanted expression.

24/.-.---
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CONCLUSIONS
Experimental results of Figures 1, 2, 3 and 4 prove that friction
factors relative to clear ligquid and suspension (sclid & liquid)

are equal 1if referred to the same volume of streaming liquid.

Equality is unaffected by variations of particle concentration and
of particle pipe diameter ratio, this at least within the limits of

the mentionad experiments.

Considerations based on the equation of continuity support the hypo-
thesis that in a conveyance of particles the dissipation of energy
is an extremum function of the concentration, i.e. invariant egainst

a concentration change.

‘Assuming thet particles in transport be centres of energy dissipa-

tian, an equation has bsen set up (3.14), in which the total snargy
dissipated has been considered to be the sum of the energy relative
to the particles and that relative to the clear liquid, respectively.

Considerations about the drag coefficient relative to a particle,
when settling inside an assembly of perticles and when transported

in suspension inside & stream has led to the following conclusions:
That the energy dissipated at the particle is equal to the amount
which would be dissipated inside thes volumetrically equivalent
portion of liquid, available, if the particle were not present

(4.47).

Further the following cases have baen discussed:
d
1) Particles conveyed in discrete number {x =+ 0, E-ﬁ ol.

2) Very small parﬁicles transported in finite concentration
tx #0, §+ 0l

3) Particles transported in finite concentration (x # 0, %-f 0).

25/.._..!.
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In cese 1, one haes simply reported results of previous research
work (ref. 4), proving that isolated particles travel faster than
the average iilguid mass.

In cazse 2 cne has re-obtained the well-known geometricsel configura-

tion of zven distribution of particles in the strsam cross section.

The fricticn fecter referred to the flow of the mixture has besen
found in this case to colncide with that of the pure liquid flow.

In case 3 one has obtained a particle vsloclity which 1s always
greater than the ligquid velocity and & friction coefficient rslative
to the flow of the mixture, which 1s alweys lowsr than that of the
stream when conveying an equivalent volume of pure liquid ((5.4)

and {5.51}}.

Finally the minimizing function y = ym(x) introduced in Chapter 2
has been ldentified with the loci‘% = k represented in Figure 7.

" Concluding, the condition of invariance of equ {4.18), i.e. of the

expression

£ .
(1 - ax)® fw 0

has been razelved into the slsmentary condition
Y o - 2
f fw {1 -~ ox)

This has found physical and analytical justification in Figures 1,
2, 3 end 4 and in the development of Chapter 4 respectively.

A C BONAPACE
PRINCIFAL RESEARCH OFFICER

PRETORIA
3/11/77
ACB/md
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7. NOMENCLATURE
(ST system of units)

A, Aw‘ AD total pipe area, area occupied by the liguid
- (water} and by the sclid (particles) respec-
tively
Cd' C'd drag coefficient relative to a solitary particle

and tc a particle in an assembly respectively

Cw Chezy coefficient

d particle diameter

0 pipe diameter

il friction factor of pipe for the flow of & mix-

ture (solid & liquid)

fw friction factor of pipe for a pure liquid flow
(water) '
Fd' F'd average drag force, drag force on an individual

particle of an assembly, respectively

E acceleration due to gravity
Gr particle Grashof number: equ (8)
h a parameter: equ (5.6}
d
K a paramgter (k = BJ
K a parameter relative to certaln pipe velocity
r
profile
i hydraulic gradient
n number of particles existing in a unitary length
of pipse

2?/.0'...
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V, V., V
w' p

W, W, W

Subscripts:
d means drag
means lilnear

means particle

n T =

means solid

means water

£
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flow rate relative to the mixture (solid & liquid)

to the liquid (water) and to the solid (particles),

respectively

particle Reynolds number:

face vealocity and true velccity in a fluildisation

column, respectively

relative velocity between particle and surroun-

ding liquid

average velocity of the mixture {solid & liguidl,
of the liguid (water) and of the solid (particles),

respectively

hydraulic power diasipated by the mixture (solid
& liquid), by the liguid (water), by the solid

(particles), respectively

volumetric concentration at the discharge and

linear concentration inside the pipe, respectively

ratio of expression (2.10)
ratio of expression (2.11])

kinematic viscosity of ligquid (water)

density of liguid and solid phase respectively

velocity slip coefficient
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TABLE 1

SUMMARY OF EXPERIMENTAL CONDITIONS RELATIVE TO TESTS REPORTED

Part. rel. den- -éPart:lcle plpe

i
!

Authars Conduit % Particle size Solid volumet
slzes sity or settling;diameter ratio | conc. investi
velocity in d/D ted
water
C Elata Flume 85% particles 1.05 - 0 to 10%
T Ipen 765 mm wide from 0,10 to 10 to 20%
280 mm high 6,155 mm dia. 20 to 30%
J W Daily Pipe Particls Betwesen 15 1.34 _ 026 5; 105 15;
T K Chu 0O = 5% mm sieved bstween | and 25 51 ot 20%
t.14 and 1,83 PLLD
mm s
C P Robert Pipe Cubes, diam. 1,015 3.4 _ 0.067 0; 405 20;
J F Kennady D =51 mm of eqguiv. 51 ' 30%
sphere d =
3,4 mm
Ditto Ditto Cylinders, dia. 1,052 1.48 _ 0.029 U; 155 20;
of aquiv. 51 ' 30%
sphere d =

1,48 mm
























