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Abstract

Complexity science is often seen as the science of emerging non-linear phenomena.
In this paper we discuss some emerging aspects of non-linear solutions in physics.
These solutions owe their elegance and simplicity to the complex non-linear
structure of the equations, a structure which is dictated by the symmetries of
physics. A central theme in these non-linear solutions is that the magnitude of the
driving term (or the initial cause in more mundane language), is of little influence on
the final solution. In linear approaches one would normally exploit the smallness of
the source term by constructing solutions order by order. The non-linear solutions
have a very different nature and cannot be constructed by such perturbative means.
In contrast to certain other applications in complexity theory, these non-linear
solutions are characterized by great stability. To go beyond the dominant
non-perturbative solution one has to consider the source term as well. The
parameter freedom in these equations can often be reduced by self-consistency
requirements. We attempt to assess a possible role of this type of solutions in
general complexity theory. In particular we stress the possibility that the complexity
of the equations is beneficial rather than detrimental towards the solution of these
non-linear equations, as long as this complexity reflects fundamental aspects or
principles in the description of the system.
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Introduction

The fundamental theories of physics, such as Quantum Electrodynamics (QED),
Quantum Chromodynamics (QCD) and General Relativity are all associated with
fundamental dynamical equations, which are called equations of motion. These are
differential equations (usually non-linear) for the relevant space-time functions. In
most applications of these theories (in particular in scattering problems) one
calculates physical expressions order by order to avoid the complexities of
non-linearities. Advanced techniques and software can be used to calculate the
higher order terms, which become more complex the higher order they are.
However, even for very small driving terms there is no guarantee that the resulting
series converges. One can also attempt to solve these equations of motion
non-perturbatively by dealing first with the non-linearities, thereby sidestepping the
divergence problems. Simplified non-linear equations may admit exact solutions,
while the details can be handled in subsequent iterations. Now the complex structure
of the fields and coupled equations makes such an exercise problematic in physics.
However, we have found that the very nature of these complex equations and
entities permits the construction of elegant and stable solutions in certain
fundamental problems (Greben, unpublished). Apparently, nature has “chosen”
these complex structures for good reason as they lead to some very special desirable
properties.

Clearly, we cannot expect that the system equations of more mundane problems in
complexity theory are grounded in principles and structures of similar depth.
Nonetheless, the fact that the elegant basic solutions (modes) would not emerge in
these physics examples if non-linear terms had been dropped may contain an
important message. It suggests that the (non-linear) complexity of system equations
should be respected and that non-linearities can often be beneficial in constructing
stable and dominant solutions. Hence, rather than avoiding and/or approximating
non-linear terms, it may be more appropriate to treat the non-linearities in a rigorous
way. One may even want to introduce additional non-linear terms to permit the
construction of specific non-linear modes. Just like nature has selected specific
mechanisms to enable a feasible and (self)-consistent reality, ecological, social
and/or economic mechanisms may have evolved which survived the instabilities of
historical developments. It might well be that these mechanisms can also be
described by appropriate non-linear feedback loops.

In describing an ecological, social or economic system one might follow the
accepted domain expertise and introduce all the relevant terms with adjustable
parameters. However, we can also take the lead from nature by studying how it has
realized the consistent formulation of natural phenomena. It is quite possible that
these natural mechanisms can also be applied in other contexts. That is why we feel
that it is useful to study some of the equations of motion from physics, albeit in
simplified form, and consider their possible application in complexity theory. This
may also alert us to certain non-linear aspects of system equations which carry a
more profound meaning then superficially expected. Such aspects could for example
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be responsible for the stability of seasons in a weather system that is generally
considered chaotic.

In this paper we will discuss the properties of such emerging non-linear solutions in
physics with an eye on their relevance to complexity theory. We use the word
emerging here to indicate that the non-linearities permit additional solutions which
would not be present in the absence of such non-linearities and are distinct form
perturbative solutions which correspond to the linearized equations. Because of the
complexity of the physics solutions we will not discuss the technical properties of
these solutions, but rather study some mathematical properties of the simplified
equations.

Non-Linear Solutions in Physics

The fundamental theories in physics are based on deep principles, such as gauge
invariance in Quantum Electrodynamics (QED) and Quantum Chromodynamics
(QCD), and covariance in general relativity. All of these theories lead to
fundamental dynamical equations, which are called equations of motion. While
these equations are highly non-linear and complex in nature, they still hide the

original symmetries that are imposewl"‘l= g +gva’ +g'ay originally, and
therefore unexpected elegant solutions with extraordinary properties might well
emerge. Now it is common to treat the scattering problems in physics with
perturbative methods, i.e. in terms of expansions in the weak coupling constants of
the field theory. These methods avoid a full treatment of the non-linear aspects by
introducing terms order by order, raising questions of ultimate convergence and
self-consistency. Similarly, in general relativity it is common to describe curved
space-time in terms of the weak modification due to the presence of local massive
objects. Despite their successes, these perturbative theories only can describe certain
aspects of nature. One might expect that non-perturbative solutions will describe
other aspects and also carry properties distinct from the perturbative solutions. We
will discuss the properties of some solutions of differential equations inspired by the
equations of motion in QCD.

The equations of motion of QCD are non-linear equations for quantum fields. These
fields are not ordinary numerical quantities having a particular value in each point in
space-time. Rather they are non-commutative operators that turn a given state vector
into another one. They also carry numerous indices, which makes their treatment
even more difficult. Naturally, this is not the place to discuss these aspects,
however, it is important to realize that all these aspects are probably essential for the
correct description of our universe, as it would be unlikely that nature would have
selected these complicated mechanisms without good reason. For the same reason
we can expect that the solutions that emerge from these equations have unique
properties which are essential for the way nature manifests itself. In this paper we
present examples of such solutions, albeit in simplified form. The relevance of these
solutions can then be investigated in the context of more mundane applications in
complexity theory. For this reason we start with a symbolic representation of the
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equations of motion of QCD.

There are two distinct unknown functions in these equations, one representing the
interaction (the gluon field A) and one representing matter (the quark field f). The
mathematical structure then looks like:

VA= gflrgvd’ig’ds’ (1)
and

Vi =gdf (2)
where g is a coupling constant, which usually functions as an expansion parameter
and is considered small. Trivial solutions, where f is identical to zero, are not of
interest. We can arbitrarily complicate these equations by introducing multiple A
and f functions, but in the current context we want to demonstrate the consequences
of the non-linearities. Naturally, a more complex structure contains a larger and
more interesting scope of possible solutions, but without specific hints from nature
such extensions might complicate, rather than elucidate, the power of system
equations.

The symbol ¥ symbolizes an operator involving first order derivatives. In physics
this could be derivatives with respect to time or space. In complexity theory most
applications would involve time and not space, leading to a considerable
simplification. However, a complication in system descriptions in complexity
theory, which is not present in physics, may be the lag in response time, as most
responses in real-world situations will not be instantaneous.

Let us now see whether the simplified equations which we consider, also display
distinct elegant properties. First we set:

-z
£ 3)
so that:
‘?’Z=g’f’+‘?Z’+Z” 4)
and
Yf =Zf (5)

Hence, by a simple redefinition we have removed the dependence on the coupling

constant from all terms except for the driving term-i‘hz .

Perturbative solutions are obtained by expansions in the coupling parameter g.
Initially the non-linear terms in Eq.(4) are deleted and Eqgs.(4-5) is solved iteratively.
To be explicit, one writes:

Z=g’Z; +g‘Z, +--- (6)
and

f=h+efi+g i+ (7)
and solves the equations order by order. For example,

Vi =0 (8)
and % is a solution of the equation:

vz = _ﬁ,: )
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If g is small we can terminate the series (6) and (7) after a few terms. As Z = O(¥ : ),
the original function A in Eq.(3) is well-defined for g = 0 (in fact it is zero).

The non-perturbative solution of these equations proceeds very differently. First we

construct a homogeneous solution of Eq.(4) by omitting the driving term & ‘r .
Replacing the general derivative by a simple time derivative we obtain the following
solutions:

B

=
t+f (10)

where B can assume three values:® =0 or&=1% 3 and the constant & is
arbitrary and must be fixed by the boundary conditions. It reflects the translational
invariance of the equation. The solution B = 0 corresponds to the perturbative
solution and can be considered as the lowest order term in this solution. The two
other solutions are genuine non-perturbative solutions, which “emerge” because of
the presence of non-linear terms.

Given these three basic modes, we can now derive the form of the driving term:

F=rt+8y (11)
where B assumes the three values indicated before. This solution contains another
adjustable parameter y, which is different from zero for non-trivial solutions. We
can now iterate the solutions further in terms of g in order to study the finer details.
Whether this series converges is not so important, as one can always introduce
higher order terms in Eq.(1), to guarantee convergence. However, if convergence is
not guaranteed, only the first few high order terms should be included. For divergent
series the first few perturbative terms may still make sense as an asymptotic
expansion, however, it would be meaningless to go to higher and higher order. For
the non-perturbative solutions (B # 0) A is singular for g = 0, as it is proportional to
1/g. Obviously, the non-perturbative solutions have a very different character than
the perturbative one, where A is finite for g = 0.

There 1s also an exact solution for B = - 3/2, with

= py

4 (12)
In this case the normalization of f is fixed by the equations. Although the sign of this
solution indicates that it might be unfeasible in this case, for other coefficients in
Eq.(1), this solution may well be feasible. Both A and f are now singular for g = 0,
so that this is a truly non-perturbative solution. Since there is in general no simple
way to construct such incidental exact solutions, one might easily miss it in the
solution of the non-linear equations. It is a testament to the richness of these
non-linear equations that such incidental solutions exist. The reason we call this
solution incidental is that it is not found through the standard construction of modes.
In this case there exist other methods to uncover the solution Eq.(12) and therefore
one may object to the characterization of such a solution as incidental. However,
what we want to stress is that non-linear equations may have unexpected solutions,
which just might have added importance because of their unique, and therefore
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stable, character.

Let us now discuss some general properties of these solutions. First of all, the three
basic modes which have been found are very distinct. Hence, we can attribute great
stability to them. However, a given initial value for f does not fix the whole solution,
since f in Eq.(11) displays two free parameters. Other constraints will determine
which mode will be selected. The driving term (the causal mechanism) therefore has
an unpredictable influence on the nature of the full solution. This can be seen as an
example of the butterfly effect: although the value of f has an effect on the future
solution, its effect depends strongly on other aspects of the system. Secondly, we
can wonder how transitions between different modes are possible in view of their
stability. Such transitions are possible if we generalize Eq.(1) by multiplying each
term with suitable coefficients. In practice these coefficients would also vary with
time (hopefully slowly), so that at different times, different modes would apply. It
might now happen that for certain values of these parameters two non-perturbative
modes coincide. At such instances one can easily visualize a transition between two
basic modes. It would be of interest to identify such bifurcation (?) points, as they
might signal the transition from one regime (e.g. a growth scenario) to another (e.g.
a reduction scenario). For a simple set of equations with constant coefficients, the
value of the critical parameters would be easily determined.

Are there any properties which manifested themselves in our QCD calculations
(Greben, unpublished) which are either hidden or absent here? One property we find
in the QCD case is that the non-perturbative solution shares certain properties with
the perturbative solution, but at the same time is much more stable. This does not
appear to be the case here, as the solutions in Eq.(11) are all very distinct for
different values of B. The stability of these solutions distinguishes them from other
phenomena in complexity theory where the instability of the critical solutions is
emphasized (Bak and Chan, 1991). Another aspect of the QCD solutions may be
more relevant to applications in complexity theory. Although the source terms play
a minor role in the fixation of the modes, they play an essential role in the
formulation of the equations, as it is their structure and properties which fix the form
of the equations. Carrying this idea to complexity theory, it would be essential to
have sufficient (domain) knowledge of the quantities described in the system to
derive the appropriate equations and couplings, even though the various causes may
play a minor role in fixing the global modes. The form of the respective quantities in
the systems equations can be formulated in terms of Ansatze, which subsequently
can be tested for consistency. Self-consistency is therefore an important tool in
determining the correctness of the equations and the solutions. A third aspect, which
we encountered in the QCD case, is that despite their relative unimportance, the
driving terms plays an important role in fixing the details of the solution. The free
parameters in the driving term can be adjusted to provide an optimal fit to the
relevant data Subsequently, the quality of the fit can be assessed. (Self-) consistency
can also play a role in fixing the relevant parameters. For example, in Eq.(12) we
found that the simple parameters in Eq.(1) do not yield a feasible accidental
solution.

The Relevance of Non-linear Solutions in Complexity Theory
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Having looked at specific solutions for our simplified differential equations, and
having quoted some results from physics, we now want to formulate our conclusions
in more qualitative language so as to emphasize their possible role in complexity
theory:

1.

The coupled equations in the form (1-2), generalized to feature additional
coefficients, may well be simple enough to function as a representative for
some non-linear systems in complexity theory. The derivatives in systems
theory would normally be limited to time derivatives, thereby simplifying the
solution techniques. The solutions should be expanded around the main
modes of the non-linear equations. One should also consider the possibility of
incidental solutions.

. The elegant solutions of the full QCD equations only emerge if the

complexities of the equation are fully respected. For systems equations
describing more mundane processes we also would expect that the existence
of stable solutions is dependent on the presence of non-linear coupling terms
and feedback mechanisms. Simplification or non-inclusion of crucial
non-linear mechanisms may therefore eliminate the solutions of relevance.

. Can we identify certain feedback mechanisms which are responsible for stable

systems? Since stable systems are likely to be more representative of our
environment than unstable ones, if only because of evolutionary pressures, we
should investigate which specific non-linear constructions are responsible for
stability in our everyday world. Physics can provide useful examples for these
mechanisms. Although we cannot expect that social situations contain the
same deep principles as physics, we might expect that some of the same
mechanisms are present, helped along by social or cultural evolution.

Often, non-linear equations for real-world situations do not have simple
solutions. Mathematicians or modellers would then rephrase or simplify the
equations until they can construct a solution. However, this process may not
lead to an elegant solution or a solution with amazing new (emerging?)
properties or features. On the other hand, nature has often found amazing
ways to cope with certain problems, leading to unique and desirable
properties. Hence, we might want to copy such mechanisms within the
context of system equations occurring in complexity theory.

Another amazing feature of nature is its hierarchical built up (Chaisson,
2001). System equations might also be constructed in a hierarchical way,
whereby the main modes satisfy one set of equations, while the details are
described at a different level of the hierarchy. Again, analogies to solutions
found by nature could be beneficial to complexity theory. In some cases this
might help us to select which terms to keep and which terms to drop in the
systems equations at different levels in the hierarchy.
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6. Nature often chooses special solutions: rather than selecting one of the general
solutions it might chose the one exception to the general rule. Our incidental
solution in Eq.(12) is a possible example. That is why it is easy to miss
nature’s solutions, as they often seem to violate a rule which is thought to be
generally applicable. In physics these rules are known as no-go theorems, and
more often then not they are being violated by nature. Spontaneous symmetry
breaking is one of the modern phenomena where general symmetries are
being violated. In the context of applications in complexity theory this might
mean that one should carry out analytical rather than numerical studies, as the
special solutions are hard to spot numerically.

92999

7. The “agents™ in our systems analysis should be represented in the right way.
A simplified representation of these agents (for example missing certain
dynamical or possibly adaptive features) could spoil the potential solutions of
our system. The domain knowledge about the driving terms (causal agents) is
instrumental for the formulation of these properties.

8. In physics transitions from one equilibrium situation to another (or from one
mode to another) are given by scattering matrices. Similarly in complexity
theory, one could think of transitions from one main mode to another by
means of a separate description using transition matrices. In physics, the
transitional processes and the modal degrees of freedom require totally
different treatment methods, the former often requiring more simple
perturbative approaches. Further research is required to determine whether a
similar situation applies in applications of complexity theory.

9. A more natural way to effect transitions in system equations is by allowing
the coefficients in the equations to vary with time. When a point is reached
that two modes coincide, a transition between the two is possible. Hence, the
system equations should be analyzed in order to determine the conditions for
these phase transitions or bifurcation points.

Summary

Often complexity theory deals with strong fluctuations in the solutions originating
from a single - nearly unique - initial state. The solutions can converge to various
different states, often called attractors. However, which attractor will be selected is
often hard to predict. Using examples from physics, we also emphasize the stability
of non-linear solutions and the irrelevance of the initial cause in determining the
nature of the main modes. We notice that the transition between different modes in
physics requires a separate description that is distinct from the description of the
overall system modes. We suggest that such a description might also be called for in
complexity theory, and recommend further study of this particular aspect. In
physics, the elegance and stability of the mode solutions is only guaranteed if the
full complexity of the equations is respected. We submit that a similar situation
might apply in more qualitative applications of non-linear equations in complexity
theory. Hence, the complexity of the system equations might be a virtue, rather than



A Shell for ISSS Proceedings: Title of Paper, in Upper and Lower Case, as a Heading 1 Centered Bold (1

a problem. In particular one might want to introduce terms that increase the stability
of the system, even if they make the equations look more complex. It is likely that
evolution has selected such mechanisms over less stable alternatives.
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