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Abstract
In this work, we explore the use of phonological features in
cross-lingual transfer within resource-scarce settings. We mod-
ify the architecture of VITS to accept a phonological feature
vector as input, instead of phonemes or characters. Subse-
quently, we train multispeaker base models using data from Lib-
riTTS and then fine-tune them on single-speaker Afrikaans and
isiXhosa datasets of varying sizes, representing the resource-
scarce setting. We evaluate the synthetic speech both objec-
tively and subjectively and compare it to models trained with
the same data using the standard VITS architecture. In our ex-
periments, the proposed system utilizing phonological features
as input converges significantly faster and requires less data than
the base system. We demonstrate that the model employing
phonological features is capable of producing sounds in the tar-
get language that were unseen in the source language, even in
languages with significant linguistic differences, and with only
5 minutes of data in the target language.
Index Terms: text-to-speech, resource-scarce, phonological
features, cross-lingual

1. Introduction
Modern non-autoregressive text-to-speech (TTS) neural archi-
tectures, such as FastSpeech2 [1] and VITS [2], have made
it possible to create natural-sounding TTS voices using sig-
nificantly less data compared to the previously dominant con-
catenative synthesis or statistical parametric speech synthesis
(SPSS) techniques [3]. However, these models still require a
considerable amount of training data, which may not always be
readily available in resource-scarce languages, the target lan-
guage for building the voice. Generally, the availability of
more data reduces the need for domain knowledge when con-
structing a TTS model, and vice versa. The term “resource-
scarce” (or “low-resource”) lacks a well-defined and universally
agreed-upon definition. It encompasses various dimensions, in-
cluding linguistic resources, acoustic resources, human capital,
and computing resources. In this study, we adopt the term
“resource-scarce” to refer to languages where a certain level
of word segmentation, text normalization, and grapheme-to-
phoneme (G2P) conversion functions are available, along with
limited recordings of relatively high quality, typically 30 min-
utes or less.

Techniques that have emerged to address the challenge of
data scarcity include self-supervised learning (SSL) and cross-
lingual transfer. In self-supervised learning, a representation of
speech is obtained, capturing low-level acoustic events, lexical
knowledge, and syntactic and semantic information[4]. These
representations can be further utilized to reconstruct the speech
signal [5], making them suitable as an intermediate speech rep-

resentation in a TTS model. This allows for the development
of a two-stage TTS model. In the first stage, text is con-
verted into an SSL representation, which is trained using rela-
tively low-quality, but often abundant, automatic speech recog-
nition (ASR) data. The second stage involves the conversion
of the SSL representation into speech, and it can be trained
using a smaller, high-quality TTS-style corpus. Recent exam-
ples of these models include [5], [6], [7] and [8]. These models
show promise for building voices with limited data; however, to
our knowledge, they have not yet been applied to cross-lingual
voices.

In cross-lingual transfer, a TTS model is pre-trained us-
ing data from a resource-rich language, known as the “source
language”, to facilitate the learning of mappings between text
and speech in resource-scarce languages, referred to as the “tar-
get language”. This approach is grounded in the assumption
that human languages share similarities in terms of pronuncia-
tion and semantic structures [9]. However, several challenges
need to be addressed, including differences in phone invento-
ries, representations, and language similarity. To handle these
challenges, the differing phone inventories or input represen-
tations can be modeled using either unified representations or
separate representations, as investigated in [10]. The findings
of this study suggest that employing a unified input represen-
tation can enhance the accent and naturalness of multilingual
TTS models. In this study, we compare a direct unified rep-
resentation to phonological features as input in a cross-lingual
TTS model. The question we ask is whether it is advantageous
to use phonological features in cross-lingual transfer learning,
particularly in resource-scarce scenarios. The key contributions
of our work are as follows:

1. We modify a state-of-the-art TTS model to accept phonolog-
ical features as input, deviating from the conventional char-
acter or phoneme-based schemes.

2. We train multiple TTS voices, simulating resource-scarce
scenarios, and demonstrate that by utilizing phonological fea-
tures, it is possible to train a cross-lingual model with as little
as five minutes of data while achieving naturalness compara-
ble to, or even better than, statistical parametric speech syn-
thesis models.

2. Related Work
2.1. Phonological features

Phonological features (PFs) consist of a combination of artic-
ulatory and auditory/acoustic features [11], although the terms
“phonological features” and “articulatory features” are some-
times used interchangeably [12]. According to [12], PFs can
serve as a substitute for character models, where characters
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are used to map phonemes or phones. Several recent studies
[13, 14, 15, 16, 17] have focused on utilizing phonological fea-
tures, either for cross-lingual phone inventory mapping or as
direct input in TTS models. Phonological features are appeal-
ing as TTS input due to the potential for sharing features among
phone identities and their universal nature.

Using phonological features in a TTS system offers advan-
tages over phonetic models, including:

• Simplified Data: Phonological features provide a more ab-
stract representation of speech sounds, reducing complexity
by focusing on higher-level linguistic features. This simpli-
fication decreases computational requirements and training
complexity.

• Language Independence: Phonological features are more
language-independent, allowing for easier adaptation and
transfer of TTS models to different languages with minimal
adjustments, even when phonetic inventories and pronuncia-
tion rules differ.

• Robustness to Variation: Phonological features handle vari-
ations in speech sounds by capturing essential linguistic dis-
tinctions while allowing for flexibility. This enables the TTS
system to accommodate diverse accents, dialects, and speak-
ing styles, resulting in adaptable and natural-sounding syn-
thesized speech.

• Generalization and Out-of-Vocabulary Handling: Phonolog-
ical features improve generalization and out-of-vocabulary
(OOV) handling within the TTS system. By focusing on ab-
stract linguistic features, the model can extrapolate patterns
and adapt to unseen or uncommon words, enhancing cover-
age and adaptability.

• Reduced Data Requirements: Phonological features may re-
quire less training data compared to full phonetic represen-
tations. Capturing fundamental linguistic characteristics, a
smaller dataset can effectively train the TTS model, benefit-
ing low-resource languages or situations with limited labeled
phonetic data.

In linguistics, various schemes are used to model phonolog-
ical features and analyze the distinct characteristics of speech
sounds. These schemes include:

• Binary Features: Binary feature schemes categorize phono-
logical features as present (+) or absent (-) for a speech
sound. This approach simplifies representation by using bi-
nary distinctions for articulatory and other phonological fea-
tures [18].

• Multi-Valued Features: Multi-valued feature schemes expand
on binary features by allowing multiple values to represent
phonological distinctions. These schemes incorporate addi-
tional values to capture nuanced phonetic properties [19].

• Articulatory Features: Articulatory feature schemes focus on
the physical properties and movements of speech organs dur-
ing speech production. They represent features based on ar-
ticulatory gestures, including place and manner of articula-
tion, voicing, and airstream mechanism.

• Feature Geometry: Feature geometry schemes depict phono-
logical features as a hierarchical structure, capturing depen-
dencies and relationships between features. This approach
represents complex feature interactions and visualizes phono-
logical processes and patterns [20].

In this work, we employ a phonological feature set based on
the work in [16], with some modifications discussed in detail in
Section 3. Our work is similar to the low-resource multilin-

gual study conducted by [21], but we employ a different neu-
ral model, significantly less training data for the resource-rich
source language, and we objectively and subjectively compare
various sizes of resource-scarce datasets. [14] also utilized PFs
for cross-lingual TTS, but their focus was on speaker adapta-
tion, and they employed two orders of magnitude more training
data. Additionally, [22] investigated PFs for cross-lingual TTS,
albeit with a larger training dataset and an autoregressive model.

3. Proposed Method
The proposed model architecture is built upon the VITS model
[2], which is an end-to-end TTS model operating in parallel.
VITS utilizes a conditional variational autoencoder (VAE) to
generate raw waveforms from text inputs. It incorporates nor-
malizing flows [23] to handle the conditional prior distribution,
and employs adversarial training [24] with a discriminator net-
work to enhance the quality of synthesized speech. In this study,
the standard VITS model has been modified in the following
ways:

• Phonological Features Encoder: The original Text Encoder
component of the VITS model has been replaced with a spe-
cialized phonological features encoder. This encoder is capa-
ble of processing a sequence of binary phonological feature
vectors as input.

• Decoder: The original Decoder component of the VITS
model has been substituted with a Multi-Band inverse Short-
Time Fourier Transform (MB-iSTFT) decoder.

3.1. Models

3.1.1. Baseline

The baseline model is the standard multi-speaker MB-iSTFT
variant 1[25] of the VITS, using phones as input. The decision
to adopt this model was influenced by several factors. Firstly,
its foundation on the state-of-the-art VITS architecture ensures
its alignment with cutting-edge methodologies in the field. Ad-
ditionally, the model presents a favorable characteristic of being
relatively lightweight, which contributes to computational effi-
ciency. This advantage is further complemented by the notable
speed of its inference, achieved through the implementation of
an efficient MB-iSTFT decoder. Importantly, the model exhibits
only a relatively minor degradation in naturalness compared to
VITS, maintaining a satisfactory level of output quality. The
model has a phoneme embedding lookup table with a dimen-
sion of 96.

3.1.2. Proposed

The baseline architecture is enhanced through the substitution
of the text encoder with a phonological encoder. The phonolog-
ical encoder employs a sequential forward model with a non-
linear activation, this enables the model to learn embeddings
for multidimensional input features as opposed to the conven-
tional one-dimensional character or phoneme-based input. The
resulting output from the phonological encoder is then fed into
the encoder of the VITS architecture in a similar manner to the
text encoder in the baseline model. To ensure comparability
with the baseline, a dimension of 96 is selected for this output.

1https://github.com/MasayaKawamura/
MB-iSTFT-VITS
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Table 1: Phonological features set used in this work.

Articulation Mouth

Modifier Category Non-speech marker Place Manner Tongue position Openness Shape Voicing

lengthened consonant silence dental plosive back close rounded unvoiced
half-length vowel padding postalveolar nasal central back close close-mid unrounded voiced
shortened phoneme question mark velar approximant central close-mid
aspirated exclamation mark palatal trill front central mid
ejective start of sentence glottal flap front open-mid

end of sentence uvular fricative open-mid open
syllable boundary labiodental lateral-approximant open
word boundary labial-velar implosive
phrase boundary alveolar vibrant

bilabial click
alveolopalatal lateral-fricative
retroflex lateral-flap
pharyngal
epiglottal
labial-palatal

3.2. Phonological Feature set

The phonological feature set utilized in this study is primarily
based on the framework proposed by [16], with minor modifica-
tions. Our feature set comprises nine broad categories, eight of
which directly correspond to the categories defined in the IPA.
All features in the set are binary, resulting in a total of 60 com-
bined features across all categories. Five of these features are
considered “modifiers”, which can either modify the preceding
or succeeding phone feature vector. For instance, in the case of
a lengthened vowel, both the “vowel” feature and the “length-
ened” feature would be assigned a value of one.

In addition to the established categories, we have intro-
duced an extra category called “non-speech marker”. This cat-
egory encompasses features that are either syntactic in nature
or may influence the overall prosody of the investigated utter-
ance. Table 1 gives the broad categories as well as the detailed
features used in this work.

4. Experiment and Results
4.1. Data

The objective of this study was to develop a cross-lingual trans-
fer model for TTS applications, specifically targeting resource-
scarce languages. In this context, English was chosen as the
resource-rich source language, while Afrikaans and isiXhosa
were selected as the resource-scarce target languages. All the
speech data includes the associated text transcriptions.

The language data employed consisted of a subset derived
from the LibriTTS corpus[26]. Specifically, we focused on the
male speakers’ speech data since the resource-scarce datasets
also consisted of male speakers. To reduce computational load
during training, we filtered the utterances and selected only
those containing 20 or fewer tokens. Randomly sampling from
this filtered set, we obtained a total of 12 000 utterances, en-
suring the manageability of the data within a single graphical
processing unit (GPU).

For the resource-scarce data, we utilized subsets from the
Lwazi corpora for Afrikaans and isiXhosa male speakers [27].
Similarly, we applied a filtering process, selecting only utter-
ances with 20 or fewer tokens. To represent extreme resource
scarcity, we chose three subsets for each language: 5 minutes,
15 minutes, and 30 minutes of speech data. These subsets were
independently and randomly selected from each respective cor-

pus. Further details regarding the data used can be found in
Table 2.

To construct the test and validation sets, we randomly se-
lected 10 utterances from each language, ensuring they were
not included in any of the training sets outlined in Table 2. Ad-
ditionally, we chose 20 utterances from each language for the
validation set.

Table 2: Details of training datasets.

# Lang # Spk Src Dur ID

1 Eng 124 males LibriTTS 3:01:15.56 libritts

2

Afr 1 male Lwazi

0:05:00.15 afr5min

3 0:15:05.28 afr15min

4 0:30:00.74 afr30min

5 3:33:26.53 afrall

6

Xho 1 male Lwazi

0:05:01.40 xho5min

7 0:15:02.24 xho15min

8 0:30:02.12 xho30min

9 2:46:04.77 xhoall

4.2. Pre-processing

The text annotations in the selected datasets (Table 2) under-
went tokenization and normalization for each utterance. Lin-
guistic descriptions were generated using the Speect TTS en-
gine [28]. These descriptions consisted of phone strings with
syntactic markup, including syllable breaks, word breaks, and
phrase breaks. These syntactic markers align with the markers
in the “non-speech marker”category in Table 1.

The baseline model took phone strings as input. To facil-
itate cross-lingual transfer with the baseline model, a unified
representation for the phone inventory was established. This in-
ventory encompassed all the distinct phones from the English,
Afrikaans, and isiXhosa phone inventories. Instead of mapping
between individual language inventories, the unified inventory
represented a shared collection of unique phones that covered
the complete phone inventory of the baseline models.

The proposed model utilized the phone strings with syn-
tactic markup from the baseline model as input. These strings
were then transformed into a phonological features vector using
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the defined feature set in Tables 1. Each phone first maps to an
IPA equivalent, which then is transformed into the phonological
features vector.

Both the baseline and proposed models incorporated the
practice of “interspersing” zero-valued vectors (or zeros for the
baseline) into the input vector (or string for the baseline). This
aided the alignment module (monotonic alignment search) of
the VITS architecture.

All audio was down-sampled to 16 kHz at 16 bits per sam-
ple, and each utterance was normalized to the average power
level of the dataset (as shown in Table 2).

Table 3: Voices built for comparison between baseline and pro-
posed models.

Voice # Source Target

Model Dataset Identifier

1

#1

Baseline

#2 afr5min_ph

2 #3 afr15min_ph

3 #4 afr30min_ph

4 #5 afrall_ph

5

Proposed

#2 afr5min_pf

6 #3 afr15min_pf

7 #4 afr30min_pf

8 #5 afrall_pf

9 None HMM #5 afrHMM

10 None Baseline #5 afrall

11

#1

Baseline

#6 xho5min_ph

12 #7 xho15min_ph

13 #8 xho30min_ph

14 #9 xhoall_ph

15

Proposed

#6 xho5min_pf

16 #7 xho15min_pf

17 #8 xho30min_pf

18 #9 xhoall_pf

19 None HMM #9 xhoHMM

20 None Baseline #9 xhoall

4.3. Training

The performance of the proposed model was evaluated by com-
paring it to the base model. The training procedure involved
building voices applying the two models (baseline and pro-
posed) using the different datasets from Table 2. In each set, the
first step was to train the source language model, representing
the well-resourced language. Subsequently, the target language
models were trained, representing the different variations of the
resource-scarce language datasets. In total 20 voices were built
from the combinations of the language datasets in Table 2 and
the baseline and proposed models.

4.3.1. Source Language

The English data, representing the well-resourced language,
was exclusively used to train the source language models. Ad-
versarial training, where a discriminator D that distinguishes
between the output generated by the decoder G and the ground
truth waveform y, was used similar to [2] and [25].

For the baseline model, we set the number of sub-bands
to 4. The up-sampling scale of the residual blocks was ad-
justed to match the resolution of each sub-band signal obtained
through the analysis filters of the Pseudo-Quadrature Mirror
Filter (PQMF) [29]. The fast Fourier transform (FFT) size, hop
length, and window length of the iSTFT were kept consistent
with the parameters used in [25]. Additionally, the parameters
for calculating the STFT loss in the sub-bands were adopted
from the same study.

Other training hyperparameters followed the approach used
in [2], which involved employing the AdamW optimizer [30]
with specific settings: β1 = 0.8, β2 = 0.99, and weight de-
cay of λ = 0.01. The learning rate decay was scheduled to
decrease by a factor of 0.9991

8
in each epoch, starting with an

initial learning rate of 2 × 10−4. Mixed precision training was
implemented on a single NVIDIA A6000 GPU. The batch size
was set to 64, and the base model was trained for a total of 200k
steps.

4.3.2. Target Language

The models for voices 1–8 and 11–18 in Table 3 were trained by
initializing the weights with the source language voice trained
in Section 4.3.1. Subsequently, training commenced with iden-
tical hyper-parameters as those used in the source language
model. The training process involved fine-tuning the models for
100k steps, ensuring convergence while avoiding over-fitting.

For both Afrikaans and isiXhosa two extra voices were
trained:
• We built a hidden Markov model (HMM)-based voice, utiliz-

ing all the language-specific data from Table 2 (datasets #5
and #9). This model served as the anchor for the subjective
evaluation (see Section 4.4).

• Using the baseline model, we created voices (voice #10 and
#20 in Table 3) using only the data available for the target lan-
guage (datasets #5 and #9 from Table 2), the resource-scarce
data. The purpose of building these voices was to establish
a starting point for training voices without employing cross-
lingual transfer, instead relying solely on the available data
for the specific dataset. However, the training of these voice
models did not converge, resulting in unintelligible and un-
usable synthesis in both subjective and objective tests. Fur-
thermore, when we applied the proposed model to the same
datasets using the same resource-scarce target datasets, the
resulting voice qualities were the same, leading us to exclude
these voices from further testing.

The test sets were also tokenized, normalised and converted
into phoneme strings and PF vectors, after which they were syn-
thesized for the objective and subjective evaluations. The ref-
erence and synthesized samples can be found here: https:
//ghssw2023samples.github.io/experiment/.

4.4. Evaluation

In order to quantitatively compare the proposed models with the
baseline models we used the following objective measures:
• Mel-cepstral distortion (MCD), as defined in [31].
• f0 Root mean squared error (RMSE), as defined in [32].
• f0 Mean absolute error (MAE), this is similar to RMSE, but

the MAE is less influenced by large outliers than RMSE.
• f0 Voicing classification error (VCE), as defined in [32].
• Pearson correlation coefficient (PCC).

For subjective evaluation we conducted an online listening
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test in the form of a web-based MUltiple Stimuli with Hidden
Reference and Anchor (MUSHRA) [33] framework. The par-
ticipants were asked to rate the naturalness in comparison to a
reference sample on a scale from 0 (Very poor) to 100 (Com-
pletely natural).

The reference sample was a recording of human speech
which was part of the test set, whilst the anchor was the HMM-
based voice of Section 4.3.2. The participants were instructed
to make sure that at least one of the rated samples was 100.

A total of 51 people participated in the perceptual evalua-
tion, 27 for Afrikaans and 24 for isiXhosa. Only participants
which were either first language speakers or fluent in the lan-
guage were recruited. Post-screening was done to verify that
participants scored the hidden reference stimuli 90 or more for
more than 80% of the tests and after post-screening there were
23 people for Afrikaans and 21 for isiXhosa.

The objective and subjective results are Tables 4 and 5 re-
spectively. We also calculated the Wilcoxon rank-sum test to
determine if the MUSHRA results are statistically significant
between the different voice pairs. The null hypothesis for the
Wilcoxon rank-sum test states that there is no difference be-
tween the distributions of the two samples, while the alterna-
tive hypothesis suggests a significant difference. The results are
given in Table 6 for both Afrikaans and isiXhosa.

Table 4: Objective results for both Afrikaans and isiXhosa:
Mel-cepstral distortion (MCD), logarithmic scale, fundamental
frequency (f0) root mean squared error (RMSE), linear scale,
fundamental frequency (f0) mean absolute error (MAE), linear
scale, fundamental frequency (f0) voicing classification per-
centage error (VCE), and Pearson correlation coefficient of fun-
damental frequency (f0) voicing classification (PCC).

Voice MCD
(dB) ↓

f0

RMSE
↓ (Hz)

MAE
↓ (Hz)

VCE
↓ (%)

PCC
↑

afr5min_ph 6.86 28.94 18.42 15.62 0.401
afr5min_pf 6.34 28.08 18.41 15.55 0.411

afr15min_ph 6.38 28.14 17.35 15.71 0.423
afr15min_pf 6.07 27.27 17.54 16.00 0.456

afr30min_ph 6.24 27.61 17.49 13.45 0.498
afr30min_pf 6.13 26.71 17.2 15.88 0.569

afrall_ph 5.92 26.30 16.32 13.61 0.620
afrall_pf 5.73 25.36 15.98 16.52 0.626

afrHMM 6.71 27.16 17.23 18.17 0.602

Voice MCD
(dB) ↓

f0

RMSE
↓ (Hz)

MAE
↓ (Hz)

VCE
↓ (%)

PCC
↑

xho5min_ph 6.45 12.45 7.65 11.55 0.601
xho5min_pf 6.01 11.09 6.66 11.76 0.692

xho15min_ph 6.04 10.53 6.16 10.93 0.760
xho15min_pf 5.70 10.68 6.15 10.75 0.771

xho30min_ph 5.80 10.18 5.92 11.26 0.798
xho30min_pf 5.44 9.77 5.62 11.05 0.818

xhoall_ph 5.57 10.18 5.59 10.75 0.811
xhoall_pf 5.24 10.89 6.11 11.01 0.813

xhoHMM 5.97 10.32 6.02 13.76 0.800

Table 5: Mean MUSHRA subjective naturalness scores (0-100)
for Afrikaans and isiXhosa with a 95% confidence level.

Voice MUSHRA ↑
afr5min_ph 53.33 ± 4.82
afr5min_pf 58.51 ± 3.96

afr15min_ph 60.67 ± 3.97
afr15min_pf 74.43 ± 3.59

afr30min_ph 67.29 ± 3.50
afr30min_pf 81.56 ± 2.98

afrall_ph 76.04 ± 3.42
afrall_pf 86.27 ± 2.36

afrHMM 51.30 ± 3.27

afrReference 96.95 ± 0.91

Voice MUSHRA ↑
xho5min_ph 49.36 ± 4.79
xho5min_pf 56.34 ± 4.16

xho15min_ph 60.65 ± 3.97
xho15min_pf 63.40 ± 3.58

xho30min_ph 60.99 ± 3.68
xho30min_pf 70.20 ± 3.78

xhoall_ph 65.52 ± 3.78
xhoall_pf 70.18 ± 3.41

xhoHMM 61.12 ± 2.55

xhoReference 97.22 ± 0.84

5. Discussion and Conclusion
Analysis of Tables 4 and 5 reveals a consistent pattern for both
Afrikaans and isiXhosa. The objective and subjective measures
consistently indicate that the proposed model utilizing phono-
logical features outperforms the baseline model.

As described in Section 4.3.2, a voice was trained for each
variant and data subset of the target languages using the pro-
posed model, excluding pre-training with the LibriTTS data
(source language). However, due to significant issues of un-
intelligibility and noise artifacts, these voices and samples were
excluded from the evaluations. This outcome was unexpected,
especially for the Afrikaans and isiXhosa datasets that included
all the data of those speakers. This finding further emphasizes
the importance of pre-training on a resource-rich dataset, irre-
spective of the language.

Examining Table 6, we observe that there is no statisti-
cally significant difference in naturalness between an Afrikaans
voice trained on 15 minutes of data using phonological fea-
tures as input (G) and a voice trained using all available data
( 3.5 hours) with phonetic features as input (B). Notably,
an Afrikaans voice trained on 5 minutes of data using the
proposed phonological features as input (I) demonstrates statis-
tical differentiation from an HMM-style voice (A), indicating
superior performance based on the means of the MUSHRA test
from Table 5.

Similar trends are observed for isiXhosa, despite the no-
table distinction between the source and target languages. In
this case, a voice developed from 30 minutes of speech us-
ing the proposed phonological features as input (O) is not found
to be statistically different from a voice constructed from all
available data ( 2.75 hours) using the baseline method (L).

Figure 1 illustrates the reference waveform and spectro-
gram of the recording containing the isiXhosa utterance “Uya
kubekwa kwindawo yokhuseleko lwamangqina yexeshana, ze
emva koko, kuqwalaselwe isicelo sokhuseleko lwakho, isigx-
ina.” This utterance can be loosely translated into English as
“You will be placed in temporary witness protection, and after
that, your application for permanent protection will be consid-
ered.” Within the utterance, the isiXhosa word “kuqwalaselwe”
(approximate English translation: “considered”) can be tran-
scribed in IPA as [k’u!walasElwE], where the third phone ([!])
represents an alveolar click. The production of an alveolar click
involves creating and suddenly releasing a vacuum between the
tongue and the alveolar ridge, resulting in a distinctive click-
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Table 6: Statistical significant differences for Afrikaans and
isiXhosa between the different voice pairs (p < 0.05). Pairs
that are statistically significantly different are donated with a
diamond marker (♢) while pairs that are not statistically signif-
icantly different are donated with a filled diamond marker (♦).

A B C D E F G H I J

A · ♢ ♢ ♢ ♢ ♢ ♢ ♦ ♢ ♢
B ♢ · ♢ ♢ ♢ ♢ ♦ ♢ ♢ ♢
C ♢ ♢ · ♢ ♦ ♢ ♢ ♢ ♢ ♢
D ♢ ♢ ♢ · ♢ ♢ ♢ ♢ ♢ ♢
E ♢ ♢ ♦ ♢ · ♢ ♢ ♢ ♢ ♢
F ♢ ♢ ♢ ♢ ♢ · ♢ ♦ ♦ ♢
G ♢ ♦ ♢ ♢ ♢ ♢ · ♢ ♢ ♢
H ♦ ♢ ♢ ♢ ♢ ♦ ♢ · ♦ ♢
I ♢ ♢ ♢ ♢ ♢ ♦ ♢ ♦ · ♢
J ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ·
A afrHMM D afr30min_ph G afr15min_pf

B afrall_ph E afr30min_pf H afr5min_ph

C afrall_pf F afr15min_ph I afr5min_pf

J afrReference

K L M N O P Q R S T

K · ♦ ♢ ♦ ♢ ♦ ♦ ♢ ♦ ♢
L ♦ · ♦ ♦ ♦ ♦ ♦ ♢ ♢ ♢

M ♢ ♦ · ♢ ♦ ♢ ♢ ♢ ♢ ♢
N ♦ ♦ ♢ · ♢ ♦ ♦ ♢ ♦ ♢
O ♢ ♦ ♦ ♢ · ♢ ♢ ♢ ♢ ♢
P ♦ ♦ ♢ ♦ ♢ · ♦ ♢ ♦ ♢
Q ♦ ♦ ♢ ♦ ♢ ♦ · ♢ ♢ ♢
R ♢ ♢ ♢ ♢ ♢ ♢ ♢ · ♦ ♢
S ♦ ♢ ♢ ♦ ♢ ♦ ♢ ♦ · ♢
T ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ·

K xhoHMM N xho30min_ph Q xho15min_pf

L xhoall_ph O xho30min_pf R xho5min_ph

M xhoall_pf P xho15min_ph S xho5min_pf

T xhoReference

ing sound. This phonetic feature poses a challenge in cross-
lingual transfer due to differences in phone inventories across
languages, with no equivalent sound in English.

The second row of plots in Figure 1 provides a closer exam-
ination of the click ([!]) by presenting a zoomed-in section of
the reference waveform and spectrogram. The third row of plots
showcases the realization of the click in a synthesized sample
generated by the voice built using the 5 minute dataset and
the baseline model (which utilizes a shared phone inventory, as
described in Section 4.2). Similarly, the fourth row of plots dis-
plays the click from a synthesized sample produced by the voice
built using the 5 minute dataset and the proposed model.

Both the waveform and spectrogram clearly depict the
silent section preceding the abrupt release of the click and the
sharp boundary where the click begins, resembling the percep-
tual qualities of the click in the reference recording. This find-
ing is significant as it demonstrates the ability of the proposed
model to learn a phonetic feature with limited examples in the
target language (isiXhosa) and no examples in the source lan-
guage (English). The test set utterances consisted of a total of
1423 phones, with the isiXhosa phone inventory encompassing
45 distinct phones (excluding non-speech markers, as indicated
in Table 1). Out of these 1423 phones, only 5 instances of the
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Figure 1: Example of click ([!]) with 5 minutes of data.

click ([!]) were present in the test set, which the proposed model
effectively learned, accounting for a mere 0.35% of the total
number of phones in the test set.

While this study has demonstrated the improvement in nat-
uralness of synthesized speech through the utilization of phono-
logical features in cross-lingual TTS for resource-scarce lan-
guages, there are several avenues for future research that can
further advance the field and address remaining challenges.
These avenues include exploring alternative transfer learning
techniques such as multi-lingual transfer learning, unsupervised
transfer learning, or domain adaptation methods to enhance the
generalization and adaptation capabilities of TTS systems. Ad-
ditionally, conducting robustness analysis to assess the perfor-
mance of the proposed model under diverse conditions and po-
tential biases is crucial.
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